MATHEMATICAL ANALYSIS OF RECURSIVE

FUNCTION

Chapter3

Prepared by: Enas Abu Samra

KEY POINTS OF CHAPTERS3

Recursive function definition.
Idea of recursive function.
Examples of recursive functions.
Common recurrence relations.
Methods for solving recurrences:
Master Method
Recursion Tree Method
Iteration Method
Substitution Method

What is the Recursive Function?

RECURSIVE FUNCTION DEFINITION

Recursion is the technigue of making a function call itself. This technique
provides a way to break complicated problems down into simple problems which are
easier to solve.

Algorithmically: a way to design solutions to problems by divide-and-conquer.

Semantically: a programming technigue where a function calls itself.

DIVIDE AND CONQUER TECHNIQUE

Divide and conquer is an algorithm design paradigm based on multi-branched
recursion. It works by recursively breaking down (reducing) a problem into (two or
more) sub-problems of the same (or related type), until these become simple
enough to be solved directly. The solutions to the sub-problems are then combined
to give a solution to the original problem.

IDEA OF RECURSIVE FUNCTION

We can distill the idea of recursion into two simple rules:

Each recursive call should be on a smaller instance of the same problem, that is, a smaller
subproblem.

The recursive calls must eventually reach a base case, which is solved without further
recursion.

Note:

If you forget to include a base case, or your recursive cases fail to eventually reach a
base case, then infinite recursion happens. Infinite recursion is a special case of an
infinite loop when a recursive function fails to stop recursing.

EXAMPLE (1) OF RECURSIVE FUNCTION

def factorial (n):
if n == 0: # base case
return 1
else: # recursive case

return n * factorial(n - 1)

print (factorial (4))

TRACING OF RECURSIVE FUNCTION

The execution of a recursive function is usually illustrated using a recursion
trace.

Each new recursive function call is indicated by a downward arrow to a new
invocation.

When the function returns, an arrow showing this return is drawn and the return
value may be indicated alongside this arrow.

RECURSION TRACE FOR EXAMPLE(1)

return 4 x 6 = 24

N

return 3 x2 =06

™

return 2 x 1 = 2

™

return 1 x 1 =1

f

return 1

\

(factorial(4)

\

(factorial(3)

x

(factorial(2)

X

(factorial(1)

\

(factorial(0)

COMPLEXITY OF EXAMPLE(1)

def

T(n) =

factorial (n) :

if n == 0: 31
return 1 -1
else:
return n * factorial(n - 1) =2 T{(n-1)+2

1
T(n-1) + 3

,n=20

, =0

EXAMPLE (2) OF RECURSIVE FUNCTION

Mathematical Analysis of Recursive Algorithms 1 n=0
void Test(intn) -=—-mmmmmme- T(n) T(n)= { T(n-1)+1 n>0
{
If (n>0)
{
Print(n) - 1
Test(n-1) -——- T(n-1)
}
}

T(n)=T(n-1) +1

What is the Recurrence Relations?

COMMON RECURRENCE RELATIONS

A recurrence relation is an equation that defines a sequence based on a rule that gives
the next term as a function of the previous term(s).

T(n)=T(n-1)+1 = O(n)
T(n)=T(n-1)+n = O(n?2)
T(n)=T(n-1)+logn = O(nlogn)
T(n)=T(n-1)+n? =2 O(n?)
T(n)=T(n-2)+1 =2 n/2 =2 0(n)
T(n)=T(n-100)+n = n%/100 =2 0O(n?)

T(n)=2T(n-1) + 1 =» O(2")

COMMON RECURRENCE RELATIONS

T(n)=3T(n-1)+1 = O(3")

T(n)= 2T(n-1)+n = O(n2")

T(n) = 3T(n-1)+logn = O(3" logn)
T(n)=T(n/2) +1 = O(logn)
T(n)=T(n/2) + n =» O(n)
T(n)=2T(n/2)+n = O(nlogn)

METHODS FOR SOLVING RECURRENCES

Master Method
Recursion Tree Method
Iteration Method
Substitution Method

The Master Method

MASTER METHOD

T(n) = aT(E) + f(n), wherea>=1,b>1,1f(n) >0, d=log;, a
T(n)= ©O(n?) , if f(n) <nd casel

@(nlogn) , iff(n) = n¢ case2

O(f(n)) , if f(n) > nd case3

In case3, this is another condition: af(g) <= cf(n) where ¢ < 1

MASTER EXAMPLES

Exl. T(n)= 4T(E) +n

Sol & f(n) n¢
n ﬂlngz 1
n < n’

T(n) = O(n?)

MASTER EXAMPLES

Ex2. T(n)= 2T(E)+11

Sol=2> f(n) no
n ﬂlﬂgz 2
n = n

T(n) = ©(nlogn)

MASTER EXAMPLES

Ex3. T(n)= 3T(§)+uﬂ

Sol = f(n) né
n2 ﬂlﬂgz z
n? > n
af(n/b) cf(n)
2(%2) cn?
(;) <= cn? 2 Y% (n?) <= cn?

T(n) = ©(n?)

>

c>=0.5

The Recursion Tree Method

RECURSION TREE METHOD

T(n) = aT(g) +fn) , T(1)=C

number of nodes = a
size of node = (n/b)
root = f(n)

size of node in leaves =2 T(1)=C

Note: It is not necessary that the T(n) be always in this form.

STEPS OF RECURSION TREE METHOD

1.Draw Tree

First=> draw the root (look at f(n): size of root)

Second=2>» draw nodes (look at a: # of nodes audg : size of node)

Third = draw the leaves (look at T(1): size of the leaves)
2.Draw Table

Level # of Nodes Level Sum
0 1 Weight of node * number of nodes
1 ? Weight of node * number of nodes
2 ? Weight of node * number of nodes
1 ?=n T(1) *n

3.Find (i) and Pattern
Find i=» from this equation: ? =n

Find Pattern-= make series from the Level Sum Column then use summation (if
required) and finally find the complexity.

RECURSION TREE EXAMPLES

Exl. T(n)= 2T(§) + 4n

1. Draw a Tree

, T(1)=5

Level (i)

RECURSION TREE EXAMPLES

2. Draw a Table

Level # of Nodes Level Sum
0 1 4n
1 2 4n
2 4 4n
1 21 5n
3. Find(i) and Pattern
2i=n > i = logn
Pattern 2 Y! ,4n + n = ¥%9"4an + n =4nY%9"1 +n =

An(logn — 0+ 1) + n = 4nlogn + 5n

T(n) = O(nlogn)

RECURSION TREE EXAMPLES

Ex1. T(n)zzT(’—z‘)+u2 ., T(H)=1

Level (i)

1. Draw a Tree °

i=0

RECURSION TREE EXAMPLES

2. Draw a Table

ILevel # of WNodes Level Sum
0 1 n2
1 2 n</2
2 4 n2/4
i 21 n
3. Find(i) and Pattern
2i=n > i — logn n?+n%2 +n%4++n%21 +n
i—11 i— Iogn 11 R
Pattern =) }_ —+11—n2 —I+n nZ - th=n’*c+n

T(n) = On?)

The Iteration Method

ITERATION METHOD

Solution Steps:

1. lteration Step
2. Find (1) and pattern

ITERATION EXAMPLES

Exl.T{u}zT{§)+c ., T(1)=1

Sol:
1. Iteration Step

Level T(n)
1 T(n)=T(;) + C
2 T{n)zT(n?ﬂ)+C+C > T +C+C
3 T{n)ZT{nTﬁ)+C+C+C—) T(g)+c+c +C

i T(n)=T(w2)+(C+C+C+....+C)
1

J

|
i

ITERATION EXAMPLES

2. Find (i) and Pattern
T(1) =T(n/2Y) => i = logn

T(n)=T(m/2) + Y _,C =
T(n/2%e) + ¢ Y291 =
T(1) + C(logn -0 +1) =
1 + C*logn + C

T(n) = ®(logn)

ITERATION EXAMPLES

Ex2. T(n)=T(n—1) +n , T(1)=0
Sol:

1. Iteration Step

Level T(n)
1 T(n)=T(n-1)+n
2 T(n)=T(n-2) + (n-1) +n
3 Tn)=Tm-3)+(n—2)+(n—1)+n

:1 .T(u) =T(n-1)+(n-1-1)+.... + (n-3) H(n-2) + (n-1) + n

ITERATION EXAMPLES

2. Find (i) and Pattern
T(1)=T(n-1) =>»

o
|
=

T(n) = T(n-i) + Y!_o(n — i) =
T(n-n)+ Y on - Xl
T(1)+n(n—0+1) - n(n+1) /2
0 +n’+n+n(n+1)2

T(n) = O(n?)

The Substitution Method

SUBSTITUTION METHOD

1. Guess a solution.
2. Use induction to prove that the solution works. (Substitution in base and
recurrence cases)

SUBSTITUTION EXAMPLES

Exl1.

2 ,n=1

=918 +2 > 1

e

Guessed solution = T(n) = 2logn + 2

SUBSTITUTION EXAMPLES

Solution:
Base Case =2 n=1

T(1)=1log(1l) + 2 = 2 (same as the function, correct)

Recurrence Case = n > 1,
T{g) = zmgg +2 +2= 2logn—2log2 +2+2 =

2logn -2 +2+2=

2logn + 2 (same as the function, correct)

T(n) = O(logn)

SUBSTITUTION EXAMPLES

Ex2.

p—

| ,n1=1

T(ﬂ):"ZT{g)m >

e

Guessed solution = T(n) = nlogn + n

SUBSTITUTION EXAMPLES

Solution:
Base Case =2 n=1

T(1)=1llogl + 1 =1 (same as the function, correct)

Recurrence Case = n=> 1,
T T T mn
T(;)=2[;log; +5] +n=
nlog% +n+mn = n(logn-—1log2) +n +n
= nloghn—n+n+n

nlogn + n (same as the function, correct)

T(n) = @(nlogn)

EXTRA EXAMPLE

Solve the following example using master, recursion tree and iteration methods:

T(n)=TE) +n

T(1)=1

END OF CHAPTERS3

	Slide 1: Mathematical analysis of Recursive function
	Slide 2: Key Points of chapter3
	Slide 3
	Slide 4: Recursive function definition
	Slide 5: Divide and Conquer Technique
	Slide 6: Idea of Recursive function
	Slide 7: Example (1) of Recursive function
	Slide 8: tracing of Recursive function
	Slide 9: Recursion Trace for example(1)
	Slide 10: Complexity of example(1)
	Slide 11: Example (2) of Recursive function
	Slide 12
	Slide 13: Common Recurrence relations
	Slide 14: Common Recurrence relations
	Slide 15: Methods for solving recurrences
	Slide 16
	Slide 17: Master method
	Slide 18: Master Examples
	Slide 19: Master Examples
	Slide 20: Master Examples
	Slide 21
	Slide 22: Recursion Tree method
	Slide 23: Steps of Recursion Tree method
	Slide 24: Recursion Tree Examples
	Slide 25: Recursion Tree Examples
	Slide 26: Recursion Tree Examples
	Slide 27: Recursion Tree Examples
	Slide 28
	Slide 29: Iteration method
	Slide 30: Iteration Examples
	Slide 31: Iteration Examples
	Slide 32: Iteration Examples
	Slide 33: Iteration Examples
	Slide 34
	Slide 35: Substitution method
	Slide 36: Substitution Examples
	Slide 37: Substitution Examples
	Slide 38: Substitution Examples
	Slide 39: Substitution Examples
	Slide 40: Extra Example
	Slide 41: End of Chapter3

