
SEARCHING AND SORTING ALGORITHMS

Chapter4

Prepared by: Enas Abu Samra

KEY POINTS OF CHAPTER4

• Searching Algorithms:

✓ Linear Search

✓ Binary Search

• Sorting Algorithms:

✓ Bubble Sort (Sinking Sort)

✓ Insertion Sort

✓ Selection Sort

✓Quick Sort

✓Merge Sort

SEARCHING ALGORITHMS

• The searching algorithms are used to search or find one or more than one element

from a dataset. These type of algorithms are used to find elements from a specific

data structures.

• There are three popular algorithms available:

✓ Linear Search

✓ Binary Search

✓ Jump Search

Linear Search

LINEAR SEARCH

• Linear search is a very simple search algorithm. In this type of search, a sequential

search is made over all items one by one. Every item is checked and if a match is

found then that item is returned, otherwise the search continues till the end of the

data collection.

• Inputs:

✓ Data Structure ➔ ex. array

✓ Search Value

LINEAR SEARCH EXAMPLE

LINEAR SEARCH CODE

Binary Search

BINARY SEARCH

• Binary search is a search algorithm that finds the position of a target value within a sorted array.

• A binary search begins by comparing the middle element of the array with the target value. If the

target value matches the middle element, its position in the array is returned. If the target value is less

or more than the middle element, the search continues the lower or upper half of the array respectively

with a new middle element, eliminating the other half from consideration.

• Inputs:

✓ Data Structure ➔ ex. array

✓ Search Value

• Best case time complexity ➔ O(1), worst and average case time complexity ➔ O(logn)

BINARY SEARCH EXAMPLE

BINARY SEARCH CODE

BINARY SEARCH CODE USING RECURSION

Sorting Algorithms

SORTING ALGORITHMS

• There are many sorting algorithms:

✓ Bubble Sort (Sinking Sort)

✓ Insertion Sort

✓ Selection Sort

✓Quick Sort

✓Merge Sort

and others

Bubble Sort Algorithm

BUBBLE SORT ALGORITHM

✓Bubble sort is a simple sorting algorithm which compares the adjacent elements in

an array and swaps them if they are in the wrong order.

✓Best case time complexity ➔ O(n)

✓Worst and average case time complexity ➔ O(n^2)

BUBBLE SORT EXAMPLE

BUBBLE SORT CODE

Insertion Sort Algorithm

INSERTION SORT ALGORITHM

✓The basic idea of insertion sort is that one element from the input elements is

consumed in each iteration to find its correct position i.e., the position to which it

belongs in a sorted array.

✓Best case time complexity ➔ O(n)

✓Average and worst case time complexity ➔ O(n^2)

INSERTION SORT STEPS

✓The first step involves the comparison of the current element (in the beginning it

will be the first element in the data set) with its adjacent element.

✓ If the current element can be inserted at a particular position, then space is created

for it by shifting the other elements one position to the right and inserting the

element at the suitable position.

✓The above procedure is repeated until all the element in the array are sorted.

INSERTION SORT EXAMPLE

INSERTION SORT CODE

Selection Sort Algorithm

SELECTION SORT ALGORITHM

✓ Selection sort is an algorithm that selects the smallest element from an unsorted array in
each iteration and places that element at the beginning of the sorted array.

✓ Selection sort is an in-place comparison-based algorithm in which the list is divided into two
parts, the sorted part at the left end and the unsorted part at the right end. Initially, the sorted
part is empty, and the unsorted part is the entire list.

✓ The smallest element is selected from the unsorted array and swapped with the leftmost
element, and that element becomes a part of the sorted array. This process continues moving
unsorted array boundary by one element to the right.

✓Note: selection algorithm can select the largest element and place it at the end of the array.

SELECTION SORT STEPS

✓Step1 → Set MIN to location 0

✓Step2 → Search the minimum element in the array

✓Step3 → Swap with value at location MIN

✓Step4 → Increment MIN to point to next element

✓Step5 → Repeat until the array is sorted

✓Best, average and worst case time complexity ➔ O(n^2)

SELECTION SORT
EXAMPLE

(SMALLEST ELEMENT)

SELECTION SORT
EXAMPLE

(LARGEST ELEMENT)

SELECTION SORT CODE
(SMALLEST ELEMENT)

Merge Sort Algorithm

MERGE SORT ALGORITHM

✓Merge Sort follows the rule of Divide and Conquer to sort a given set of

numbers/elements, recursively, hence consuming less time.

✓Divide and Conquer

The concept of Divide and Conquer involves three steps:

1. Divide the problem into multiple small problems.

2. Conquer the subproblems by solving them. The idea is to break down the problem

into atomic subproblems, where they are solved.

3. Combine the solutions of the subproblems to find the solution of the actual problem.

✓Best, average and worst case time complexity ➔ O(nlogn)

MERGE SORT STEPS

MergeSort(arr[], left, right)

1. Find the middle point to divide the array into two halves: middle m = (left +right)/2

2. Call mergeSort for first half:

 Call mergeSort(arr, left, m)

3. Call mergeSort for second half:

 Call mergeSort(arr, m+1, right)

4. Merge the two halves sorted in step 2 and 3:

 Call merge(arr, left, m, right)

Note: Continue the process of breaking into halves until reaching single elements.

MERGE SORT EXAMPLE

MERGE SORT CODE

Quick Sort Algorithm

QUICK SORT ALGORITHM

✓Quick sort is a highly efficient sorting algorithm and is based on partitioning of

array of data into smaller arrays. A large array is partitioned into two arrays one of

which holds values smaller than the specified value, say pivot, based on which the

partition is made, and another array holds values greater than the pivot value.

✓Quick Sort follows the rule of Divide and Conquer to sort a given set of

numbers/elements, recursively, hence consuming less time.

✓Best and average time complexity ➔ O(nlogn)

✓Worst case time complexity ➔ O(n^2)

QUICK SORT EXAMPLE

QUICK SORT CODE

TIME COMPLEXITY OF SEARCHING AND
SORTING ALGORITHMS

END OF CHAPTER4

	Slide 1: Searching and sorting algorithms
	Slide 2: Key Points of chapter4
	Slide 3: Searching algorithms
	Slide 4
	Slide 5: Linear Search
	Slide 6: Linear search example
	Slide 7: Linear search code
	Slide 8
	Slide 9: Binary Search
	Slide 10: Binary search example
	Slide 11: Binary search code
	Slide 12: Binary search code using recursion
	Slide 13
	Slide 14: Sorting algorithms
	Slide 15
	Slide 16: Bubble Sort Algorithm
	Slide 17: Bubble Sort Example
	Slide 18: Bubble Sort Code
	Slide 19
	Slide 20: insertion Sort Algorithm
	Slide 21: insertion Sort steps
	Slide 22: insertion Sort Example
	Slide 23: Insertion Sort Code
	Slide 24
	Slide 25: Selection Sort algorithm
	Slide 26: Selection Sort steps
	Slide 27: Selection Sort Example (smallest element)
	Slide 28: Selection Sort Example (largest element)
	Slide 29: selection Sort Code (Smallest Element)
	Slide 30
	Slide 31: Merge Sort Algorithm
	Slide 32: Merge Sort Steps
	Slide 33: Merge Sort Example
	Slide 34: Merge Sort Code
	Slide 35
	Slide 36: Quick Sort Algorithm
	Slide 37: Quick Sort Example
	Slide 38: Quick Sort Code
	Slide 39: Time complexity of Searching and Sorting Algorithms
	Slide 40: End of Chapter4

