

Philadelphia University

Faculty of Engineering - Department of Electrical Engineering First Semester 2022/2023

Course Details:

Title: Electric Circuits I (610211)

Prerequisite: General Physics 2 (216132)

Credit Hours: 3 credit hours (16 weeks per semester, approximately 45 contact hours)

Support Material Pre-set Tutorials in order to solve problems set

Textbook: James Nilson and Susan Riedel, Electric Circuits, 10th edition, 2014, Pearson.

• W. Hayt and J. Kemmerly, Engineering Circuits Analysis, 5th edition,

References: Mcgraw-Hill College, 1993.

IEEE Transactions on Electric Circuits

The main goals of this course is to introduce concepts of Electric circuits by studying the following main topics; electric circuit elements, techniques of circuit analysis, transient conditions, and the steady states analysis. At the completion of

course this course the student should be able to:

• Understand the principle of electric circuit design and application.

Comprehend the principles of DC and AC circuits.

• Understand the techniques to analyze different circuit configuration

Course Outlines:

Description:

Week	Topic
1,2	Introduction: Electric Circuits Variables and Elements
3,4	Simple Resistive Circuits
5	Techniques of Analysis: Node-Voltage Method
6	DC Techniques of Analysis: Mesh Current Analysis
7	Techniques of Analysis: Thevinins and Nortons
8	Maximum Power Transfer Theory
9	Inductors and capacitors: Series and Parallel
10, 11	RL, RC: Transient state analysis
12	Steady State Analysis
13	Sinusoidal Response
14	Complex Numbers
15, 16	Frequency Domain Circuits: Impedance and Admitance

Course Learning Outcomes with reference to ABET Student Outcomes:

Upon successful completion of this course, student should:

1.	Know the various types and their elements of electric circuits.	[1]
2.	Apply different techniques to analyze electric circuits.	[1]
3.	Solve problem of different electric circuits	[1]
4.	Derive equations related to the circuit's performance and design.	[1]

Assessment Guidance:

Evaluation of the student performance during the semester (total final mark) will be conducted according to the following activities:

Sub-Exams: The students will be subjected to a midterm scheduled written

exams during the semester.

Quizzes: quizzes of (10-15) minutes will be conducted during the

semester. The materials of the quizzes are set by the lecturer.

Homework and projects: Tutorials sheets will be handed out to the students and homework should be solved individually and submitted before or on a set agreed

date. Student may be assigned to present project(s).

Cheating by copying homework from others is strictly forbidden and

punishable by awarding the work with zero mark.

Final Exam: The students will undergo a scheduled final exam at the end of the

semester covering the whole materials taught in the course.

Grading policy:

Midterm Exam	30%
Class Work	30%
Final Exam	40%

Total: 100%

Attendance Regulation:

The semester has in total 45 credit hours. Total absence hours from classes and tutorials must not exceed 15% of the total credit hours. Exceeding this limit without a medical or emergency excuse approved by the deanship will prohibit the student from sitting the final exam and a zero mark will be recorded for the course. If the excuse is approved by the deanship the student will be considered withdrawn from the course.