
ANALYSIS OF ALGORITHMS

Chapter2/Part1

Prepared by: Enas Abu Samra

KEY POINTS OF CHAPTER2

• Analysis of Algorithms.

• Calculating the Running Time of a program.

• Order of Growth.

• Best Case, Average Case, Worst Case.

• Analyzing the Time Efficiency of non-recursive Algorithms.

• Analyzing the Time Efficiency of recursive Algorithms.

EFFICIENCY OF ALGORITHMS

• Efficiency: number of resources used by an Algorithm.

• An algorithm is considered efficient if its resource consumption is below some

 acceptable level. It should run in a reasonable amount of time on an available

 computer or hardware specifications.

• The two most common used measures are:

✓ Time efficiency (time complexity): How long does the algorithm take to complete/
how fast an algorithm runs.

✓ Space efficiency (space complexity): How much working memory is needed by
the algorithm/ refers to the amount of memory units required by the algorithm in
addition to the space needed for its input and output.

EFFICIENCY OF ALGORITHMS

• For an algorithm to be efficient, the above two factors should be optimized, i.e.,

the algorithm should fulfill all the proper requirements with minimum amount of

time and within specified space limits should not overload the memory.

• The term "analysis of algorithms" is usually used in a narrower, technical sense to

mean an investigation of an algorithm's efficiency with respect to two resources:

running time and memory space.

SPACE EFFICIENCY

• For large quantities of data space/memory used should be analyzed.

• The major components of space are:

✓ Instruction space → the amount of memory needed by the code.

✓ Data space → the amount of memory needed for the data on which the code operates.

✓ Run-time stack space.

EXAMPLES/SPACE COMPLEXITY

EXAMPLES/SPACE COMPLEXITY

EXAMPLES/SPACE COMPLEXITY

TIME EFFICIENCY

• Running time depends upon:

✓ Compiler used

✓ R/W speed to Memory and Disk

✓ Machine Architecture: 32-bit vs 64

✓ Input size (rate of growth of time)

ANALYSIS OF TIME COMPLEXITY

• When analyzing for time complexity we can take two approaches:

1. Estimation of running time – Frequency Count Method (FCM)

 Running time of an algorithm is the number of FCM instructions it executes By analysis of the

 code, we can do:

✓ Operation counts - select operation(s) that are executed most frequently and determine how many
times each is done.

✓ Step counts - determine the total number of steps, possibly lines of code, executed by the program.

2. Order of magnitude/asymptotic categorization - gives a general idea of performance.

COMPARING ALGORITHMS

Question: Given two algorithms A and B, how do we know which is faster?

Answer: Implement and run both and compare the time each takes!

To compare two algorithms, we can implement them, run them and compare their

running times.

CHALLENGES

• The running time of a program is hardware and software dependent.

We need to run both algorithms on the same machine (or on machines with the same specs), using the

same programming language, the same compiler, etc.

• The running time of a program depends on the input size and on the input type.

We need to run the programs as many times as needed to cover all possible input sizes and types that

might affect the behavior of the programs.

• Running the programs might take a long time!

Takes as long as the fastest of the two programs requires.

RULES OF FREQUENCY COUNT METHOD

• For comments and declarations the step count is 0.

✓ Comments are not executed, and declarations are not needed while writing the algorithm.

• For the return, assignment, arithmetic’s, and logic statements the step count is 1.

✓ Assignment statement is simply assigning a left hand value to a right hand value, while the return

statement is just returning a value, Arithmetic’s statement (e.g., +, -, *, /, …), and Logic statement

(e.g., >, <, …).

• Only consider higher order exponents.

✓ E.g.; 3n² +4n. We will only consider 3n² as it has the higher order exponent.

• Ignore the constant value multipliers.

✓ We are left with 3n², our constant multiplier is 3, we ignore it and are left with n². Our time

complexity is O(n²).

RULES OF FREQUENCY COUNT METHOD

• Loops → Summation (see Math sheet)

෍

𝒊=𝑳

𝑼

𝑪 =෍

𝑖=𝐿

𝑈

𝐶 U − L + 1

U: upper, L: lower, C: constant, i: counter.

• For loop: C→ 2 steps (comparison and counter update)

• While loop: C → 1 step (comparison).

• Statements inside loops (C → how many statements and the upper mins one because last

iteration is not included).

RULES OF FREQUENCY COUNT METHOD

• For loop:

• σ𝒊=𝑳
𝑼 𝟐 = σ𝑖=𝐿

𝑈 2 U − L + 1 U+1 if there is an equal operator in the condition part.

• While loop:

• σ𝒊=𝑳
𝑼 𝟏 = σ𝑖=𝐿

𝑈 1 U − L + 1 U+1 if there is an equal operator in the condition part.

• Statements inside loops:

• σ𝒊=𝑳
𝑼−𝟏𝑪 = σ𝑖=𝐿

𝑈−1𝐶 U − 1 − L + 1 C: number of statements

ORDER OF RANKS

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

RULE(1)

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

RULE(2)

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

EXAMPLES/TIME COMPLEXITY

END OF CHAPTER2/PART1

	Slide 1: Analysis of algorithms
	Slide 2: Key Points of chapter2
	Slide 3: Efficiency of Algorithms
	Slide 4: Efficiency of Algorithms
	Slide 5: Space Efficiency
	Slide 6: Examples/space complexity
	Slide 7: Examples/space complexity
	Slide 8: Examples/space complexity
	Slide 9: Time Efficiency
	Slide 10: Analysis of Time Complexity
	Slide 11: Comparing Algorithms
	Slide 12: Challenges
	Slide 13: Rules of Frequency count method
	Slide 14: Rules of Frequency count method
	Slide 15: Rules of Frequency count method
	Slide 16: Order of ranks
	Slide 17: Examples/Time complexity
	Slide 18: Examples/Time complexity
	Slide 19: Examples/Time complexity
	Slide 20: Examples/Time complexity
	Slide 21: Examples/Time complexity
	Slide 22: Examples/Time complexity
	Slide 23: Examples/Time complexity
	Slide 24: Examples/Time complexity
	Slide 25: Examples/Time complexity
	Slide 26: Examples/Time complexity
	Slide 27: Examples/Time complexity
	Slide 28: Examples/Time complexity
	Slide 29: Examples/Time complexity
	Slide 30: Rule(1)
	Slide 31: Examples/Time complexity
	Slide 32: Examples/Time complexity
	Slide 33: Examples/Time complexity
	Slide 34: Rule(2)
	Slide 35: Examples/Time complexity
	Slide 36: Examples/Time complexity
	Slide 37: Examples/Time complexity
	Slide 38: Examples/Time complexity
	Slide 39: Examples/Time complexity
	Slide 40: Examples/Time complexity
	Slide 41: Examples/Time complexity
	Slide 42: Examples/Time complexity
	Slide 43: Examples/Time complexity
	Slide 44: Examples/Time complexity
	Slide 45: Examples/Time complexity
	Slide 46: Examples/Time complexity
	Slide 47: End of Chapter2/Part1

