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KEY POINTS OF CHAPTER5

• Classification of Algorithms.

• Brute Force Technique.

• Divide and Conquer Technique.

• Dynamic Programming Technique.

• Longest Common Subsequences Problem.

• Greedy Technique.

• Knapsack Problem.



CLASSIFICATION OF ALGORITHMS 

• Getting familiar with different Algorithm designs has become important for IT professionals.

• How to classify / group algorithms?

➢ Type of problems solved

➢Design techniques

➢Deterministic vs non-deterministic



CLASSIFICATION OF ALGORITHMS 

(TYPE OF PROBLEMS SOLVED )

Problem Types:

✓ Searching (Linear search algorithm, Binary search algorithm, …)

✓ Sorting (Selection sort algorithm, Insertion sort algorithm, …)

✓ Graph/ Network problems

Shortest path, Traveling salesman.

✓ Dealing with sequences:

Storing, Mapping and analyzing, Aligning

✓ and others...



CLASSIFICATION OF ALGORITHMS 

(DESIGN TECHNIQUES)

A given problem can be solved using different approaches. Some approaches deliver much more 

efficient results than others by means of:

✓ Usage of Resources

✓ Time and Space Complexities

✓ Maintainability

✓ Security



ALGORITHM DESIGN STRATEGIES

• Brute force (Exhaustive method)

• Divide and conquer (D & C)

• Dynamic programming (DP)

• Greedy approach

• Decrease and conquer

• Transform and conquer

• Backtracking and branch-and-bound



BRUTE FORCE 

• Brute Force Algorithms refers to a programming style that does not include any 

shortcuts to improve performance.

• A brute force algorithm blindly iterates an entire domain of possible solutions in search 

of one or more solutions that satisfy a condition.

• An algorithm that inefficiently solves a problem, often by trying every one of a wide 

range of possible solutions.



BRUTE FORCE

Example:

Break a password (Open a Lock)

✓ It is to attempt to break the 3-digit password (each digit either x or o) then brute force may  

take up to 23
→ (8) attempts to crack the code.

✓Disadvantage of Brute-Force algorithms:

In many cases not efficient in terms of (time, space complexities)



DIVIDE AND CONQUER

• Recursive decomposition into "smaller" problem instances and solving them all.

✓ Divide – The original problem is divided into independent sub-problems.

✓ Conquer - The sub-problems are solved recursively.

✓ Combine – The solutions of the sub-problems are combined together to get the

solution of the original problem.



DIVIDE AND CONQUER

• Examples of algorithms based on divide and conquer technique: 

Binary search, Quick sort, Merge sort, Matrix inversion, Matrix multiplication, ….

• Advantages

✓ Solving different problems in less time and thus less complexity

• Disadvantages

✓ Sometimes it can become more complicated than a basic iterative approach

✓ Recursive calls use the stack, which means more space complexity.

✓ Sometimes more calculations are performed.



DYNAMIC PROGRAMMING 
(TABULAR METHOD)

• Dynamic Programming (DP) is a bottom-up approach in which all possible small 

problems are solved and then combined to obtain solutions for bigger problems.

✓ Divide – The original problem is divided into dependent sub-problems.

✓ Conquer - The sub-problems are solved recursively.

✓ Combine - The solutions of the sub-problems are combined together to get the 

solution of the original problem.



DYNAMIC PROGRAMMING 
(TABULAR METHOD)

• The word “programming” in the name of this technique stands for “planning” 

and does not refer to computer programming. 

• Dynamic programming is a technique for solving problems with overlapping

subproblems. 

• Rather than solving overlapping subproblems again and again, dynamic 

programming suggests solving each of the smaller subproblems only once and 

recording the results in a table from which a solution to the original problem can 

then be obtained.



ELEMENTS OF DYNAMIC PROGRAMMING

• Three elements characterize a dynamic programming algorithm:

1. Substructure: Decompose the given problem into smaller subproblems. 

2. Table Structure: After solving the sub-problems, store the results of the sub-

problems in a table. This is done because subproblem solutions are reused many 

times, and we do not want to repeatedly solve the same problem.

3. Bottom-up Computation: Using the table, combine the solution of smaller 

subproblems to solve larger subproblems and eventually arrive at a solution to 

complete a problem.



DYNAMIC PROGRAMMING EXAMPLES

• Examples:

✓ 0/1 Knapsack problem

✓ Largest Common Subsequences (LCS)

✓ All Pair Shortest Path Problem

✓ Time Sharing: Schedule Jobs to maximize CPU Utilization Longest.



OPTIMIZATION PROBLEMS

• Dynamic Programming is the most powerful design technique for solving optimization 

problems.

• Optimization problem includes:

✓ Find a solution with the GLOBAL optimal value (minimum or maximum).

✓ A set of choices must be made to get an optimal solution.

✓ There may be many solutions that return the optimal value: we want to find one of them.



DYNAMIC PROGRAMMING VERSUS
DIVIDE AND CONQUER

• The divide and conquer algorithm partition the problem into independent

subproblems, solve the subproblems recursively, and then combine their solution to 

solve the original problems.

• Dynamic Programming is used when the subproblems are dependent, e.g. when 

they share the same subproblems. In this case, divide and conquer may do more 

work than necessary, because it solves the same sub-problem multiple times.



FIBONACCI NUMBERS PROBLEM

• Recursion➔

✓ Recurrence case: F(n) = F(n-1)+ F(n-2)

✓ Base case: F(0) = 0, F(1) = 1

• A divide-and-conquer approach would repeatedly solve the common subproblems.

• Dynamic programming approach solves every subproblem just once and stores the 

answer in a table.



FIBONACCI NUMBERS PROBLEM



LONGEST COMMON SUBSEQUENCE (LCS)

• The sequence is:  X = <X1, X2, ..., Xn>

• Examples:

✓ Y= <B, D, C, A, B, D, E>

✓ Z = <1, 2, 5>

✓ S = <H>

✓ X = <A, B, C>

Note: A subset of elements in the sequence taken in order (but not necessarily consecutive).

• Subsequence of X ➔ <A>, <B>, <C>, <A, B>, <A, C>, <B, C>, <A, B, C>



LONGEST COMMON SUBSEQUENCE (LCS)

• Example:

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>

➔<B, C, B, A> and <B, D, A, B> are the longest common subsequences of X and Y  

➔ (length = 4)

Note:<(B, C, A> is a subsequence, but is not a LCS of X and Y.



SOLVING LCS USING BRUTE FORCE

• For every subsequence of X, check whether it's a subsequence of Y.

• There are 2m subsequences of X to check. (m: length of X)

• Each subsequence takes (n) time to check. (n: length of Y)

• Running time: O(n2m)

• This technique useful in case the size of the problem was small.



SOLVING LCS USING BRUTE FORCE



SOLVING LCS USING DP
(RECURSION FUNCTION)



SOLVING LCS USING DP

• Number of rows = n + 1

• Number of columns = m +1

• Always fill the first row and the 

first column with zero.  

• There is no difference in the 

solution if you swap the X and Y.

• n ➔ size of X,   m ➔ size of Y



SOLVING LCS USING DP

• The complexity is: O(m*n)



EXAMPLES OF SOLVING 
LCS USING DP

• Similar ➔       (value +1)

• Not Similar ➔ 

If (The value of above >= Adjacent value)

          (same value)

Else

          (same value)
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GREEDY APPROACH 

• A greedy algorithm is any algorithm that follows the problem-solving heuristic of 

making the locally optimal choice at each stage in the hope of getting a globally 

optimal solution.

• In many problems, a greedy strategy does not always produce/guarantee an 

optimal solution, but a greedy heuristic can yield locally optimal solutions that 

approximate a globally optimal solution in a reasonable amount of time.

• Also used for optimization and complex problems.

• This algorithm is called greedy because when the optimal solution to the smaller 

instance is provided, the algorithm does not consider the total problem as a whole. 



GREEDY APPROACH 

• Examples

✓ Fraction knapsack problem

✓ Coin-changing problem

✓ Graphs

- Dijkstra's shortest-path algorithm

- Prim's minimum-spanning tree algorithm

- Kruskal's minimum-spanning tree algorithm



KNAPSACK PROBLEM

• A thief robbing a store finds n items: the i-th item is worth vi dollars (profit) and wi

pounds (weight) (vi and wi ➔ integers).

• The thief can only carry W pounds in his knapsack, he puts these items in a knapsack to 

get the maximum profit in the knapsack.

• Which items should the thief take to maximize the value of his load?



KNAPSACK PROBLEM

• There are two versions of the problem:

1. "Fractional knapsack problem"

Items are divisible; you can take any fraction of an item.

2. "0-1 knapsack problem"

Items are indivisible; you either take an item or not.



FRACTIONAL KNAPSACK PROBLEM

• Items are divisible; you can take any fraction of an item.

• There are basically three approaches to solve the problem:

- The first approach is to select the item based on the maximum profit.

- The second approach is to select the item based on the minimum weight.

- The third approach is to calculate the ratio of profit/weight. (Here)

• Time Complexity: O(n) if items already ordered; else O(nlogn).



FRACTIONAL KNAPSACK PROBLEM

• Steps:

1. Compute ratio = Pi / Wi

2. Order the items descending based on ratio.

3. Choose items so that they do not exceed the capacity of knapsack.

4. The overall profit = sum (profit of the selected items)

• Note: Greedy Strategy is good for "Fractional Knapsack Problem"



FRACTIONAL KNAPSACK PROBLEM



FRACTIONAL KNAPSACK PROBLEM



0/1 KNAPSACK PROBLEM 

• Items are indivisible; you either take an item or not.

• There are many approaches to solve the problem:

- Greedy Approach. (Does not ensure an optimal solution)

- Dynamic Programming Approach. (Ensure an optimal solution)

- Other approaches.



SOLVING 0/1  KNAPSACK 
USING GREEDY TECHNIQUE (DON’T USE IT)



SOLVING 0/1  KNAPSACK 

USING

DYNAMIC 

PROGRAMMING 
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SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING 



CONCLUSION

• Creating an algorithm design and choosing the best algorithm design strategy for a 

particular problem is an art that requires a good understanding of each strategy, the strengths 

and weak points of applying it to each type of problem, and taking into consideration the 

environment and constraints for solving the problem.

• For example, some strategies solve the problem with less time, but require extra 

memory, while others may solve it with less space requirements, but they do need more 

time.



END OF CHAPTER5
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