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KEY POINTS OF CHAPTERS

Classification of Algorithms.

Brute Force Technique.

Divide and Conquer Technique.

Dynamic Programming Technique.
Longest Common Subsequences Problem.
Greedy Technique.

Knapsack Problem.




CLASSIFICATION OF ALGORITHMS

Getting familiar with different Algorithm designs has become important for IT professionals.
How to classify / group algorithms?

Type of problems solved

Design techniques

Deterministic vs non-deterministic



CLASSIFICATION OF ALGORITHMS
(TYPE OF PROBLEMS SOLVED)

Problem Types:
Searching (Linear search algorithm, Binary search algorithm, ...)
Sorting (Selection sort algorithm, Insertion sort algorithm, ...)
Graph/ Network problems
Shortest path, Traveling salesman.
Dealing with sequences:
Storing, Mapping and analyzing, Aligning

and others...




CLASSIFICATION OF ALGORITHMS
(DESIGN TECHNIQUES)

A given problem can be solved using different approaches. Some approaches deliver much more
efficient results than others by means of:

Usage of Resources

Time and Space Complexities
Maintainability

Security



ALGORITHM DESIGN STRATEGIES

Brute force (Exhaustive method)
Divide and conquer (D & C)
Dynamic programming (DP)
Greedy approach

Decrease and conquer
Transform and conquer

Backtracking and branch-and-bound




BRUTE FORCE

Brute Force Algorithms refers to a programming style that does not include any
shortcuts to improve performance.

A brute force algorithm blindly iterates an entire domain of possible solutions in search
of one or more solutions that satisfy a condition.

An algorithm that inefficiently solves a problem, often by trying every one of a wide
range of possible solutions.



BRUTE FORCE

Example:
Break a password (Open a Lock)
It is to attempt to break the 3-digit password (each digit either x or o) then brute force may
take up to 23 - (8) attempts to crack the code.
Disadvantage of Brute-Force algorithms:

In many cases not efficient in terms of (time, space complexities)



DIVIDE AND CONQUER

Recursive decomposition into "smaller" problem instances and solving them all.
Divide — The original problem is divided into independent sub-problems.
Conquer - The sub-problems are solved recursively.

Combine — The solutions of the sub-problems are combined together to get the

solution of the original problem.




DIVIDE AND CONQUER

Examples of algorithms based on divide and conquer technique:

Binary search, Quick sort, Merge sort, Matrix inversion, Matrix multiplication, ....

Advantages
Solving different problems in less time and thus less complexity
Disadvantages
Sometimes it can become more complicated than a basic iterative approach
Recursive calls use the stack, which means more space complexity.

Sometimes more calculations are performed.



DYNAMIC PROGRAMMING
(TABULAR METHOD)

Dynamic Programming (DP) is a bottom-up approach in which all possible small
problems are solved and then combined to obtain solutions for bigger problems.

Divide — The original problem is divided into dependent sub-problems.
Conquer - The sub-problems are solved recursively.

Combine - The solutions of the sub-problems are combined together to get the
solution of the original problem.




DYNAMIC PROGRAMMING
(TABULAR METHOD)

The word “programming” in the name of this technique stands for “planning”
and does not refer to computer programming.

Dynamic programming is a technique for solving problems with overlapping
subproblems.

Rather than solving overlapping subproblems again and again, dynamic
programming suggests solving each of the smaller subproblems only once and
recording the results in a table from which a solution to the original problem can
then be obtained.




ELEMENTS OF DYNAMIC PROGRAMMING

Three elements characterize a dynamic programming algorithm:
Substructure: Decompose the given problem into smaller subproblems.

Table Structure: After solving the sub-problems, store the results of the sub-
problems in a table. This is done because subproblem solutions are reused many
times, and we do not want to repeatedly solve the same problem.

Bottom-up Computation: Using the table, combine the solution of smaller
subproblems to solve larger subproblems and eventually arrive at a solution to
complete a problem.




DYNAMIC PROGRAMMING EXAMPLES

Examples:
0/1 Knapsack problem
Largest Common Subsequences (LCS)
All Pair Shortest Path Problem

Time Sharing: Schedule Jobs to maximize CPU Utilization Longest.




OPTIMIZATION PROBLEMS

Dynamic Programming is the most powerful design technique for solving optimization
problems.

Optimization problem includes:
Find a solution with the GLOBAL optimal value (minimum or maximum).
A set of choices must be made to get an optimal solution.

There may be many solutions that return the optimal value: we want to find one of them.




DYNAMIC PROGRAMMING VERSUS
DIVIDE AND CONQUER

The divide and conquer algorithm partition the problem into independent
subproblems, solve the subproblems recursively, and then combine their solution to
solve the original problems.

Dynamic Programming is used when the subproblems are dependent, e.g. when
they share the same subproblems. In this case, divide and conquer may do more
work than necessary, because it solves the same sub-problem multiple times.




FIBONACCI NUMBERS PROBLEM

Recursion =
Recurrence case: F(n) = F(n-1)+ F(n-2)
Base case: F(0) =0, F(1) =1
A divide-and-conquer approach would repeatedly solve the common subproblems.

Dynamic programming approach solves every subproblem just once and stores the
answer in a table.



FIBONACCI NUMBERS PROBLEM
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LONGEST COMMON SUBSEQUENCE (LCS)

The sequence is: X = <Xy, X,, ..., X,>
Examples:
Y=<B,D,C,A B,D, E>
Z=<1,2,5>
S=<H>
X=<AB,C>
Note: A subset of elements in the sequence taken in order (but not necessarily consecutive).
Subsequence of X = <A>, <B>, <C>, <A, B>, <A, C>,<B, C>, <A, B, C>



LONGEST COMMON SUBSEQUENCE (LCS)

Example:

X=<AB,CB,DA B>

Y=<B,D,C, A, B, A>
<B, C, B, A>and <B, D, A, B> are the longest common subsequences of X and Y
(length = 4)

Note:<(B, C, A> is a subsequence, but is not a LCS of X and Y.




SOLVING LCS USING BRUTE FORCE

For every subsequence of X, check whether it's a subsequence of Y.
There are 2™ subsequences of X to check. (m: length of X)

Each subsequence takes (n) time to check. (n: length of Y)
Running time: O(n2M)

This technique useful in case the size of the problem was small.




SOLVING LCS USING BRUTE FORCE

String Y [ ] B AIBCBAD

Longest common subsequenceis:BACBD
So the longest length = 5




SOLVING LCS USING DP
(RECURSION FUNCTION)

C[’i,j] =

0 fi=00or =0,
clt—1,7 —1]+1 ifi,j >0and z; =y; ,
max(c[t, j —1],c[i — 1,7]) if ¢,5 > 0 and z; # y; .




SOLVING LCS USING DP

Number of rows = n + |
Number of columns = m +1

Always fill the first row and the
first column with zero.

There is no difference in the
solution if you swap the X andY.

n = size of X, m =P size of Y

SN OO A W
S > 538 O N U o>
-BN-BN-BE-BE-BE-BE-NK-




SOLVING LCS USING DP

The complexity is: O(m™*n)

LCS-LENGTH(X,Y)

1 m = X.length

2 n = Y.length

3 leth[l..m,1..n]andc[0..m,0..n] be new tables
4 fori =1tom

5 cli,0] =0

6 forj =0ton

7 ¢l0:if] =0

8 fori =1tom

9 for j = 1ton

10 ifx,- ==Y

11 cli,jl=cli—-1,j—1]+1
12 Bli, j1 = “N

13 elseif c[i — 1, j] > cli, j — 1]

14 cli,j] = ¢eli -1, j]

15 bli,j] = “1”

16 else c[i, j] = c[i,j — 1]

17 bli, j] = “<«”

18 returnc and b




EXAMPLES OF SOLVING
LCS USING DP

Similar = X (value +1)

Not Similar =»

If (The value of above >= Adjacent value)
T (same value)

Else

«—(same value)
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EXAMPLES OF SOLVING
LCS USING DP

Similar = X\ (value +1)

Not Similar =

If (The value of above >= Adjacent value)
T (same value)

Else

«—(same value)
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EXAMPLES OF SOLVING
LCS USING DP

Similar = X (value +1)

Not Similar =»

If (The value of above >= Adjacent value)
T (same value)

Else

«—(same value)

A B A C A B B
0 0 0 0 0 0 0
3 SO
T « |« |«
Rl /I\l ®<_2 RZ (_2 (_2
R 2 9 2 R R
Mo 2 M2 | 33
1 ) 2 R3
T <\) < & &
Rl ,P2 R3 1\3( R'«i > (_4 4
N ™, RN s (s




EXAMPLES OF SOLVING
LCS USING DP

Similar = X\ (value +1)

Not Similar =

If (The value of above >= Adjacent value)
T (same value)

Else

«—(same value)
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GREEDY APPROACH

A greedy algorithm is any algorithm that follows the problem-solving heuristic of
making the locally optimal choice at each stage in the hope of getting a globally
optimal solution.

In many problems, a greedy strategy does not always produce/guarantee an
optimal solution, but a greedy heuristic can yield locally optimal solutions that
approximate a globally optimal solution in a reasonable amount of time.

Also used for optimization and complex problems.

This algorithm is called greedy because when the optimal solution to the smaller
Instance is provided, the algorithm does not consider the total problem as a whole.




GREEDY APPROACH

Examples
Fraction knapsack problem
Coin-changing problem
Graphs
Dijkstra's shortest-path algorithm
Prim's minimum-spanning tree algorithm
Kruskal's minimum-spanning tree algorithm




KNAPSACK PROBLEM

A thief robbing a store finds n items: the i-th item is worth v; dollars (profit) and w;
pounds (weight) (v; and w; =» integers).

The thief can only carry W pounds in his knapsack, he puts these items in a knapsack to
get the maximum profit in the knapsack.

Which items should the thief take to maximize the value of his load?




KNAPSACK PROBLEM

There are two versions of the problem:
1. ""Fractional knapsack problem""

Items are divisible; you can take any fraction of an item.

2. ""'0-1 knapsack problem"

Items are indivisible; you either take an item or not.




FRACTIONAL KNAPSACK PROBLEM

Items are divisible; you can take any fraction of an item.

There are basically three approaches to solve the problem:

- The first approach is to select the item based on the maximum profit.
- The second approach is to select the item based on the minimum weight.

- The third approach is to calculate the ratio of profit/weight. (Here)

Time Complexity: O(n) if items already ordered; else O(nlogn).




FRACTIONAL KNAPSACK PROBLEM

Steps:

1. Compute ratio = P; / W,

2. Order the items descending based on ratio.

3. Choose items so that they do not exceed the capacity of knapsack.
4. The overall profit = sum (profit of the selected items)

Note: Greedy Strategy is good for "Fractional Knapsack Problem”



FRACTIONAL KNAPSACK PROBLEM

Ex1:
Item Profit Weight
A 500 40
B 225 25
C 330 30

Consider that the capacity of the knapsack i1s W = 55

Sol.
Item Profit Weight Ratio Remaining Weight | Overall Profit
A 500 40 12.5 55-40 =15 500
C 330 30 11 15-15=0 165
B 225 25 9 0 0
665

Using the greedy technique, item A is selected. the profit is 500. However, we have
remaining available weight 15. it's picked from C with a profit 165.

Hence, the total profit is 500 + 165 =665.




FRACTIONAL KNAPSACK PROBLEM

Ex2:
Item Profit Weight

A 5 1
B 10 3
C 15 5
D 7 4
E 8 1
F 9 3
G 4 2

Consider that the capacity of the knapsack is W = 15

Sol.

Item Profit Weight Ratio Remaining Weight Overall Profit
E 8 1 8 15—1=14 8
A 5 1 5 14—-—1=13 5
B 10 3 3.3 13—3 =10 10
C 15 5 3 10—-5=5 15
F 9 3 3 5—3=2 9
G 4 2 2 2—2=0 4
D 7 4 1.7 0 0
51

Hence, the total profit = 51




0/1 KNAPSACK PROBLEM

Items are indivisible; you either take an item or not.

There are many approaches to solve the problem:

- Greedy Approach. (Does not ensure an optimal solution)

- Dynamic Programming Approach. (Ensure an optimal solution)

- Other approaches.




SOLVING 0/1 KNAPSACK
USING GREEDY TECHNIQUE (DON’T USE IT)

Ex1: Given the following items:

Item Profit Weight Ratio
A 500 40 12.5
B 225 25 9
C 330 30 11

Consider that the capacity of the knapsack is W = 55
Using the Greedy approach, item A is selected.

The profit is 500 and W = 55 — 40 =15. However, the global optimal solution of
this instance can be achieved by selecting items, B and C, where the total profit is
225 + 330 = 555.

Conclusion: 0-1 Knapsack cannot be solved by the greedy technique. The greedy
technique does not ensure an optimal solution, but in some cases, the greedy
technique may give a global optimal solution.




SOLVING 0/1 KNAPSACK
USING
DYNAMIC
PROGRAMMING

O Fill the table rows using the following rule:

If (j < wli])
then T[i][j] = T[i-1][j]; #copy from the above cell
else T[i][j] = maX((‘p[i] + T[i-ll[j-W[i]),, lT[i-ll[J']),

I

ltem i was taken Item i was not taken
0 1 W= W, w W
0/]0({0(0(0|0|0O(O0O|0O0]0]|O0
Orm first
e ——————— e c—— S0
0 o '
0 T T
0 |

* Running time: ©(nW)




SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

Rules:

# of rows = # of items + 1

# of columns =W + 1

Fill the first row and the first column with zero.

Wi

1) Value = current weight - W;
Same as above _ Column - 2) Intersection = column(value), previous row
)
)

3) P="Pi+ P intersection
4) Max (above, P)

Max (above, Pi)




SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

How to choose the item?
Start at the last cell
if (cell == above cell)
ignore this item and move to the previous row.

else
{choose this item
W=W-Wj

move to (column(W), previous row)

|

Repeat the previous steps until reaching to the first row/column.




SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

Ex1: Given the following items:

Item Profit Weight
A 10 1
B 15 2
C 40 3

Consider that the capacity of the knapsack i1s W = 6




SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

Sol:
0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
A0 10 10 10 10 10 10
B |o 10 15 25 25 25 25
C 1o 10 15 40 50 55 65

W

6

3 column=23

1 column=1

0 column=0

Profit =40+ 15+ 10 =65




SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

A
value =2-1=1

mter— col{1).
prev_row

P=10+0 =10
Max(0,10)

A
value =3-1=2

inter= col(2),
prev_row

P=10+0 =10

Max(0,10)

A
wvalue = 4-1 =3

inter= col(3),
prev_row

P=10+0 =10

Max(0,10)

A
value = 5-1 =4

inter= col(4),
prev_row

P=10+0 =10
Max(0,10)

A
value = 6-1 =35

inter= col(5),
prev_row

P=10+0 =10
Max(0,10)

B
value =3-2=1

inter= col(1),
prev_row

P=15+ 10=25
Max(10, 25)

B
value = 4-2 =2

inter= col(2),
prev_row

P=15+ 10=25
Max(10, 25)

B
value = 5-2 =3

inter= col(3),
prev_row

P=15+ 10=25

Max(10, 25)

B
value = 6-2 =4

inter= col(4),
prev_row

P=15+ 10=25

Max(10, 25)

C
value =4-3 =1

inter= col(1),
prev_row

P=40+10 =50
Max(25,50)

C
value = 5-3 =2

inter—= col(2),
prev_row

P=40+15 =55
Max(25,55)

C
value = 6-3 =3

inter= col(3),
prev_row

P=40+25 =65
Max(25.,65)




SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

Ex2: Given the following items:

Item Profit Weight
A 12 2
B 10 1
C 20 3
D 15 2

Consider that the capacity of the knapsack is W =35




SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

Sol:
0 1 2 3 4 5
0 [0 |0 0 |0 |0 |0
Ao |0 12 |12 |12 |12
B |0 10 |12 |22 |22 |22
Clo 10 |12 |22 |30 |32
D1o |10 |15 |25 |30 |37
W
5

3 column=23
2 column=2

0 column=20

Profit=15+ 10+ 12 =37




SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

A
value =3-2=1

inter= col( 1),

A
value =4-2=2

inter= col(2),

A
value =5-2=3

inter= col(3),

prev_row prev_row prev_row
P=12+0=12 P=12+0=12 P=12+0=12
Max(0,12) Max(0,12) Max(0,12)
B B B B
value =2-1=1 value =3-1=2 value =4-1=73 value =5-1=4

inter= col(1),
prev_row

P=10+0~=10

Max(12, 10)

inter= col(2),
prev_row

P=10+ 12=22
Max(12, 22)

inter= col(3),
prev_row

P=10+ 12=22

Max(12, 22)

inter= col(4),
prev_row

P=10+ 12=22

Max(12, 22)




SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

D
value =3-2=1

mnter= col(1),
prev_row

P=15+10=25

Max(22,25)

C
value =4-3=1

inter= col(1),

C
value =5-3=2

inter= col(2),

prev_row prev_row
P=20+10=30 P=20+12 =32
Max(22,30) Max(22,32)
D D

inter= col(2),
prev_row

P=15+12 =27

Max(30,27)

value = 5-2=13

mter= col(3),
prev_row

P=15+22 =37

Max(32,37)




SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

Ex3: Given the following items:

Item Profit Weight

g|0|W >

= [N
h |y | & W

Consider that the capacity of the knapsack 1s W = 8




SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

Sol;
0 1 2 3 4 5 6 7 8

0 |0 0 0 0 0 0 0 0 0
A0 0 0 2 2 2 2 2 2
B |o 0 0 2 3 3 3 5 5
C o 0 0 2 3 3 3 5 5
Dio o o |2 [3 |4 |4 |5 |6

W

8

3 column =3

0 column=20

Profit=4+2=6




SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

Ex4: Given the following items:

Item Profit Weight
A 2 1
B -+ 3
C 7 5
D 10 7

Consider that the capacity of the knapsack 1s W = 8




SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

Sol:
0 1 2 3 4 5 6 7 8

0 |0 0 0 |0 0 0 |0 0 0
Ao 2 2 2 2 2 2 2 2
B |0 2 2 4 6 6 6 6 6
C lo 2 2 4 6 7 9 9 11
Dilo [2 |2 14 |6 |7 |9 |10 |12

A\

8

1 column=1

0 column=20

Profit=10+2=12




CONCLUSION

Creating an algorithm design and choosing the best algorithm design strategy for a
particular problem is an art that requires a good understanding of each strategy, the strengths
and weak points of applying it to each type of problem, and taking into consideration the
environment and constraints for solving the problem.

For example, some strategies solve the problem with less time, but require extra
memory, while others may solve it with less space requirements, but they do need more
time.



END OF CHAPTERS
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