SEARCHING AND SORTING ALGORITHMS

Chapter4

Prepared by: Enas Abu Samra

KEY POINTS OF CHAPTERA4

Searching Algorithms:
Linear Search
Binary Search
Sorting Algorithms:
Bubble Sort (Sinking Sort)
Insertion Sort
Selection Sort
Quick Sort
Merge Sort

SEARCHING ALGORITHMS

The searching algorithms are used to search or find one or more than one element
from a dataset. These type of algorithms are used to find elements from a specific
data structures.

There are three popular algorithms available:
Linear Search
Binary Search

Jump Search

Linear Search

LINEAR SEARCH

Linear search is a very simple search algorithm. In this type of search, a sequential
search is made over all items one by one. Every item is checked and if a match is
found then that item is returned, otherwise the search continues till the end of the
data collection.

Inputs:
Data Structure =» ex. array

Search Value

LINEAR SEARCH EXAMPLE

Linear Search Example: search for element -86

23 [97 18 | 21 5 -86 |64 | O -37_|

T 171 T 1

Found

» Go from beginning of a list until element -86 1s found

The target value 1s in the first element of the list. So the search takes some constant amount of time.
Computer scientists denote this as (2(1) Note that in real life, we don’t care about the best case, because it

rarely happens.

The target value 1s in the last element of the list. So the search takes an amount of time proportional to the
length of the list. Computer scientists denote this as O(n).

Target value 1s somewhere in the list. So, on an average, the target value will be in the middle of the list. So
the search takes half the length of the list, which can be denoted by 0(;) = O(n)

LINEAR SEARCH CODE

Ist =]
items = int(input("Enter the number of items: "))
for n in range(items):
numbers = int(input("Enter the %d number: " %n))
Ist.append(numbers)
keyValue =int(input("Enter number to search for: "))
found = False
for iin range(len(lst)):
if Ist[i] == keyValue:
found = True
print("%d found at location %d" % (keyValue, i))
break
if not found:
print("%d is not in list" % keyValue)

input()

Binary Search

BINARY SEARCH

Binary search is a search algorithm that finds the position of a target value within a sorted array.

A binary search begins by comparing the middle element of the array with the target value. If the
target value matches the middle element, its position in the array is returned. If the target value is less
or more than the middle element, the search continues the lower or upper half of the array respectively
with a new middle element, eliminating the other half from consideration.

Inputs:
Data Structure =» ex. array
Search Value
Best case time complexity =» O(1), worst and average case time complexity =» O(logn)

BINARY SEARCH EXAMPLE

Binary Search

0 1 2 3 4 5 6 7 8 9
L=0 1 2 3 M=4 5 6 7 8 9
Ao 2> 5 8 12 16 23 38 56 72 9
0 1 2 3 4 L=5 6 M=7 8 H=9
Sok-ill 2 5 8 12 16 23 38 56 72 9l
0] 1 2 3 4 L=5M=5 H=6 7 8 9

Found 23, 2 5 8 12 16 23 38 56 72 9

Return 5

BINARY SEARCH CODE

-|def BinarysSearch{list,n}:

1 =
h = len{li=st)-1
found = @

= while i <= h:
mid = {1 + h) // 2

- if list[mid] == n:
print{"Element {} found at positionm {}".format{n,mid+1}}
found = 1
return True
if list[mid] » n:

h=mid - 1
if list[mid] < n:
1l =mid + 1

if found !=1:
print{"searching element {} not found im the array list".format{n})

return

list
size

[]

int{input{"enter the size of the array: "))

-|for 1 in range{size):
¥ = Int{input("Enter the element at {} position in the array: ".format{i+1)))
list.append(x)

list.sort{)

print{"Entered array elements are: ")

for lists in list:
print{lists,end=""1t"}

se = int{input{"\nEnter the array element to be searched: "}}
Eimarysearch{list, se}

BINARY SEARCH CODE USING RECURSION

-

59 // binary search |
60 bool BinarySearch(int key, int array[], int min, int max)
61 {

62 if (min <= max)

63 {

64 int middle = (min + max)/2;

65

66 if (key == array[middle])

67 return true;

68 else if (key < array[middle])

169 BinarySearch(key, array, min, middle - 1);
70 else if (key = array[middle])

71 BinarySearch(key, array, middle + 1, max);
T2 }

73

74 return false;

75

76 }

Sorting Algorithms

SORTING ALGORITHMS

There are many sorting algorithms:
Bubble Sort (Sinking Sort)

Insertion Sort
Selection Sort
Quick Sort
Merge Sort

and others

Bubble Sort Algorithm

BUBBLE SORT ALGORITHM

Bubble sort is a simple sorting algorithm which compares the adjacent elements in
an array and swaps them if they are in the wrong order.

Best case time complexity =» O(n)
Worst and average case time complexity = O(n"2)

BUBBLE SORT EXAMPLE

First pass Second pass Third pass
‘? E‘4‘3| E‘4|3 ?“4 3 E‘?l
‘5?4‘3‘ 4‘5‘3 ?“345‘?‘
Lelef7 o) [af=]e]7]

A\ 4

swap

[efel]7]

BUBBLE SORT CODE

function bubbleSort(array){
for(var i = array.length; i > 0; i—)A
for(var j = 0; j < i — 1; j++){
if(arrayl[jl > arraylj+11){
var temp = arrayljl
arrayl[jl = arrayl[j+1]
arrayl[j+1] = temp
+
bs
¥

return array;

by

bubbleSort([4,2,7,1,9])

Insertion Sort Algorithm

INSERTION SORT ALGORITHM

The basic idea of insertion sort is that one element from the input elements is

consumed in each iteration to find its correct position i.e., the position to which it
belongs in a sorted array.

Best case time complexity =» O(n)

Average and worst case time complexity = O(n"2)

INSERTION SORT STEPS

The first step involves the comparison of the current element (in the beginning it
will be the first element in the data set) with its adjacent element.

If the current element can be inserted at a particular position, then space is created
for it by shifting the other elements one position to the right and inserting the
element at the suitable position.

The above procedure is repeated until all the element in the array are sorted.

INSERTION SORT EXAMPLE

Second Pass

Third Pass

Fourth Pass

23

10

23

10

23

10

10

23

10

23

$ 4 4 4 I

23

10

23

10

10

23

10

23

10

23

INSERTION SORT CODE

def insertionSort(List):
for 1 in range(1l, len(List)):
currentNumber = List[i]
for j in range(i - 1, -1, -1):
if List[j] > currentNumber
List[j], List[j + 1] = List[j + 1], List[j]
else:
List[j + 1] = currentNumber

break

return List

if __name_ == "'_main__':
List = [3,7,2,8,4,1,9,5]
print('Sorted List:',insertionSort(List))

#clcoding. com

Sorted List: [1, 2, 3, 4, 5, 7, 8, 9]

Selection Sort Algorithm

SELECTION SORT ALGORITHM

Selection sort is an algorithm that selects the smallest element from an unsorted array in
each iteration and places that element at the beginning of the sorted array.

Selection sort is an in-place comparison-based algorithm in which the list is divided into two
parts, the sorted part at the left end and the unsorted part at the right end. Initially, the sorted
part is empty, and the unsorted part is the entire list.

The smallest element is selected from the unsorted array and swapped with the leftmost
element, and that element becomes a part of the sorted array. This process continues moving
unsorted array boundary by one element to the right.

Note: selection algorithm can select the largest element and place it at the end of the array.

SELECTION SORT STEPS

Stepl - Set MIN to location 0

Step2 - Search the minimum element in the array
Step3 > Swap with value at location MIN

Step4 - Increment MIN to point to next element

Step5 - Repeat until the array is sorted

Best, average and worst case time complexity = O(n"2)

Selection Sort

SELECTION SORT
EXAMPLE
(SMALLEST ELEMENT)

Y W W W W W W)

rswap—l
29| 72| 98 | 13 [87 | 66 | 52 |51 |36
rswa P—
13 _?ﬂ 98 | 29 | 87 | 66 |52 |51 |36
T hswap |
13| 29 ’Ey 72 | 87 | 66 | 52 | 51 |36
h,';:'-.luf:il pP——
13| 29| 36| 72 | 87 | 66 | 52 |51 |98
rswa P—
13| 29| 36 | 51 81 66 | 52 |72 |98
* no swap
13| 29| 36 | 51 |52 |66 |87 |72 |98
*—swa P
13| 29| 36 | 51 |52 |66 |87 [72 |98
* no swap
13| 29| 36 | 51 |52 [66 |72 |87 |98
13| 29| 36 | 51 |52 |66 |72 |87 |98

13 is smallest

29 is smallest

36 is smallest

51 is smallest

52 is smallest

66 is smallest
no swapping

72 is smallest

87 is smallest
no swapping

sorting completed

(C) wiresource.com

SELECTION SORT
EXAMPLE
(LARGEST ELEMENT)

26 54 83 17 77 31 44 55 20
T
I ¥
26 o4 20 17 T7 31 44 25 83
"
I
26 54 20 17 55 31 44 77 83
"
I ¥
26 54 20 17 44 31 55 77 83
¥
26 31 20 17 44 54 a5 77 83
S
I
26 31 20 17 44 54 a5 T 83
S
I ¥
26 17 20 a1 44 54 a5 77 83
S
20 17 26 a1 44 54 a5 77 83
S
17 20 26 a1 44 54 55 77 83

93 is largest

77 15 largest

&5 is largest

&4 is largest

44 is largest
stays in place

31 is largest

26 is largest

20 is largest

17 ok
list is sorted

SELECTION SORT CODE
(SMALLEST ELEMENT)

def selectionSort(List):
for i in range(len(List) - 1): #For iterating n - 1 times
minimum = 1
for j in range(1 + 1, len(List)): # Compare 1 and 1 + 1 element
if(List[j] < List[minimum]):
minimum = j
if(minimum != 1):
List[i], List[minimum] = List[minimum], List[i]
return List

if __name__ == '__main__':
List = [4,6,9,8,1,7,3]
print('Sorted List:',selectionSort(List))

#clcoding.com

Sorted List: [1, 3, 4, 6, 7, 8, 9]

Merge Sort Algorithm

MERGE SORT ALGORITHM

Merge Sort follows the rule of Divide and Conquer to sort a given set of
numbers/elements, recursively, hence consuming less time.

Divide and Conquer
The concept of Divide and Conquer involves three steps:
1. Divide the problem into multiple small problems.

2. Conguer the subproblems by solving them. The idea is to break down the problem
Into atomic subproblems, where they are solved.

3. Combine the solutions of the subproblems to find the solution of the actual problem.

Best, average and worst case time complexity = O(nlogn)

MERGE SORT STEPS

MergeSort(arr[], left, right)
1. Find the middle point to divide the array into two halves: middle m = (left +right)/2
2. Call mergeSort for first half:
Call mergeSort(arr, left, m)
3. Call mergeSort for second half:
Call mergeSort(arr, m+1, right)
4. Merge the two halves sorted in step 2 and 3:
Call merge(arr, left, m, right)

Note: Continue the process of breaking into halves until reaching single elements.

MERGE SORT EXAMPLE

/7 3 2 16 24 4 11 9

/\‘

ryryJy 24 4 11 9

A A
7 3 2 16 24 4 11 9
o~ 3 2 16 24~ -~ 4 9 - 11
kN 4 2 16 4 24 9 11
2 3 7 16 4 9 11 24

T ==

2 3 4 7 9 11 16 24

MERGE SORT CODE

import sys

def merge(left, right):
#
FILL IN THE CODE HERE
#
pass

YOU DO NOT NEED TO CHANGE THE CODE BELOW THIS LINE

def merge sort(lst):
if len{lst) <= 1:
return lst
mid = len(lst) // 2
left = merge sort(lst[:mid])
right = merge sort(lst[mid:])
return merge| left,right)
pass

Quick Sort Algorithm

QUICK SORT ALGORITHM

Quick sort is a highly efficient sorting algorithm and is based on partitioning of
array of data into smaller arrays. A large array is partitioned into two arrays one of
which holds values smaller than the specified value, say pivot, based on which the
partition is made, and another array holds values greater than the pivot value.

Quick Sort follows the rule of Divide and Conquer to sort a given set of
numbers/elements, recursively, hence consuming less time.

Best and average time complexity =» O(nlogn)

Worst case time complexity = O(n"2)

QUICK SORT EXAMPLE

X[] 8 | 4 | 3 1 6 | 7 11| 9 2 |10 |mES pivot=5
4 | 3 1 2 5 8 6 | 7 |11 9 WO
1 2 4 3 8 6 7 9 10 11
{} &2 4 8 6 | 7/ N {}
6 7 8
X] 1 2 3 4 5 6 7 8 9 10 71

QUICK SORT CODE

Ly

#luicksort Test Methodl.py

Fldef =zort{array):

arrav=[le,0,L1,

less = []
equal= []
greater= []
if lenf{array) > 1:
pivot = array[C]
for i in array:
if i < piwvot:
lezs.append (i)
if i = piwvot:
equal.append (i)
if i » piwvot:
greater.append (i)

return {(sort{less) + egual + sort{greater))

else:
return array

P - - - .- -

p g0y G, AV, Lo, 00,40

print{("original arravy: =" Sarray)

sorted array=sort(array)

print ("sorted array: s" %snrted_array}

-

y2,0,-1,-2,-3,100]

TIME COMPLEXITY OF SEARCHING AND

SORTING ALGORITHMS

Algorithm | Best Time Complexity | Average Time Complexity | Worst Time Complexity | Worst Space Complexity
Linear Search | O(1) Q(n) Q(n) O(1)
Binary Search | O(1) O(log n) O(log n) O(1)
Bubble Sort O(n) O(n*2) O(n*2) O(1)
Selection Sort | O(n*2) O(n*2) O(n*2) O(1)
Insertion Sort | O(n) 0O(n*2) 0O(n"2) O(1)
Merge Sort | O(nlogn) O(nlogn) O(nlogn) O(n)
Quick Sort O(nlogn) O(nlogn) O(n*2) O(log n)

END OF CHAPTER4

	Slide 1: Searching and sorting algorithms
	Slide 2: Key Points of chapter4
	Slide 3: Searching algorithms
	Slide 4
	Slide 5: Linear Search
	Slide 6: Linear search example
	Slide 7: Linear search code
	Slide 8
	Slide 9: Binary Search
	Slide 10: Binary search example
	Slide 11: Binary search code
	Slide 12: Binary search code using recursion
	Slide 13
	Slide 14: Sorting algorithms
	Slide 15
	Slide 16: Bubble Sort Algorithm
	Slide 17: Bubble Sort Example
	Slide 18: Bubble Sort Code
	Slide 19
	Slide 20: insertion Sort Algorithm
	Slide 21: insertion Sort steps
	Slide 22: insertion Sort Example
	Slide 23: Insertion Sort Code
	Slide 24
	Slide 25: Selection Sort algorithm
	Slide 26: Selection Sort steps
	Slide 27: Selection Sort Example (smallest element)
	Slide 28: Selection Sort Example (largest element)
	Slide 29: selection Sort Code (Smallest Element)
	Slide 30
	Slide 31: Merge Sort Algorithm
	Slide 32: Merge Sort Steps
	Slide 33: Merge Sort Example
	Slide 34: Merge Sort Code
	Slide 35
	Slide 36: Quick Sort Algorithm
	Slide 37: Quick Sort Example
	Slide 38: Quick Sort Code
	Slide 39: Time complexity of Searching and Sorting Algorithms
	Slide 40: End of Chapter4

