Philadelphia University	PHILADELPHIA	Approval date:
Faculty of Science	UNIVERSITY	Issue:
Department of Basic Sciences	THE WAY TO THE FUTURE	Credit hours: 3
Academic year 2025/2026	Course Syllabus	Bachelor

Course information

Course#		Course title			Prerequisite	
0216111		Calculus 1			None	
Course type			Class	time	Room #	
☐ University Requirement ☐ Faculty Requirement		uirement	4 SM 08:	15-09:30	6311	
☐ Major Requirement ☐ Elective ☒ Compulsory		5 ST 08:	15-09:30	21009		
Degree / NQF Level ⊠ Diplom		⊠ Diploma d	legree (6)	☐ Bachelo	r degree (7	7)

Instructor Information

Name	Office No.	Phone No.	Office Hours		Office Hours		E-mail
Ahmad Hamdan	819	2341	SM	09:45 - 11:00	ahamdan@philadelphia.edu.jo		
Allillau Halligali	819	2341	ST	09:45 - 11:00	anamuan(a/piniadeipina.edu.jo		

Course Delivery Method

Course Delivery Method						
□ Physical □ Online □ Blended						
	Learning Model					
Duccontago	Synchronous	Asynchronous	Physical			
Precentage	0%	0%	100%			

Course Description

A foundational course introducing the core principles of calculus, including functions and their properties, limits and continuity, differentiation and its applications, and the fundamentals of integration for computing areas and solving applied problems.

Course Learning Outcomes

Number	Number Outcomes				
	Knowledge	outcomes *			
K1	Understand the basic properties of algebraic and transcendental functions, and their operations.	K _p 1			
K2	Know the concepts of limits, continuity, derivative and integral, and how to differentiate and integrate elementary functions.				
	Skills				
S1	Students should be able to use derivatives and integrals to solve real-life problems involving optimization and areas.				
C 1	C1 Thinking reasonably and the ability to make decisions.				
C2	Work in a team to implement one of the tasks of the course.	C _p 2			

^{*} According to learning outcomes of the faculty of pharmacy.

Learning Resources

Course textbook	• Anton H., Bivens I., Davis S. (2011) Calculus: Early			
	Transcendentals (10 th ed.). Wiley.			
Supporting References	Handouts by Feras Awad.			
	• Stewart J. (2015) Calculus: Early Transcendentals (8 th ed.).			
	Brooks Cole.			
Supporting websites	• GeoGebra: https://www.geogebra.org/			
Teaching Environment	⊠Classroom □ laboratory □Learning platform □Other			

Meetings and Subjects Timetable

	Meetings and Subjects Timetable							
Week	Торіс	Learning Methods	Tasks	Learning Material				
	Explanation of the study plan for the course, and			Course Syllabus				
	what is expected to be accomplished by the							
1	students.	Lecture		Software				
	Technology Preliminaries:							
	Moodle. Microsoft Teams. Geogebra							
2	BEFORE CALCULUS:	Lecture		Chapter 0				
	0.1 Functions							
3	0.2 New Functions from Old	Lecture		Chapter 0				
4	0.4 Inverse Functions; Inverse Trigonometric	Lecture		Chapter 0				
-	Functions			<u> </u>				
5	0.5 Exponential and Logarithmic Functions	Lecture		Chapter 0				
	LIMITS AND CONTINUITY:	Tast	0: 1	C1 1				
6	1.1 Limits (An Intuitive Approach)	Lecture	Quiz 1	Chapter 1				
	1.2 Computing Limits							
7	1.3 Limits at Infinity; End Behavior of a Function 1.5 Continuity	Lecture		Chapter 1				
/	1.6 Continuity 1.6 Continuity of Trig., Exp., Inverse functions.	Lecture		Chapter 1				
	THE DERIVATIVE:							
	2.1 Tangent Lines and Rates of Change							
8	2.2 The Derivative Function	Lecture	Midterm	Chapter 2				
	2.3 Introduction to Techniques of Differentiation	Lecture	Wildtellii	Chapter 2				
	2.4 The Product and Quotient Rules							
	2.5 Derivatives of Trigonometric Functions							
9	2.6 The Chain Rule.	Lecture		Chapter 2				
	TOPICS IN DIFFERENTIATION:							
10	3.1 Implicit Differentiation	Lecture		Chapter 3				
	3.2 Derivatives of Logarithmic Functions			1				
	3.3 Derivatives of Exp. and Inverse Trig.							
11	Functions	Lecture	Quiz 2	Chapter 3				
	3.6 L'Hopital's Rule; Indeterminate Forms							
	THE DERIVATIVE IN GRAPHING AND							
	APPLICATIONS:							
12	4.1 Increase, Decrease, and Concavity	Lecture		Chapter 4				
12	4.2 Relative Extrema; Graphing Polynomials	Lecture		Chapter 4				
	4.4 Absolute Maxima and Minima							
	4.8 Rolle's Theorem; Mean-Value Theorem			ļ				
	INTEGRATION:	_						
13	5.2 The Indefinite Integral	Lecture		Chapter 5				
	5.3 Integration by Substitution							

	5.5 The Definite Integral			
14	5.6 The Fundamental Theorem of Calculus	Lecture		Chapter 5
	5.9 Evaluating Definite Integrals by Substitution			
	5.10 Logarithmic and Other Functions Defined by			Chapter 5
15	Integrals	Lecture	Quiz 3	
	6.1 Area Between Two Curves			Chapter 6
16	Final Exam			

^{*} Includes: Lecture, flipped Class, project-based learning, problem-solving based learning, collaborative learning

Course Contributing to Learner Skill Development

Using Technology

Use GeoGebra to draw functions and do calculations.

Communication Skills

• Making a GeoGebra applet that do calculations of any main topic of the course and represents it to the students in class.

Application of Concepts Learnt

• Choose a physical model of any main topic of the course and briefly solve it.

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	30%	8	K1, K2, C1
Various Assessments *	30%	Continuous	S1, C1, C2
Final Exam	40%	16	K1, K2, C1
Total	100%		

^{*} Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning Method*	Assessment Method**			
	Knowledge					
K1	Understand the basic properties of algebraic and transcendental functions, and their operations.	Lecture	Exam			
K2	Know the concepts of limits, continuity, derivative and integral, and how to differentiate and integrate elementary functions.	Lecture	Exam			
	Skills					
S1	Students should be able to use derivatives and integrals to solve real-life problems involving optimization and areas.	Problem Solving	Homework			
	Competencies					
C1	Thinking reasonably and the ability to make decisions.	Discussion	Quiz			
C2	Work in a team to implement one of the tasks of the course.	Case study	Group project			

^{*} Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Polices

^{**} Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Policy	Policy Requirements
Passing Grade	The minimum passing grade for the course is (50%) and the minimum final mark recorded on transcript is (35%).
Missing Exams	 Missing an exam without a valid excuse will result in a zero grade to be assigned to the exam or assessment. A Student who misses an exam or scheduled assessment, for a legitimate reason, must submit an official written excuse within a week from an exam or assessment due date. A student who has an excuse for missing a final exam should submit the excuse to the dean within three days of the missed exam date.
Attendance	The student is not allowed to be absent more than (15%) of the total hours prescribed for the course, which equates to six lectures days (M, W) and six lectures (S, T). If the student misses more than (15%) of the total hours prescribed for the course without a satisfactory excuse accepted by the dean of the faculty, s/he will be prohibited from taking the final exam and the grade in that course is considered (zero), but if the absence is due to illness or a compulsive excuse accepted by the dean of the college, then withdrawal grade will be recorded.
Academic Honesty	Philadelphia University pays special attention to the issue of academic integrity, and the penalties stipulated in the university's instructions are applied to those who are proven to have committed an act that violates academic integrity, such as: cheating, plagiarism (academic theft), collusion, and violating intellectual property rights.

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
K2	Know the concepts of limits, continuity, derivative, and integral, and how to differentiate and integrate elementary functions.	Calculus 1	Quiz	100% of the students get 65% or more on the rubric.

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment
K _p 1	The student will be given a polynomial on a closed interval and is asked to find the extremum and classify them, the intervals of increasing and decreasing, the intervals of concavity and inflection points, the area enclosed by the polynomial and the x -axis on the given interval.

Assessment Rubric of the Program Learning Outcome

Assessment Rubric of the Program Learning Outcome						
	Weak (1 pt.)	Not Bad (2 pts)	Good (3 pts)	Excellent (4 pts)		
	Student is very confused and does not understand the topic, nor is able to clearly grasp how to apply it or when to use it.	Student has a decent grasp of the process but makes some major mistakes.	Student is almost perfect in their understanding of the topic, with some minor confusion or mistakes.	Student understands the concept perfectly.		
Critical Numbers Student should find the critical numbers and determine the sign of 1st derivative	The 1 st derivative calculated is wrong.	The 1 st derivative calculated is correct but the critical numbers wrong.	The critical numbers are found with minor mistakes.	The critical numbers are correctly found.		
Intervals of increasing and decreasing Student should find the intervals of increasing or decreasing.	The 1 st derivative sign is incorrect.	The 1 st derivative sign is calculated, and the intervals are found but with major errors.	The 1 st derivative sign is calculated, and the intervals are found but with minor errors.	The intervals of increasing and decreasing are calculated correctly.		
Extremum Student should find the minimum and maximum values and classify them as local or absolute	The extremum points found are incorrect.	The extremum found correctly but their classification is wrong.	The extremum found with classification but with minor errors.	The extremum with their classification is correct.		
Intervals of Concavity and Inflection Points Student should find the intervals of concavity, up or down, and find the inflection points.	The 2 nd derivative sign is incorrect.	The 2 nd derivative sign is calculated and the intervals with inflection points are found but with major errors.	The 2 nd derivative sign is calculated and the intervals with inflection points are found but with minor errors.	The intervals of concavity and inflection points are calculated correctly.		
The Area Student should use the definite integral to calculate the area.	An inappropriate order of integration is used.	An appropriate order of integration is used but with major calculations errors.	An appropriate order of integration is used but with minor calculations errors.	An appropriate order of integration is used with correct calculations.		