MATHEMATICAL ANALYSIS OF RECURSIVE FUNCTION

Chapter3

Prepared by: Enas Abu Samra

KEY POINTS OF CHAPTER3

- Recursive function definition.
- Idea of recursive function.
- Examples of recursive functions.
- Common recurrence relations.
- Methods for solving recurrences:
 - ✓ Master Method
 - ✓ Recursion Tree Method
 - ✓ Iteration Method
 - ✓ Substitution Method

What is the Recursive Function?

RECURSIVE FUNCTION DEFINITION

- **Recursion** is the technique of making a function call itself. This technique provides a way to break complicated problems down into simple problems which are easier to solve.
- Algorithmically: a way to design solutions to problems by divide-and-conquer.
- Semantically: a programming technique where a function calls itself.

DIVIDE AND CONQUER TECHNIQUE

• Divide and conquer is an **algorithm design paradigm** based on multi-branched recursion. It works by recursively **breaking down** (reducing) a problem into (two or more) sub-problems of the **same** (**or related type**), until these become simple enough to be solved directly. The solutions to the sub-problems are then **combined** to give a solution to the original problem.

IDEA OF RECURSIVE FUNCTION

• We can distill the idea of recursion into two simple rules:

- Each recursive call should be on a smaller instance of the same problem, that is, a smaller subproblem.
- The recursive calls must eventually reach a **base case**, which is solved without further recursion.

Note:

If you forget to include a base case, or your recursive cases fail to eventually reach a base case, then infinite recursion happens. **Infinite recursion** is a special case of an infinite loop when a recursive function fails to stop recursing.

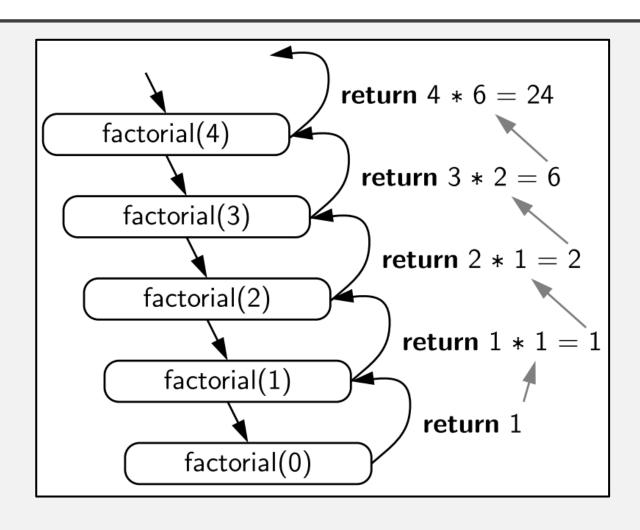
EXAMPLE (1) OF RECURSIVE FUNCTION

```
def factorial(n):
    if n == 0: # base case
          return 1
     else:
             # recursive case
         return n * factorial(n - 1)
7 print(factorial (4))
```

TRACING OF RECURSIVE FUNCTION

- The execution of a recursive function is usually illustrated using a **recursion trace**.
- Each new recursive function call is indicated by a downward arrow to a new invocation.
- When the function returns, an arrow showing this return is drawn and the return value may be indicated alongside this arrow.

RECURSION TRACE FOR EXAMPLE(1)



COMPLEXITY OF EXAMPLE(1)

T(n) =
$$\begin{cases} 1 & , n = 0 \\ T(n-1) + 3 & , n > 0 \end{cases}$$

EXAMPLE (2) OF RECURSIVE FUNCTION

```
Mathematical Analysis of Recursive Algorithms
void Test(int n) -----T(n)
      If (n>0)
        Print (n) ----- 1
        Test(n-1) ----- T(n-1)
                     T(n) = T(n-1) + 1
```

What is the Recurrence Relations?

COMMON RECURRENCE RELATIONS

• A recurrence relation is an equation that defines a sequence based on a rule that gives the next term as a function of the previous term(s).

$$T(n)=T(n-1)+1 \to O(n)$$

$$T(n)=T(n-1)+n \to O(n^{2})$$

$$T(n)=T(n-1)+\log n \to O(n\log n)$$

$$T(n)=T(n-1)+n^{2} \to O(n^{3})$$

$$T(n)=T(n-2)+1 \to n/2 \to O(n)$$

$$T(n)=T(n-100)+n \to n^{2}/100 \to O(n^{2})$$

$$T(n)=2T(n-1)+1 \to O(2^{n})$$

COMMON RECURRENCE RELATIONS

$$T(n)=3T(n-1)+1 \rightarrow O(3^n)$$
 $T(n)=2T(n-1)+n \rightarrow O(n2^n)$
 $T(n)=3T(n-1)+logn \rightarrow O(3^n logn)$
 $T(n)=T(n/2)+1 \rightarrow O(log n)$
 $T(n)=T(n/2)+n \rightarrow O(n)$
 $T(n)=2T(n/2)+n \rightarrow O(nlogn)$

METHODS FOR SOLVING RECURRENCES

- ✓ Master Method
- ✓ Recursion Tree Method
- ✓ Iteration Method
- ✓ Substitution Method

The Master Method

MASTER METHOD

$$T(n) = aT(\frac{n}{b}) + f(n),$$
 where $a >= 1, b > 1, f(n) > 0, d = \log_b a$

$$T(n) = \begin{array}{ccc} \Theta(n^d) & , & if \ f(n) < n^d & \textbf{case1} \\ \\ \Theta(n^d \ log n) & , & if \ f(n) = n^d & \textbf{case2} \\ \\ \Theta(f(n)) & , & if \ f(n) > n^d & \textbf{case3} \end{array}$$

In case3, this is another condition: $af(\frac{n}{b}) \le cf(n)$ where $c \le 1$

MASTER EXAMPLES

Ex1.
$$T(n) = 4T(\frac{n}{2}) + n$$

Sol \rightarrow f(n) n^d

 $_{\rm n}$ $_{\rm n}$ $\log_2 4$

 $n \quad < \quad n^2$

 $T(n) = \Theta(n^2)$

MASTER EXAMPLES

Ex2.
$$T(n) = 2T(\frac{n}{2}) + n$$

Sol \rightarrow f(n) n

 $_{n}$ $_{n}^{\log_{2}2}$

n = n

 $T(n) = \Theta(nlogn)$

MASTER EXAMPLES

Ex3.
$$T(n) = 2T(\frac{n}{2}) + n^2$$

Sol
$$\rightarrow$$
 f(n) n^d

$$n^2 \qquad n^{\log_2 2}$$

$$n^2 \qquad > \qquad n$$

af(n/b) cf(n)
$$2(\frac{n^2}{4}) cn^2$$
 cn² $\rightarrow \frac{1}{2}(n^2) <= cn^2 \rightarrow c>= 0.5$

$$T(n) = \Theta(n^2)$$

The Recursion Tree Method

RECURSION TREE METHOD

$$T(n) = aT(\frac{n}{b}) + f(n)$$
 , $T(1) = C$

number of nodes \rightarrow a

size of node \rightarrow (n/b)

root \rightarrow f(n)

size of node in leaves \rightarrow T(1) = C

Note: It is not necessary that the T(n) be always in this form.

STEPS OF RECURSION TREE METHOD

1.Draw Tree

First \rightarrow draw the root (look at f(n): size of root)

Second \rightarrow draw nodes (look at **a**: # of nodes and $\frac{n}{b}$: size of node)

Third \rightarrow draw the leaves (look at **T(1)**: size of the leaves)

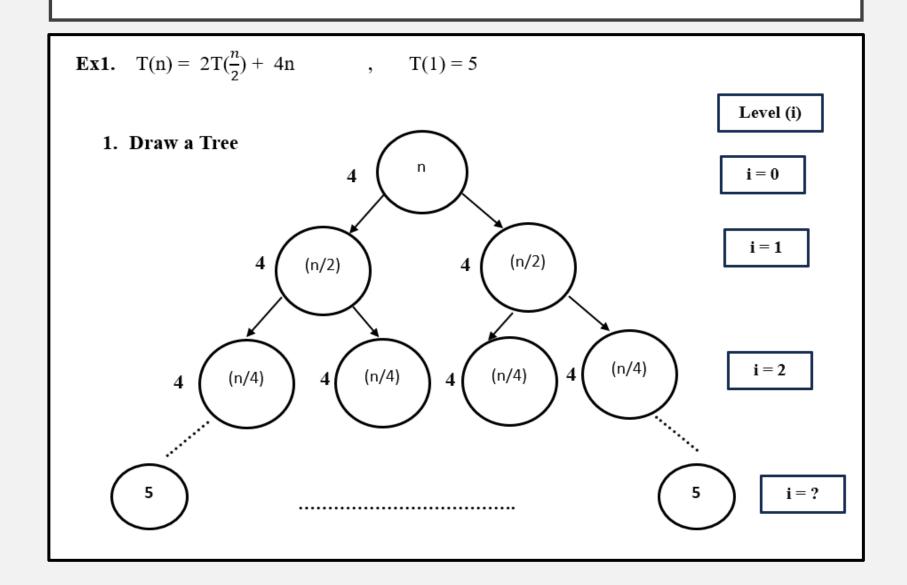
2.Draw Table

Level	# of Nodes	Level Sum
0	1	Weight of node * number of nodes
1	?	Weight of node * number of nodes
2	?	Weight of node * number of nodes
i	? = n	T(1) * n

3.Find (i) and Pattern

Find i \rightarrow from this equation: ?= n

Find Pattern→ make series from the Level Sum Column then use summation (if required) and finally find the complexity.



2. Draw a Table

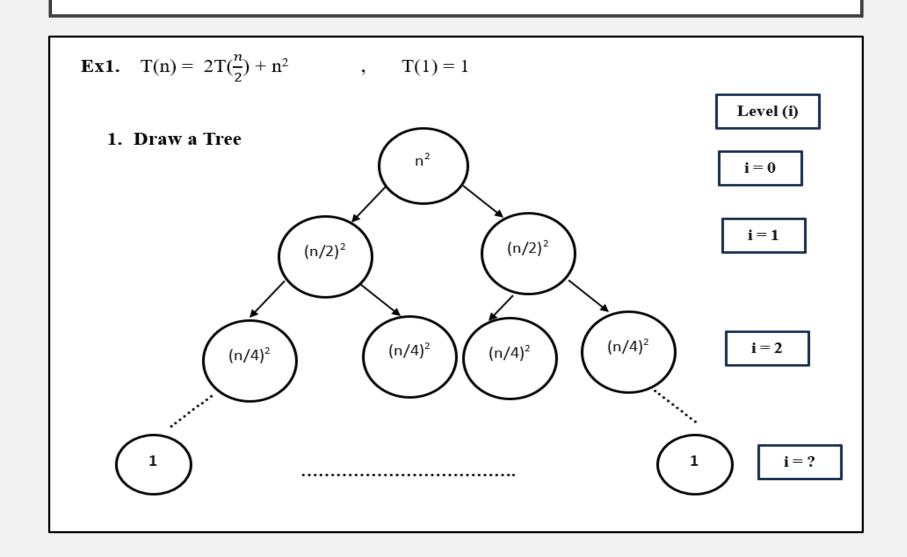
Level	# of Nodes	Level Sum
0	1	4n
1	2	4n
2	4	4n
i	2 ⁱ	5n

3. Find(i) and Pattern

$$2^i = n \rightarrow i = logn$$

Pattern
$$\rightarrow \sum_{i=0}^{i} 4n + n = \sum_{i=0}^{logn} 4n + n = 4n \sum_{i=0}^{logn} 1 + n = 4n(\log n - 0 + 1) + n = 4n \log n + 5n$$

$$T(n) = \Theta(nlogn)$$



2. Draw a Table

Level	# of Nodes	Level Sum
0	1	n2
1	2	n ² /2
2	4	n ² /4
i	2 ⁱ	n

3. Find(i) and Pattern

$$2^i = n \rightarrow i = logn$$

$$n^2 + n^2/2 + n^2/4 + \dots + n^2/2^{i-1} + n$$

Pattern
$$\rightarrow \sum_{i=0}^{i-1} \frac{n^2}{2^i} + n = n^2 \sum_{i=0}^{i-1} \frac{1}{2^i} + n = n^2 \sum_{i=0}^{\log n-1} \frac{1}{2^i} + n = n^2 * c + n$$

$$T(n) = \Theta(n^2)$$

The Iteration Method

ITERATION METHOD

Solution Steps:

- 1. Iteration Step
- 2. Find (i) and pattern

Ex1.
$$T(n) = T(\frac{n}{2}) + C$$
 , $T(1) = 1$

Sol:

1. Iteration Step

Level	T(n)
1	$T(n) = T(\frac{n}{2}) + C$
2	$T(n) = T(\frac{n/2}{2}) + C + C \Rightarrow T(\frac{n}{4}) + C + C$
3	$T(n) = T(\frac{n/2}{4}) + C + \frac{C}{C} + \frac{C}{C} \rightarrow T(\frac{n}{8}) + C + \frac{C}{C} + \frac{C}{C}$
•	•
i	$T(n) = T(n/2^{i}) + (C + C + C + + C)$

2. Find (i) and Pattern

$$T(1) = T(n/2^{i}) \rightarrow i = logn$$

$$T(n) = T(n/2^{i}) + \sum_{i=0}^{i} C =$$

$$T(n/2^{\log n}) + C \sum_{i=0}^{\log n} 1 =$$

$$T(1) + C(\log n - 0 + 1) =$$

$$1 + C*\log n + C$$

$$T(n) = \Theta(\log n)$$

Ex2.
$$T(n) = T(n-1) + n$$
 , $T(1) = 0$

Sol:

1. Iteration Step

Level	T(n)
1	T(n) = T(n-1) + n
2	T(n) = T(n-2) + (n-1) + n
3	T(n) = T(n-3) + (n-2) + (n-1) + n
i	T(n) = T(n-i) + (n-i-1) + + (n-3) + (n-2) + (n-1) + n

2. Find (i) and Pattern

$$T(1) = T(n-i)$$
 \rightarrow $i = n$

$$i = n$$

$$T(n) = T(n-i) + \sum_{i=0}^{i} (n-i) =$$

$$T(n-n) + \sum_{i=0}^{n} n - \sum_{i=0}^{n} i$$

$$T(1) + n(n-0+1) - n(n+1)/2$$

$$0 + n^{2} + n + n(n+1)/2$$

$$T(n) = \Theta(n^{2})$$

The Substitution Method

SUBSTITUTION METHOD

- 1. Guess a solution.
- 2. Use induction to prove that the solution works. (Substitution in base and recurrence cases)

Ex1.

$$T(n) = \begin{cases} 2 & , n = 1 \\ T(\frac{n}{2}) + 2 & , n > 1 \end{cases}$$

Guessed solution \rightarrow T(n) = $2 \log n + 2$

Solution:

Base Case
$$\rightarrow$$
 n = 1

$$T(1) = log(1) + 2 = 2$$
 (same as the function, correct)

Recurrence Case \rightarrow n > 1,

 $2\log n + 2$ (same as the function, correct)

$$T(n) = \Theta(\log n)$$

Ex2.

$$T(n) = \begin{cases} 1 & , n = 1 \\ 2T(\frac{n}{2}) + n & , n > 1 \end{cases}$$

Guessed solution \rightarrow T(n) = nlogn + n

Solution:

Base Case
$$\rightarrow$$
 n = 1

 $T(1) = 1\log 1 + 1 = 1$ (same as the function, correct)

Recurrence Case \rightarrow n > 1,

$$T(\frac{n}{2}) = 2 \left[\frac{n}{2} \log \frac{n}{2} + \frac{n}{2} \right] + \mathbf{n} =$$

$$n \log \frac{n}{2} + \mathbf{n} + \mathbf{n} = n(\log n - \log 2) + \mathbf{n} + \mathbf{n}$$

$$= n \log n - \mathbf{n} + \mathbf{n} + \mathbf{n}$$

$$= n \log n - \mathbf{n} + \mathbf{n} + \mathbf{n}$$

$$n \log n + \mathbf{n} \text{ (same as the function, correct)}$$

 $T(n) = \Theta(nlogn)$

EXTRA EXAMPLE

> Solve the following example using master, recursion tree and iteration methods:

$$T(n) = T(\frac{n}{3}) + n$$

$$T(1) = 1$$

END OF CHAPTER3