0790326 Intrusion Detection and Prevention Systems

2023/2024 – Semester 2

Week 14

 $26^{th} - 28^{th}$ May 2024

Dr. Basil Elmasri

balmasri@philadelphia.edu.jo

External Material

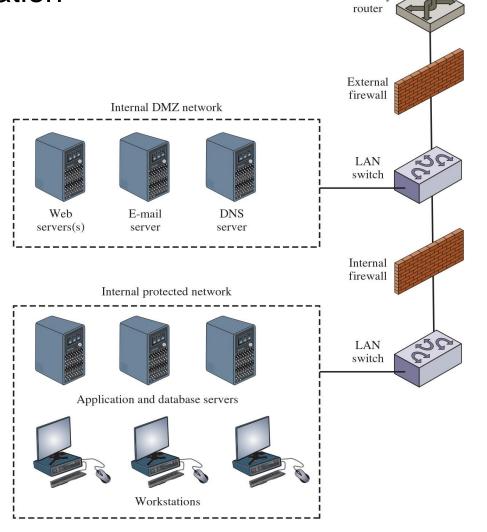
- Rest of the slides for this week are based on (Stallings & Brown, 2024) book, chapter 8.
 - Some extra slides have been added, their text was taken from the book.
 - Footers, dates, and slides number have been added only to help students reading the material.
- Study and exams will be based on the book chapters, not the slides.

Bastion Hosts

- System identified as a critical strong point in the network's security
- Serves as a platform for application-level or circuit-level gateways
- Common characteristics:
 - Runs secure O/S, only essential services
 - May require user authentication to access proxy or host
 - Each proxy can restrict features, hosts accessed
 - Each proxy is small, simple, checked for security
 - Each proxy is independent, non-privileged
 - Limited disk use, hence read-only code

Host-Based Firewalls

- Used to secure an individual host
- Available in operating systems or can be provided as an add-on package
- Filter and restrict packet flows
- Common location is a server
- Advantages:
 - Filtering rules can be tailored to the host environment
 - Protection is provided independent of topology
 - Provides an additional layer of protection


Personal Firewall

- Controls traffic between a personal computer or workstation and the Internet or enterprise network
- For both home or corporate use
- Typically is a software module on a personal computer
- Can be housed in a router that connects all of the home computers to a DSL, cable modem, or other Internet interface
- Typically much less complex than server-based or standalone firewalls
- Primary role is to deny unauthorized remote access
- May also monitor outgoing traffic to detect and block worms and malware activity

Figure 9.2

Example Firewall Configuration

Internet

Boundary

Figure 9.4

Example
Distributed
Firewall
Configuration

Copyright © 2024, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Firewall Topologies (1 of 2)

Host-resident firewall

 Includes personal firewall software and firewall software on servers

Screening router

 Single router between internal and external networks with stateless or full packet filtering

Single bastion inline

 Single firewall device between an internal and external router

Single bastion T

 Has a third network interface on bastion to a DMZ where externally visible servers are place

Firewall Topologies (2 of 2)

- **Double bastion inline**
 - DMZ is sandwiched between bastion firewalls.
- Double bastion T
 - DMZ is on a separate network interface on the bastion firewall
- Distributed firewall configuration
 - Used by large businesses and government organizations

Intrusion Prevention Systems (IPS)

- Also known as Intrusion Detection and Prevention System (IDPS)
- Is an extension of an IDS that includes the capability to attempt to block or prevent detected malicious activity
- Can be host-based, network-based, or distributed/hybrid
- Can use anomaly detection to identify behavior that is not that of legitimate users or signature/heuristic detection to identify known malicious behavior
- Can block traffic but makes use of the types of algorithms developed for IDSs to determine when to do so

Host-Based IPS (HIPS)

- Can make use of either signature/heuristic or anomaly detection techniques to identify attacks
 - Signature: focus is on the specific content of application network traffic, or of sequences of system calls, looking for patterns that have been identified as malicious
 - Anomaly: IPS is looking for behavior patterns that indicate malware
- Examples of the types of malicious behavior addressed by a HIPS include:
 - Modification of system resources
 - Privilege-escalation exploits
 - **Buffer-overflow exploits**
 - Access to e-mail contact list
 - Directory traversal

HIPS (1 of 2)

- Capability can be tailored to the specific platform
- A set of general purpose tools may be used for a desktop or server system
- Some packages are designed to protect specific types of servers, such as Web servers and database servers
 - In this case the HIPS looks for particular application attacks

HIPS (2 of 2)

- Can use a sandbox approach
 - Sandboxes are especially suited to mobile code such as Java applets and scripting languages
 - HIPS quarantines such code in an isolated system area then runs the code and monitors its behavior
- Areas for which a HIPS typically offers desktop protection:
 - System calls
 - File system access
 - System registry settings
 - Host input/output

The Role of HIPS (1 of 2)

- Many industry observers now see the enterprise endpoint, including desktop and laptop systems, as the main target for hackers and criminals
 - Thus security vendors are focusing more on developing endpoint security products
 - Traditionally, endpoint security has been provided by a collection of distinct products, such as antivirus, antispyware, antispam, and personal firewalls

The Role of HIPS (2 of 2)

- Approach is an effort to provide an integrated, singleproduct suite of functions
 - Advantages of the integrated HIPS approach are that the various tools work closely together, threat prevention is more comprehensive, and management is easier
- A prudent approach is to use HIPS as one element in a defense-in-depth strategy that involves network-level devices, such as either firewalls or network-based IPS

Network-Based IPS (NIPS)

- Inline NIDS with the authority to modify or discard packets and tear down TCP connections
- Makes use of signature/heuristic detection and anomaly detection
- May provide flow data protection
 - Requires that the application payload in a sequence of packets be reassembled
- Methods used to identify malicious packets:
 - Pattern matching
 - Stateful matching
 - Protocol anomaly
 - Traffic anomaly
 - Statistical anomaly

References

Stallings, W., & Brown, L. (2024). Computer Security: Principles and Practice (5 ed.). Pearson. Retrieved from https://www.pearson.com/en-us/subject-catalog/p/computer-security-principles-and-practice/P200000010333/9780138091712

