ALGORITHMS DESIGN STRATEGIES

Chapter 5

Prepared by: Enas Abu Samra

KEY POINTS OF CHAPTER5

- Classification of Algorithms.
- Brute Force Technique.
- Divide and Conquer Technique.
- Dynamic Programming Technique.
- Longest Common Subsequences Problem.
- Greedy Technique.
- Knapsack Problem.

CLASSIFICATION OF ALGORITHMS

- Getting familiar with different Algorithm designs has become important for IT professionals.
- How to classify / group algorithms?
 - > Type of problems solved
 - Design techniques
 - > Deterministic vs non-deterministic

CLASSIFICATION OF ALGORITHMS (TYPE OF PROBLEMS SOLVED)

Problem Types:

- ✓ Searching (Linear search algorithm, Binary search algorithm, ...)
- ✓ Sorting (Selection sort algorithm, Insertion sort algorithm, ...)
- ✓ Graph/ Network problems
 - Shortest path, Traveling salesman.
- ✓ Dealing with sequences:
 - Storing, Mapping and analyzing, Aligning
- ✓ and others...

CLASSIFICATION OF ALGORITHMS (DESIGN TECHNIQUES)

A given problem can be solved using different approaches. Some approaches deliver much more efficient results than others by means of:

- ✓ Usage of Resources
- ✓ Time and Space Complexities
- √ Maintainability
- ✓ Security

ALGORITHM DESIGN STRATEGIES

- Brute force (Exhaustive method)
- Divide and conquer (D & C)
- Dynamic programming (DP)
- Greedy approach
- Decrease and conquer
- Transform and conquer
- Backtracking and branch-and-bound

BRUTE FORCE

- Brute Force Algorithms refers to a programming style that **does not** include any shortcuts to improve performance.
- A brute force algorithm blindly iterates an entire domain of possible solutions in search of one or more solutions that satisfy a condition.
- An algorithm that **inefficiently** solves a problem, often by trying every one of a wide range of possible solutions.

BRUTE FORCE

Example:

Break a password (Open a Lock)

- ✓ It is to attempt to break the 3-digit password (each digit either x or o) then brute force may take up to $2^3 \rightarrow (8)$ attempts to crack the code.
- **✓ Disadvantage of Brute-Force algorithms:**

In many cases not efficient in terms of (time, space complexities)

DIVIDE AND CONQUER

- Recursive decomposition into "smaller" problem instances and solving them all.
- ✓ **Divide** The original problem is divided into **independent** sub-problems.
- ✓ Conquer The sub-problems are solved recursively.
- ✓ **Combine** The solutions of the sub-problems are combined together to get the solution of the original problem.

DIVIDE AND CONQUER

Examples of algorithms based on divide and conquer technique:

Binary search, Quick sort, Merge sort, Matrix inversion, Matrix multiplication,

Advantages

✓ Solving different problems in less time and thus less complexity

Disadvantages

- ✓ Sometimes it can become more complicated than a basic iterative approach
- ✓ Recursive calls use the **stack**, which means more space complexity.
- ✓ Sometimes more calculations are performed.

DYNAMIC PROGRAMMING (TABULAR METHOD)

- Dynamic Programming (DP) is a bottom-up approach in which all possible small problems are solved and then combined to obtain solutions for bigger problems.
- ✓ **Divide** The original problem is divided into **dependent** sub-problems.
- ✓ **Conquer** The sub-problems are solved recursively.
- ✓ **Combine** The solutions of the sub-problems are combined together to get the solution of the original problem.

DYNAMIC PROGRAMMING (TABULAR METHOD)

- The word "**programming**" in the name of this technique stands for "**planning**" and does not refer to computer programming.
- Dynamic programming is a technique for solving problems with **overlapping** subproblems.
- Rather than solving overlapping subproblems again and again, dynamic programming suggests solving each of the smaller subproblems only **once** and recording the results in a **table** from which a solution to the original problem can then be obtained.

ELEMENTS OF DYNAMIC PROGRAMMING

- Three elements characterize a dynamic programming algorithm:
- **1. Substructure:** Decompose the given problem into smaller subproblems.
- 2. **Table Structure:** After solving the sub-problems, store the results of the sub-problems in a table. This is done because subproblem solutions are reused many times, and we do not want to repeatedly solve the same problem.
- **3. Bottom-up Computation:** Using the table, combine the solution of smaller subproblems to solve larger subproblems and eventually arrive at a solution to complete a problem.

DYNAMIC PROGRAMMING EXAMPLES

• Examples:

- ✓ 0/1 Knapsack problem
- ✓ Largest Common Subsequences (LCS)
- ✓ All Pair Shortest Path Problem
- ✓ Time Sharing: Schedule Jobs to maximize CPU Utilization Longest.

OPTIMIZATION PROBLEMS

• Dynamic Programming is the most powerful design technique for solving **optimization problems.**

Optimization problem includes:

- ✓ Find a solution with the **GLOBAL** optimal value (**minimum or maximum**).
- ✓ A set of choices must be made to get an optimal solution.
- ✓ There may be many solutions that return the optimal value: we want to find one of them.

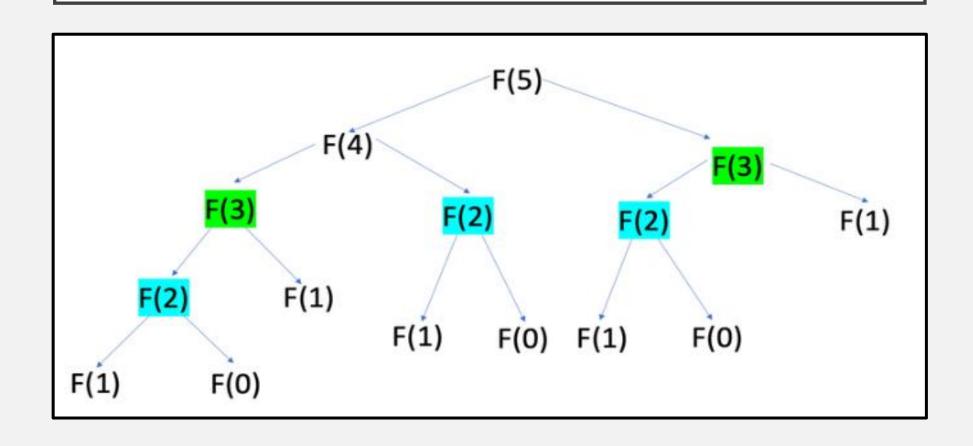
DYNAMIC PROGRAMMING VERSUS DIVIDE AND CONQUER

- The divide and conquer algorithm partition the problem into independent subproblems, solve the subproblems recursively, and then combine their solution to solve the original problems.
- **Dynamic Programming** is used when the subproblems are **dependent**, e.g. when they share the same subproblems. In this case, divide and conquer may do more work than necessary, because it solves the same sub-problem multiple times.

FIBONACCI NUMBERS PROBLEM

- Recursion →
 - **Recurrence case:** F(n) = F(n-1) + F(n-2)
 - ✓ **Base case:** F(0) = 0, F(1) = 1
- A divide-and-conquer approach would repeatedly solve the common subproblems.
- **Dynamic programming approach** solves every subproblem **just once** and stores the answer in a table.

FIBONACCI NUMBERS PROBLEM



LONGEST COMMON SUBSEQUENCE (LCS)

- The sequence is: $X = \langle X_1, X_2, ..., X_n \rangle$
- Examples:

$$\checkmark$$
 Y=

$$\checkmark$$
 Z = <1, 2, 5>

$$\checkmark$$
 S = \lt H \gt

$$\checkmark$$
 X = $<$ A, B, C $>$

Note: A subset of elements in the sequence taken **in order** (but not necessarily consecutive).

• Subsequence of X \rightarrow <A>, , <C>, <A, B>, <A, C>, <B, C>, <A, B, C>

LONGEST COMMON SUBSEQUENCE (LCS)

• Example:

 $X = \langle A, B, C, B, D, A, B \rangle$

 $Y = \langle B, D, C, A, B, A \rangle$

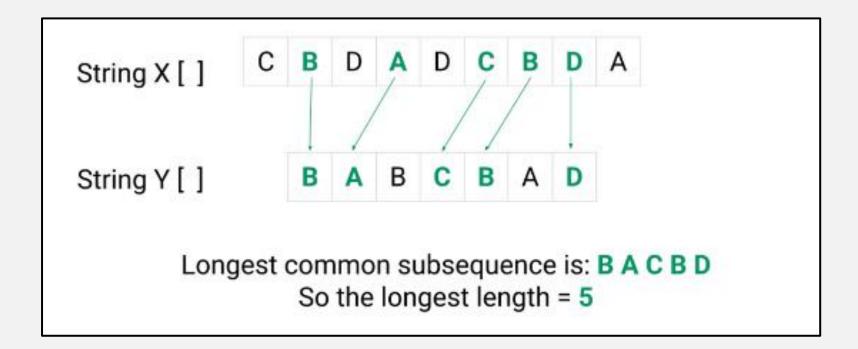
- → <B, C, B, A> and <B, D, A, B> are the longest common subsequences of X and Y
- \rightarrow (length = 4)

Note:<(B, C, A> is a subsequence, but is not a LCS of X and Y.

SOLVING LCS USING BRUTE FORCE

- For every subsequence of X, check whether it's a subsequence of Y.
- There are 2^m subsequences of X to check. (m: length of X)
- Each subsequence takes (n) time to check. (n: length of Y)
- **Running time:** O(n2^m)
- This technique useful in case the size of the problem was **small**.

SOLVING LCS USING BRUTE FORCE



SOLVING LCS USING DP (RECURSION FUNCTION)

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max(c[i,j-1],c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

SOLVING LCS USING DP

- Number of rows = n + I
- Number of columns = m + l
- Always fill the first row and the first column with zero.
- There is no difference in the solution if you swap the X and Y.
- $n \rightarrow size of X$, $m \rightarrow size of Y$

		0	1	2	3	4	5	(
		Yj	Α	D	C	Α	В	1
0	Xi	0	0	0	0	0	0	(
1	Α	0						
2	В	0						
3	D	0						
4	C	0						
5	В	0						
6	Α	0						
7	В	0						

SOLVING LCS USING DP

The complexity is: O(m*n)

```
LCS-LENGTH(X, Y)
 1 m = X.length
 2 \quad n = Y.length
    let b[1..m, 1..n] and c[0..m, 0..n] be new tables
 4 for i = 1 to m
       c[i,0] = 0
 6 for j = 0 to n
        c[0, j] = 0
    for i = 1 to m
         for j = 1 to n
             if x_i == y_i
10
                 c[i, j] = c[i-1, j-1] + 1
                 b[i,j] = "\\\"
12
             elseif c[i - 1, j] \ge c[i, j - 1]
13
                 c[i,j] = c[i-1,j]
14
                 b[i,j] = "\uparrow"
15
             else c[i, j] = c[i, j - 1]
16
                 b[i, j] = "\leftarrow"
17
    return c and b
```

Υ	0	a 1	s 2	w 3	v 4	
0	0	0	0	0	0	
a 1	0	\bigcirc 1	←1	←1	←1	
r 2	0	↑ 1	↑ 1	↑ 1	↑ 1	
s 3	0	↑ 1	₹2	← 2	← 2	
w 4	0	↑ 1	↑ 2	(K)	←3	
q 5	0	↑ 1	↑2	1 ↑ 3	← 3	
v 6	0	↑ 1	↑ 2	1 ↑ 3	\bar{\bar{\bar{\bar{\bar{\bar{\bar{	
·						

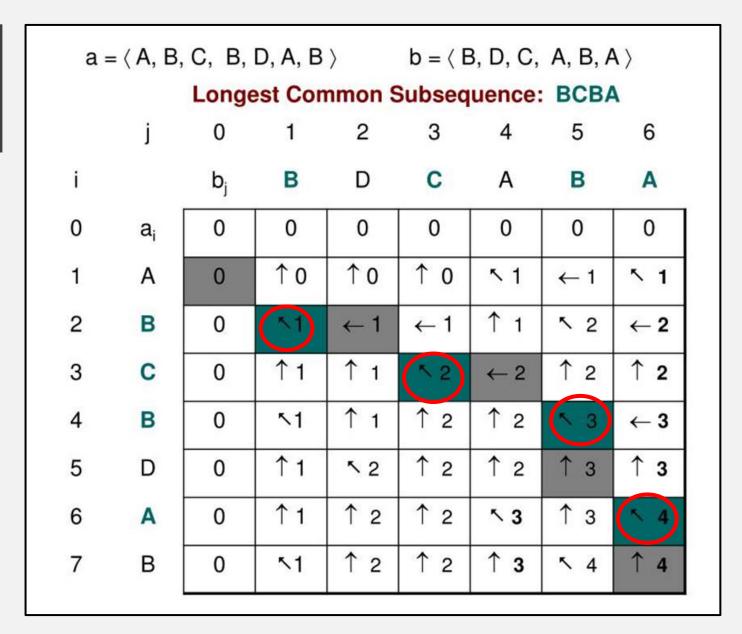
- Similar → \(\sqrt{\cong}\) (value +1)
- Not Similar →

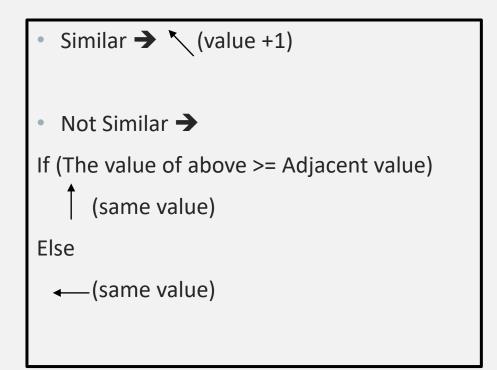
If (The value of above >= Adjacent value)

(same value)

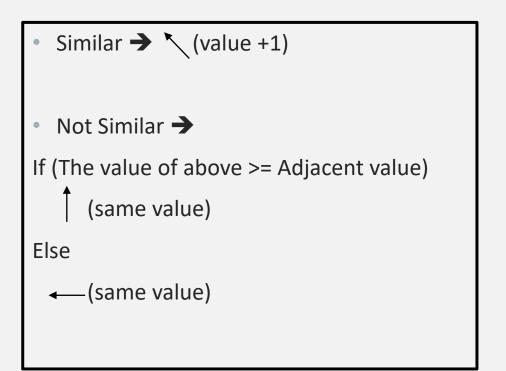
Else

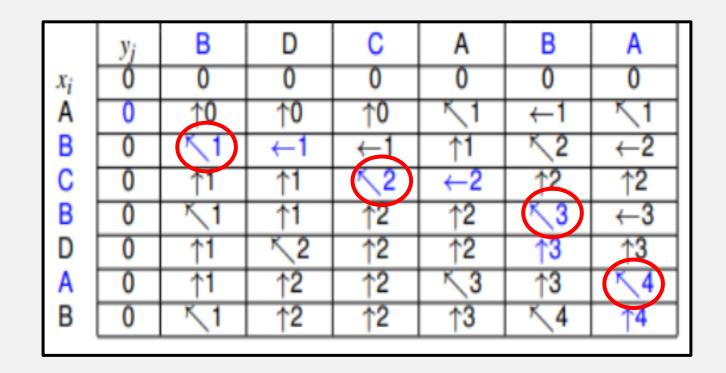
← (same value)





		A	В	A	С	A	В	В	
	0	0	0	0	0	0	0	0	
В	0	↑ °		←1	←1	← ¹	κ_1	K 1	
A	0	K 1	1	C 2	← ²	K 2	← ²	←2	
В	0	1	2	↑ 2	↑ ²	↑ 2	K 3	K 3	
С	0	lacksquare1	↑ ²	↑ ²	K ₃	← ³	← ³	← ³	
A	0	K ₁	↑ ²	K 3	↑ ³ (K ₄	← ⁴	← ⁴	
В	0	\uparrow^1	K 2	↑ ³	↑ ³	↑ ⁴	K ₅	K ₅	





GREEDY APPROACH

- A **greedy** algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage in the hope of getting a globally optimal solution.
- In many problems, a greedy strategy does not always produce/guarantee an optimal solution, but a greedy heuristic can yield locally optimal solutions that approximate a globally optimal solution in a reasonable amount of time.
- Also used for optimization and complex problems.
- This algorithm is called **greedy** because when the optimal solution to the smaller instance is provided, the algorithm does not consider the total problem as a whole.

GREEDY APPROACH

Examples

- ✓ Fraction knapsack problem
- ✓ Coin-changing problem
- ✓ Graphs
 - Dijkstra's shortest-path algorithm
 - Prim's minimum-spanning tree algorithm
 - Kruskal's minimum-spanning tree algorithm

KNAPSACK PROBLEM

- A thief robbing a store finds n items: the i-th item is worth $\mathbf{v_i}$ dollars (**profit**) and $\mathbf{w_i}$ pounds (**weight**) ($\mathbf{v_i}$ and $\mathbf{w_i}$ integers).
- The thief can only carry **W** pounds in his knapsack, he puts these items in a knapsack to get the **maximum** profit in the knapsack.
- Which items should the thief take to **maximize** the value of his load?

KNAPSACK PROBLEM

- There are **two versions** of the problem:
- 1. "Fractional knapsack problem"

Items are divisible; you can take any fraction of an item.

2. "0-1 knapsack problem"

Items are **indivisible**; you either take an item or not.

FRACTIONAL KNAPSACK PROBLEM

- Items are **divisible**; you can take any fraction of an item.
- There are basically three approaches to solve the problem:
 - The first approach is to select the item based on the maximum profit.
 - The second approach is to select the item based on the minimum weight.
 - The third approach is to calculate the ratio of profit/weight. (Here)
- **Time Complexity:** O(n) if items already ordered; else O(nlogn).

FRACTIONAL KNAPSACK PROBLEM

- Steps:
- 1. Compute ratio = P_i / W_i
- 2. Order the items **descending** based on **ratio**.
- 3. Choose items so that they **do not exceed** the capacity of knapsack.
- 4. The overall profit = \mathbf{sum} (profit of the selected items)
- Note: Greedy Strategy is good for "Fractional Knapsack Problem"

FRACTIONAL KNAPSACK PROBLEM

Ex1:

Item	Profit	Weight
A	500	40
В	225	25
С	330	30

Consider that the capacity of the knapsack is W = 55

Sol.

Item	Profit	Weight	Ratio	Remaining Weight	Overall Profit
A	500	40	12.5	55- 40 = 15	500
С	330	30	11	15-15 = 0	165
В	225	25	9	0	0
					<mark>665</mark>

Using the greedy technique, item A is selected. the profit is 500. However, we have remaining available weight 15. it's picked from C with a profit 165.

Hence, the total profit is 500 + 165 = 665.

FRACTIONAL KNAPSACK PROBLEM

Ex2:

Item	Profit	Weight
A	5	1
В	10	3
C	15	5
D	7	4
E	8	1
F	9	3
G	4	2

Consider that the capacity of the knapsack is $\mathbf{W} = \mathbf{15}$

Sol.

Item	Profit	Weight	Ratio	Remaining Weight	Overall Profit
E	8	1	8	15 - 1 = 14	8
A	5	1	5	14 - 1 = 13	5
В	10	3	3.3	13 - 3 = 10	10
С	15	5	3	10 - 5 = 5	15
F	9	3	3	5 - 3 = 2	9
G	4	2	2	2 - 2 = 0	4
D	7	4	1.7	0	0
					<mark>51</mark>

Hence, the total profit = 51

0/1 KNAPSACK PROBLEM

- Items are **indivisible**; you either take an item or not.
- There are many approaches to solve the problem:
 - Greedy Approach. (**Does not** ensure an optimal solution)
 - Dynamic Programming Approach. (Ensure an optimal solution)
 - Other approaches.

SOLVING 0/1 KNAPSACK USING GREEDY TECHNIQUE (DON'T USE IT)

Ex1: Given the following items:

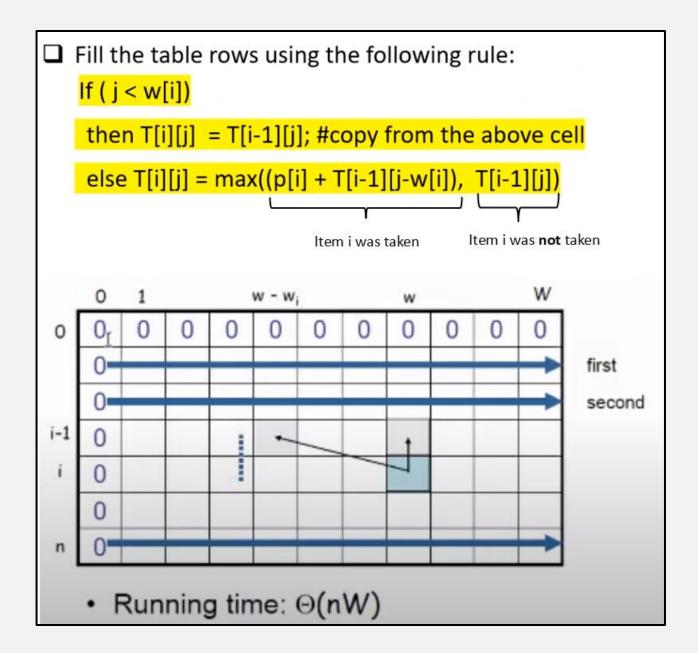
Item	Profit	Weight	Ratio
A	500	40	12.5
В	225	25	9
С	330	30	11

Consider that the capacity of the knapsack is W = 55

Using the Greedy approach, item A is selected.

The profit is 500 and W = 55 - 40 = 15. However, the **global** optimal solution of this instance can be achieved by selecting items, B and C, where the total profit is 225 + 330 = 555.

Conclusion: 0-1 Knapsack **cannot** be solved by the greedy technique. The greedy technique **does not** ensure an optimal solution, but in some cases, the greedy technique may give a global optimal solution.



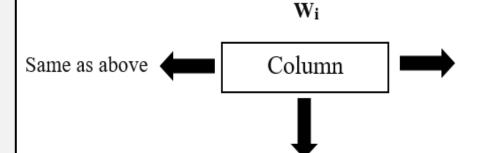
Rules:

of rows = # of items + 1

of columns = W + 1

Fill the first row and the first column with zero.

Max (above, Pi)



- 1) Value = current weight Wi
- 2) Intersection = column(value), previous row
- 3) $P = P_i + P_{intersection}$
- 4) Max (above, P)

How to choose the item?

```
Start at the last cell
if (cell == above cell)
 ignore this item and move to the previous row.
else
  {choose this item
   W = W - W_i
   move to (column(W), previous row)
```

Repeat the previous steps until reaching to the first row/column.

Ex1: Given the following items:

Item	Profit	Weight
A	10	1
В	15	2
С	40	3

Consider that the capacity of the knapsack is W = 6

	<mark>O</mark>	1	<mark>2</mark>	3	4	5	6
0	0	0	0	0	0	0	0
A	0	10	10	10	10	10	10
В	0	10	15	25	25	25	25
C	0	10	15	40	50	55	65

 $\underline{\mathbf{w}}$

6

 $3 \quad \text{column} = 3$

1 column = 1

0 column = 0

Profit = 40 + 15 + 10 = 65

\mathbf{A}

value = 2-1 = 1 inter= col(1), prev_row P=10+0 =10

Max(0,10)

A

value = 3-1 = 2 inter= col(2), prev_row P=10+0=10 Max(0,10)

\mathbf{A}

value = 4-1 = 3 inter= col(3), prev_row P=10+0=10 Max(0,10)

\mathbf{A}

value = 5-1 = 4 inter= col(4), prev_row P=10+0=10 Max(0,10)

\mathbf{A}

value = 6-1 = 5 inter= col(5), prev_row P=10+0=10 Max(0,10)

${f B}$

value = 3-2 = 1 inter= col(1), prev_row P=15+ 10=25 Max(10, 25)

В

value = 4-2 = 2 inter= col(2), prev_row P=15+ 10=25 Max(10, 25)

В

value = 5-2 = 3 inter= col(3), prev_row P=15+ 10=25 Max(10, 25)

В

value = 6-2 = 4 inter= col(4), prev_row P=15+ 10=25 Max(10, 25)

\mathbf{C}

value = 4-3 = 1 inter= col(1), prev_row P=40+10 =50 Max(25,50)

\mathbf{C}

value = 5-3 = 2 inter= col(2), prev_row P=40+15 =55 Max(25,55)

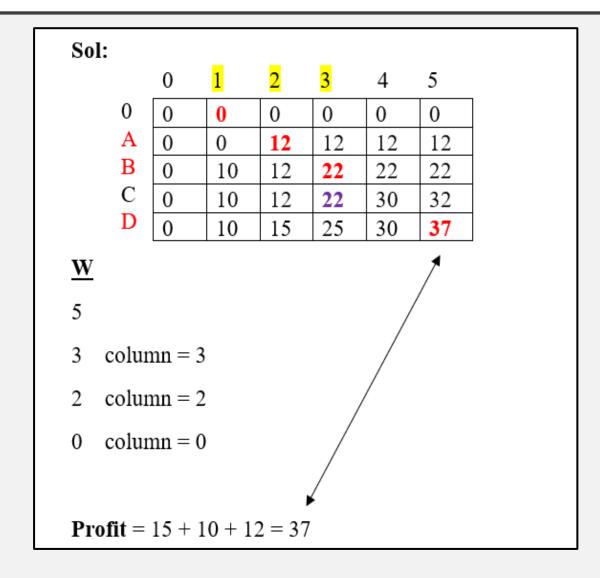
\mathbf{C}

value = 6-3 = 3 inter= col(3), prev_row P=40+25 =65 Max(25,65)

Ex2: Given the following items:

Item	Profit	Weight
A	12	2
В	10	1
С	20	3
D	15	2

Consider that the capacity of the knapsack is W = 5



\mathbf{A}

value = 3-2 = 1

inter= col(1), prev_row

P=12+0=12

Max(0,12)

\mathbf{A}

value = 4-2 = 2

inter= col(2), prev row

P=12+0=12

Max(0,12)

\mathbf{A}

value = 5-2 = 3

inter= col(3), prev row

P=12+0=12

Max(0,12)

В

value = 2-1 = 1

inter= col(1), prev row

P=10+0=10

Max(12, 10)

В

value = 3-1=2

inter= col(2),

prev_row

P=10+ 12=22

Max(12, 22)

В

value = 4-1 = 3

inter= col(3),

prev_row

P=10+ 12=22

Max(12, 22)

\mathbf{B}

value = 5-1 = 4

inter= col(4), prev_row

P=10+12=22

Max(12, 22)

 \mathbf{C}

value = 4-3 = 1

inter= col(1),

prev_row

P=20+10=30

Max(22,30)

 \mathbf{C}

value = 5-3 = 2

inter= col(2),

prev_row

P=20+12=32

Max(22,32)

D

value = 3-2 = 1

inter= col(1),

prev_row

P=15+10=25

Max(22,25)

D

value = 4-2 = 2

inter = col(2),

prev_row

P=15+12=27

Max(30,27)

D

value = 5-2 = 3

inter= col(3),

prev_row

P=15+22=37

Max(32,37)

Ex3: Given the following items:

Item	Profit	Weight
A	2	3
В	3	4
C	1	6
D	4	5

Consider that the capacity of the knapsack is W = 8

Sol:

	0	1	2	3	<mark>4</mark>	<u>5</u>	<mark>6</mark>	7	8
)	0	0	0	0	0	0	0	0	0
1	0	0	0	2	2	2	2	2	2
3	0	0	0	2	3	3	3	5	5
	0	0	0	2	3	3	3	5	5
)	0	0	0	2	3	4	4	5	6

 $\underline{\mathbf{W}}$

8

 $3 \quad \text{column} = 3$

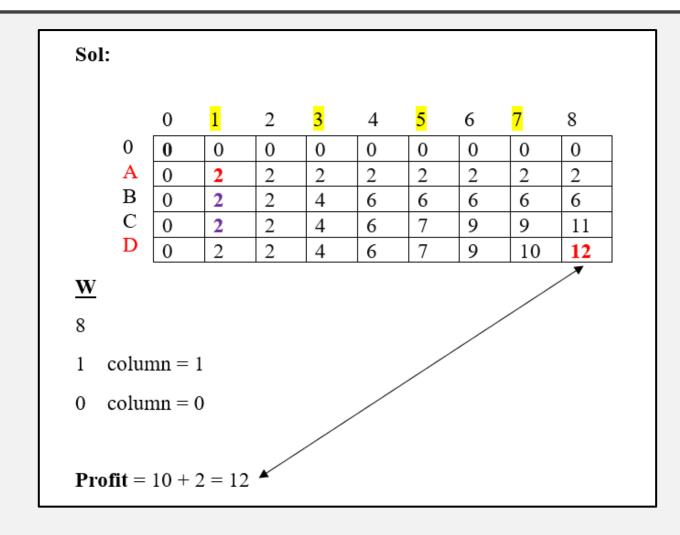
0 column = 0

Profit = 4 + 2 = 6

Ex4: Given the following items:

Item	Profit	Weight
A	2	1
В	4	3
С	7	5
D	10	7

Consider that the capacity of the knapsack is $\mathbf{W} = \mathbf{8}$



CONCLUSION

- Creating an algorithm design and choosing the best algorithm design strategy for a particular problem is an art that requires a good understanding of each strategy, the strengths and weak points of applying it to each type of problem, and taking into consideration the environment and constraints for solving the problem.
- For example, some strategies solve the problem with less time, but require extra memory, while others may solve it with less space requirements, but they do need more time.

END OF CHAPTER5