ANALYSIS OF ALGORITHMS

Chapter2/Partl

Prepared by: Enas Abu Samra

KEY POINTS OF CHAPTER?2

Analysis of Algorithms.

Calculating the Running Time of a program.

Order of Growth.

Best Case, Average Case, Worst Case.

Analyzing the Time Efficiency of non-recursive Algorithms.

Analyzing the Time Efficiency of recursive Algorithms.

EFFICIENCY OF ALGORITHMS

Efficiency: number of resources used by an Algorithm.
An algorithm is considered efficient if its resource consumption is below some
acceptable level. It should run in a reasonable amount of time on an available

computer or hardware specifications.
The two most common used measures are:

Time efficiency (time complexity): How long does the algorithm take to complete/
how fast an algorithm runs.

Space efficiency (space complexity): How much working memory is needed by
the algorithm/ refers to the amount of memory units required by the algorithm in
addition to the space needed for its input and output.

EFFICIENCY OF ALGORITHMS

For an algorithm to be efficient, the above two factors should be optimized, i.e.,
the algorithm should fulfill all the proper requirements with minimum amount of
time and within specified space limits should not overload the memory.

The term "analysis of algorithms" is usually used in a narrower, technical sense to
mean an investigation of an algorithm's efficiency with respect to two resources:
running time and memory space.

SPACE EFFICIENCY

For large quantities of data space/memory used should be analyzed.
The major components of space are:
Instruction space - the amount of memory needed by the code.
Data space - the amount of memory needed for the data on which the code operates.

Run-time stack space.

EXAMPLES/SPACE COMPLEXITY

Algorithm Swap(a,b)

{ temp=a; ------- 1 space
a=b; = - 1 a
b=temp; -------- 1 b
S temp
fln)=3 e

EXAMPLES/SPACE COMPLEXITY

Algorithm sum(A,n) space
{ s=0; =n
for(i=0;i<n;i++) n=1
{ i=1
s=s+A[i]; s=1
}
Return s; s(n)= n+3

EXAMPLES/SPACE COMPLEXITY

Algorithm sum(A,B,n)

space:
{ for(i=0;i<n;i++) A n?
{ B n?
for(j=0;j<n;j++) c né

cli,j]=0; n 1

for(j=0;j<n;j++) { j 1

Cli,jl=Ali,j]+Bl[ijl; 1
}

3n+ 3

TIME EFFICIENCY

Running time depends upon:
Compiler used
R/W speed to Memory and Disk
Machine Architecture: 32-bit vs 64

Input size (rate of growth of time)

ANALYSIS OF TIME COMPLEXITY

When analyzing for time complexity we can take two approaches:

1. Estimation of running time — Frequency Count Method (FCM)
Running time of an algorithm is the number of FCM instructions it executes By analysis of the
code, we can do:

Operation counts - select operation(s) that are executed most frequently and determine how many
times each is done.

Step counts - determine the total number of steps, possibly lines of code, executed by the program.

2. Order of magnitude/asymptotic categorization - gives a general idea of performance.

COMPARING ALGORITHMS

Question: Given two algorithms A and B, how do we know which is faster?

Answer: Implement and run both and compare the time each takes!

To compare two algorithms, we can implement them, run them and compare their
running times.

CHALLENGES

The running time of a program is hardware and software dependent.

We need to run both algorithms on the same machine (or on machines with the same specs), using the
same programming language, the same compiler, etc.

The running time of a program depends on the input size and on the input type.

We need to run the programs as many times as needed to cover all possible input sizes and types that
might affect the behavior of the programs.

Running the programs might take a long time!

Takes as long as the fastest of the two programs requires.

RULES OF FREQUENCY COUNT METHOD

For comments and declarations the step count is 0.
Comments are not executed, and declarations are not needed while writing the algorithm.
For the return, assignment, arithmetic’s, and logic statements the step count is 1.

Assignment statement is simply assigning a left hand value to a right hand value, while the return
statement is just returning a value, Arithmetic’s statement (e.g., +, -, *,/, ...), and Logic statement

(e.g.,> <, ...).
Only consider higher order exponents.

E.g.; 3n2 +4n. We will only consider 3n2 as it has the higher order exponent.
Ignore the constant value multipliers.

We are left with 3n2, our constant multiplier is 3, we ignore it and are left with n2. Our time
complexity is O(n?).

RULES OF FREQUENCY COUNT METHOD

Loops = Summation (see Math sheet)

U U
ZC:ZC(U—L+1)
i=L =L

U: upper, L: lower, C: constant, i: counter.
For loop: C-> 2 steps (comparison and counter update)
While loop: C = 1 step (comparison).

Statements inside loops (C = how many statements and the upper mins one because last
iteration is not included).

RULES OF FREQUENCY COUNT METHOD

For loop:
P >, 2(U—-L+1) U+1 if there is an equal operator in the condition part.
While loop:

V,1=YV 1U-L+1) U+1 if there is an equal operator in the condition part.

Statements inside loops:
YW lc=YV"1c(U-1-L+1) C:number of statements

ORDER OF RANKS

[ne good

l)(lll

horrible

order of growth

name function
constant 1
logarithmic log(rs)
\/ 72
linear 71
linearithmaic nz log(n)
riv/ n
guadratic -
cubic -
exponential 2
exponential 3"

factorial n!

EXAMPLES/TIME COMPLEXITY

Examplel:
/fassume n =2

For (int 1= 1; 1 <= n; i++)

displavy(1)
Tracing:
i i<=2 print sta.
1==2 Done (iterationl =2 compare and increase counter)
2==2 Done (iteration2 =% compare and increase counter)
3<==2 ----- (last iteration =2 just compare)

MNumber of operations the loop is executed whenn=2-—2> 6

Number of times the print statement 1s executed when n=2-—=> 2

If n = 3, operations of loop will be (8) and print statement will be executed (3)
times.

If n — 4, operations of loop will be (10) and print statement will be executed (4)
times.

EXAMPLES/TIME COMPLEXITY

Number of Steps using Random Access Method:
For (int i= 1; i <= n; i++) > Yyrl2=y"'2n+1-1+1) =2n+2
display(i) 2 2 1=%".1n—1+1) =n

fin)=2n+2+n=3n+2, f(n)=0(n)

EXAMPLES/TIME COMPLEXITY

Example2:
//assume n =2
For (int 1= 1; 1 <n; i++)
display(i)
Number of Steps using Random Access Method:
For (int i= 1; 1 < n; i++) - »r2=21,2(n—1+1) =2n

display(i) > Yrl'1="'1n—-1—1+1) =n-1

f(ln)=2n+n -1=3n-1, f(n)=0(n)

If n = 2, operations of loop will be (4) and print statement will be executed one
fime.

If n = 3, operations of loop will be (6) and print statement will be executed (2)
times.

EXAMPLES/TIME COMPLEXITY

Example3:
/fassume n =2
int1=1; 21
while (i < =n) > Y1 =¥Y"!'"1n+1-1+1) =n+l
1 display(i)
i++} } 2> Xri2=)",2n—1+1) =2n

fln)=1+n+1+2n =3n+2, f(n)=0(n)

If n = 2, operations of loop will be (3) and loop statements will be executed (4)
times.

EXAMPLES/TIME COMPLEXITY

Exampled:
/fassume n =2
inti=1; 21
while (i <n) 2> Yr,1=3%" 1(n—1+1) =n
{ display(i)
i++} } > Yrlz2="!'2(n—1—-1+1) =2n -2

flny=1+n+2n-2=3n-1, f(n)=0(n)

If n = 2, operations of loop will be (2) and loop statements will be executed (2)
times.

EXAMPLES/TIME COMPLEXITY

Examples:
For (int i= 2; 1 <=n; i++) > Yrl2=y"'2(n+1-2+1) =2n
display(“hi”) 2> 2il1=%»",1n—2+1) =n-1

fin)=2n+n-1=3n-1, f(n)=0(n)

EXAMPLES/TIME COMPLEXITY

Example6:
int sum = 0; 21
For(inti=2;i<n?—1;i++) > YM12=%""12(n2—-1—-2+1) =2n?-4

{ sum +=1
display(sum) ;} > Yr22=y"22n2—-2— 2+1) =2n%-6

fln)=1+2n?-4+2n’-6=4n’-9, f(n)=0(n?

EXAMPLES/TIME COMPLEXITY

Example7:
int sum = 0; 21
For (inti=n;i<=2n;i++) > Ytlg =%2n1t190@n+1—-n+1) =2n+4

I=n i=n

sum += 2; > Y 1= 12n—n+1) =n+1

fln)=14+2n+4+n+1=3n+6, f(n)=0(n)

EXAMPLES/TIME COMPLEXITY

Example8:
For (int i=n; i > =1; i--) - For (int 1= 1; 1 <=n; 1++)
display(“h1™) =2 n

fln)=2n+2+n=3n+2, f(n)=0(n)

- 2n+2

EXAMPLES/TIME COMPLEXITY

Example9:

For(inti=1;1<=n;1+=2)

display(“h1™)

Note:

iteration(i) =» 0 1 2 3 n
counter(j)=» 1 3 5 7 t = 2(1)+1

2M)+1 > i=@1)2

EXAMPLES/TIME COMPLEXITY

For (int i= 0; i <= (n-1)/2; i++)

display(“h1™)

Complexity:
for loop =2

FEoUE = 3D E a((n - 1)/2+ 1 -0+ 1) =2((n-1)/2+2)

statement inside loop =

Y21 = "2 (n-1)/2 -0+ 1) =(-1)2+ 1

f(n) = 2((n-1)/2 + 2) + (n-1)/2 + 1, f(n) = O(n)

EXAMPLES/TIME COMPLEXITY

Examplel0:
For (int i= 2; 1 <=n; 1 += 3)

display(“hi”)

Note:
iteration(i) 2 0 1 2 3
counter(j)=* 2 S5 8 11

3(i))+2 > i=(n-2)/3

=2 3(1)+2

EXAMPLES/TIME COMPLEXITY

For (int i= 0; 1 <= (n-2)/3; i++)

display(“hi™)
Complexity:
for loop =2
FEe2)/341 5 20‘23“”3“ 2(n—2)/34+1—0+1) =2((n-2)/3 +2)

statement inside loop =2

YEPPL= YD (n-2)/3-0+1) =@0-2)3+1

f(n) = 2((n-2)/3 + 2) + (n-2)/3 + 1, f(n) = O(n)

RULE(1)

#Rule 1:
for(int 1 = a; 1<= function; 1+=Db) // or minus

any statement

Notes:

a, b =2 any number, function = constant/n/n?/

Complexity =2 the higher order limit in function.

Review the previous examples.

EXAMPLES/TIME COMPLEXITY

Examplell:

For (int i= 1; 1 <=n; i*=2)

display(“‘hi™)

Note:

iteration(i)=» 0 1 2 3 n

counter(j) > 1 2 4 8 t = 2t k=2

20 3> i = logn

EXAMPLES/TIME COMPLEXITY

For (int i= 0; i <= logn; i++)

display(*‘h1”)

Complexity:
for loop =2

yieazntla — 319921 o (log2n + 1 — 0 + 1) =2(logon + 2) = 2logon + 4

statement inside loop =2

ZI72"1 = Z27 10082 — 0 + 1) ~logn |

f(n) =2logon + 4 + logont+ 1 = 3logon+ 5, f(n) = O(logan)

EXAMPLES/TIME COMPLEXITY

Examplel2:
For(inti=n;1>0;1=12) = For(inti1=1;1<=n; 1*=2)

display(“h1”)

Exactly as the previous.

RULE(2)

#Rule 2:
for(int 1 = a; 1<= function; 1 *=Db) // or division

any statement

Notes:
a, b 2 any number, function 2 constant/n/n2/

Complexity = logp(the higher order limit in function)

Review the previous examples.

EXAMPLES/TIME COMPLEXITY

Examplel3:
For (int 1= 0; 1 <= n; 1++) — O(n)
For (int j= 0;] <=n; j++) —= O(n)

display(**hi1™)

f(n) = O(n * n) = O(n?)

EXAMPLES/TIME COMPLEXITY

Examplel4:
For (int 1= 1; 1 <n; 1++) -2 O(n)
For (int j= 0;] <=n; j++) —= O(n)

display(“hi’)

f(n) = O(n * n) = O(n?)

EXAMPLES/TIME COMPLEXITY

Examplels:
For (int 1= 1; 1 <3n; 1++) = O(n)
For (int j=1;] <=n; j++) —2 O(n)

display(**h1’)

f(n) = O(n * n) = O(n?)

EXAMPLES/TIME COMPLEXITY

Examplel6:
For(inti=1;1<=n;1 *=2) - O(log:n)
For (int j=1;] <=n; j++) -2 O(n)

display(**h1>)

f(n) = O(n * logzn) = O(nlog:n)

EXAMPLES/TIME COMPLEXITY

Examplel7:
For (int 1= 1; 1 <=n; 1++) - O(n)
For (int j=1;] <=n;)*=2) -2 O(logzn)

display(“h1™)

f(n) = O(n * log>n) = O(nlog:n)

EXAMPLES/TIME COMPLEXITY

Examplel8: (important)

For (int 1= 0; 1 <3; 1++) -2 0O(3)

For (int = 0; | <=n; j++) =2 O(n) =2 O(n)
display(*h1™)

f(n) = O(3 * n) = O(n)

EXAMPLES/TIME COMPLEXITY

Examplel9:
For(inti=n;1>0;1=1-¢) - O(n)
For(intj=1+ 1;j<=n; j+=c¢) — O(n)

display(*hi1”)

f(n) = O(n * n) = O(n?)

EXAMPLES/TIME COMPLEXITY

Example20:

For (int 1= 0; 1 <=n; 1++) —= O(n)
display(“*hi™)

For (int j= 0;] <=n; j++) —= O(n)
display(*“h1’)

f(n) = O(n + n) = O(2n) = O(n)

EXAMPLES/TIME COMPLEXITY

Example21:
For (int 1= 0; 1 <n; 1++) —= O(n)
{For (int j= 0;] <=n; j++) —= O(n)

display(*hi’)

For (int j= 0; 1 <= n; j++) —= O(n)
display(*“h1’")

f(n) = O(n * (n+ n)) = O * 2n) = O(2n?) = O(n?)

EXAMPLES/TIME COMPLEXITY

Example22:
For (int 1= 0; 1 <n; 1++) =2 O(n)
For (int)= 0;] <n;] += 2) —= O(n)

For (int k= 10; k <n; k++) —= O(n)
display(“hi1™)

f(n) =0m *n * n) =0(m>

EXAMPLES/TIME COMPLEXITY

Example23:

For (int i= 0; 1 <n?; i++) —= O(n?)
display(*“h1”)

For (mti1i=0;1<n;1 += 2) —= O(n)
For (int j=0;] <n:] += 2) —= O(n)

display(*“hi1*”)

f(n) = O(m? + (n * n)) = O2n2) = O(n?)

EXAMPLES/TIME COMPLEXITY

Example24: (special case, not included in material)
For (inti=1;1<=n;1++)
For (int j=1;) <=1; J++)

display(*h1”)

f(n) = O(n’)

END OF CHAPTER2/PART1

	Slide 1: Analysis of algorithms
	Slide 2: Key Points of chapter2
	Slide 3: Efficiency of Algorithms
	Slide 4: Efficiency of Algorithms
	Slide 5: Space Efficiency
	Slide 6: Examples/space complexity
	Slide 7: Examples/space complexity
	Slide 8: Examples/space complexity
	Slide 9: Time Efficiency
	Slide 10: Analysis of Time Complexity
	Slide 11: Comparing Algorithms
	Slide 12: Challenges
	Slide 13: Rules of Frequency count method
	Slide 14: Rules of Frequency count method
	Slide 15: Rules of Frequency count method
	Slide 16: Order of ranks
	Slide 17: Examples/Time complexity
	Slide 18: Examples/Time complexity
	Slide 19: Examples/Time complexity
	Slide 20: Examples/Time complexity
	Slide 21: Examples/Time complexity
	Slide 22: Examples/Time complexity
	Slide 23: Examples/Time complexity
	Slide 24: Examples/Time complexity
	Slide 25: Examples/Time complexity
	Slide 26: Examples/Time complexity
	Slide 27: Examples/Time complexity
	Slide 28: Examples/Time complexity
	Slide 29: Examples/Time complexity
	Slide 30: Rule(1)
	Slide 31: Examples/Time complexity
	Slide 32: Examples/Time complexity
	Slide 33: Examples/Time complexity
	Slide 34: Rule(2)
	Slide 35: Examples/Time complexity
	Slide 36: Examples/Time complexity
	Slide 37: Examples/Time complexity
	Slide 38: Examples/Time complexity
	Slide 39: Examples/Time complexity
	Slide 40: Examples/Time complexity
	Slide 41: Examples/Time complexity
	Slide 42: Examples/Time complexity
	Slide 43: Examples/Time complexity
	Slide 44: Examples/Time complexity
	Slide 45: Examples/Time complexity
	Slide 46: Examples/Time complexity
	Slide 47: End of Chapter2/Part1

