
ALGORITHMS DESIGN STRATEGIES

Chapter5

Prepared by: Enas Abu Samra

KEY POINTS OF CHAPTER5

• Classification of Algorithms.

• Brute Force Technique.

• Divide and Conquer Technique.

• Dynamic Programming Technique.

• Longest Common Subsequences Problem.

• Greedy Technique.

• Knapsack Problem.

CLASSIFICATION OF ALGORITHMS

• Getting familiar with different Algorithm designs has become important for IT professionals.

• How to classify / group algorithms?

➢ Type of problems solved

➢Design techniques

➢Deterministic vs non-deterministic

CLASSIFICATION OF ALGORITHMS

(TYPE OF PROBLEMS SOLVED)

Problem Types:

✓ Searching (Linear search algorithm, Binary search algorithm, …)

✓ Sorting (Selection sort algorithm, Insertion sort algorithm, …)

✓ Graph/ Network problems

Shortest path, Traveling salesman.

✓ Dealing with sequences:

Storing, Mapping and analyzing, Aligning

✓ and others...

CLASSIFICATION OF ALGORITHMS

(DESIGN TECHNIQUES)

A given problem can be solved using different approaches. Some approaches deliver much more

efficient results than others by means of:

✓ Usage of Resources

✓ Time and Space Complexities

✓ Maintainability

✓ Security

ALGORITHM DESIGN STRATEGIES

• Brute force (Exhaustive method)

• Divide and conquer (D & C)

• Dynamic programming (DP)

• Greedy approach

• Decrease and conquer

• Transform and conquer

• Backtracking and branch-and-bound

BRUTE FORCE

• Brute Force Algorithms refers to a programming style that does not include any

shortcuts to improve performance.

• A brute force algorithm blindly iterates an entire domain of possible solutions in search

of one or more solutions that satisfy a condition.

• An algorithm that inefficiently solves a problem, often by trying every one of a wide

range of possible solutions.

BRUTE FORCE

Example:

Break a password (Open a Lock)

✓ It is to attempt to break the 3-digit password (each digit either x or o) then brute force may

take up to 23
→ (8) attempts to crack the code.

✓Disadvantage of Brute-Force algorithms:

In many cases not efficient in terms of (time, space complexities)

DIVIDE AND CONQUER

• Recursive decomposition into "smaller" problem instances and solving them all.

✓ Divide – The original problem is divided into independent sub-problems.

✓ Conquer - The sub-problems are solved recursively.

✓ Combine – The solutions of the sub-problems are combined together to get the

solution of the original problem.

DIVIDE AND CONQUER

• Examples of algorithms based on divide and conquer technique:

Binary search, Quick sort, Merge sort, Matrix inversion, Matrix multiplication, ….

• Advantages

✓ Solving different problems in less time and thus less complexity

• Disadvantages

✓ Sometimes it can become more complicated than a basic iterative approach

✓ Recursive calls use the stack, which means more space complexity.

✓ Sometimes more calculations are performed.

DYNAMIC PROGRAMMING
(TABULAR METHOD)

• Dynamic Programming (DP) is a bottom-up approach in which all possible small

problems are solved and then combined to obtain solutions for bigger problems.

✓ Divide – The original problem is divided into dependent sub-problems.

✓ Conquer - The sub-problems are solved recursively.

✓ Combine - The solutions of the sub-problems are combined together to get the

solution of the original problem.

DYNAMIC PROGRAMMING
(TABULAR METHOD)

• The word “programming” in the name of this technique stands for “planning”

and does not refer to computer programming.

• Dynamic programming is a technique for solving problems with overlapping

subproblems.

• Rather than solving overlapping subproblems again and again, dynamic

programming suggests solving each of the smaller subproblems only once and

recording the results in a table from which a solution to the original problem can

then be obtained.

ELEMENTS OF DYNAMIC PROGRAMMING

• Three elements characterize a dynamic programming algorithm:

1. Substructure: Decompose the given problem into smaller subproblems.

2. Table Structure: After solving the sub-problems, store the results of the sub-

problems in a table. This is done because subproblem solutions are reused many

times, and we do not want to repeatedly solve the same problem.

3. Bottom-up Computation: Using the table, combine the solution of smaller

subproblems to solve larger subproblems and eventually arrive at a solution to

complete a problem.

DYNAMIC PROGRAMMING EXAMPLES

• Examples:

✓ 0/1 Knapsack problem

✓ Largest Common Subsequences (LCS)

✓ All Pair Shortest Path Problem

✓ Time Sharing: Schedule Jobs to maximize CPU Utilization Longest.

OPTIMIZATION PROBLEMS

• Dynamic Programming is the most powerful design technique for solving optimization

problems.

• Optimization problem includes:

✓ Find a solution with the GLOBAL optimal value (minimum or maximum).

✓ A set of choices must be made to get an optimal solution.

✓ There may be many solutions that return the optimal value: we want to find one of them.

DYNAMIC PROGRAMMING VERSUS
DIVIDE AND CONQUER

• The divide and conquer algorithm partition the problem into independent

subproblems, solve the subproblems recursively, and then combine their solution to

solve the original problems.

• Dynamic Programming is used when the subproblems are dependent, e.g. when

they share the same subproblems. In this case, divide and conquer may do more

work than necessary, because it solves the same sub-problem multiple times.

FIBONACCI NUMBERS PROBLEM

• Recursion➔

✓ Recurrence case: F(n) = F(n-1)+ F(n-2)

✓ Base case: F(0) = 0, F(1) = 1

• A divide-and-conquer approach would repeatedly solve the common subproblems.

• Dynamic programming approach solves every subproblem just once and stores the

answer in a table.

FIBONACCI NUMBERS PROBLEM

LONGEST COMMON SUBSEQUENCE (LCS)

• The sequence is: X = <X1, X2, ..., Xn>

• Examples:

✓ Y= <B, D, C, A, B, D, E>

✓ Z = <1, 2, 5>

✓ S = <H>

✓ X = <A, B, C>

Note: A subset of elements in the sequence taken in order (but not necessarily consecutive).

• Subsequence of X ➔ <A>, , <C>, <A, B>, <A, C>, <B, C>, <A, B, C>

LONGEST COMMON SUBSEQUENCE (LCS)

• Example:

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>

➔<B, C, B, A> and <B, D, A, B> are the longest common subsequences of X and Y

➔ (length = 4)

Note:<(B, C, A> is a subsequence, but is not a LCS of X and Y.

SOLVING LCS USING BRUTE FORCE

• For every subsequence of X, check whether it's a subsequence of Y.

• There are 2m subsequences of X to check. (m: length of X)

• Each subsequence takes (n) time to check. (n: length of Y)

• Running time: O(n2m)

• This technique useful in case the size of the problem was small.

SOLVING LCS USING BRUTE FORCE

SOLVING LCS USING DP
(RECURSION FUNCTION)

SOLVING LCS USING DP

• Number of rows = n + 1

• Number of columns = m +1

• Always fill the first row and the

first column with zero.

• There is no difference in the

solution if you swap the X and Y.

• n ➔ size of X, m ➔ size of Y

SOLVING LCS USING DP

• The complexity is: O(m*n)

EXAMPLES OF SOLVING
LCS USING DP

• Similar ➔ (value +1)

• Not Similar ➔

If (The value of above >= Adjacent value)

 (same value)

Else

 (same value)

EXAMPLES OF SOLVING
LCS USING DP

• Similar ➔ (value +1)

• Not Similar ➔

If (The value of above >= Adjacent value)

 (same value)

Else

 (same value)

EXAMPLES OF SOLVING
LCS USING DP

• Similar ➔ (value +1)

• Not Similar ➔

If (The value of above >= Adjacent value)

 (same value)

Else

 (same value)

EXAMPLES OF SOLVING
LCS USING DP

• Similar ➔ (value +1)

• Not Similar ➔

If (The value of above >= Adjacent value)

 (same value)

Else

 (same value)

GREEDY APPROACH

• A greedy algorithm is any algorithm that follows the problem-solving heuristic of

making the locally optimal choice at each stage in the hope of getting a globally

optimal solution.

• In many problems, a greedy strategy does not always produce/guarantee an

optimal solution, but a greedy heuristic can yield locally optimal solutions that

approximate a globally optimal solution in a reasonable amount of time.

• Also used for optimization and complex problems.

• This algorithm is called greedy because when the optimal solution to the smaller

instance is provided, the algorithm does not consider the total problem as a whole.

GREEDY APPROACH

• Examples

✓ Fraction knapsack problem

✓ Coin-changing problem

✓ Graphs

- Dijkstra's shortest-path algorithm

- Prim's minimum-spanning tree algorithm

- Kruskal's minimum-spanning tree algorithm

KNAPSACK PROBLEM

• A thief robbing a store finds n items: the i-th item is worth vi dollars (profit) and wi

pounds (weight) (vi and wi ➔ integers).

• The thief can only carry W pounds in his knapsack, he puts these items in a knapsack to

get the maximum profit in the knapsack.

• Which items should the thief take to maximize the value of his load?

KNAPSACK PROBLEM

• There are two versions of the problem:

1. "Fractional knapsack problem"

Items are divisible; you can take any fraction of an item.

2. "0-1 knapsack problem"

Items are indivisible; you either take an item or not.

FRACTIONAL KNAPSACK PROBLEM

• Items are divisible; you can take any fraction of an item.

• There are basically three approaches to solve the problem:

- The first approach is to select the item based on the maximum profit.

- The second approach is to select the item based on the minimum weight.

- The third approach is to calculate the ratio of profit/weight. (Here)

• Time Complexity: O(n) if items already ordered; else O(nlogn).

FRACTIONAL KNAPSACK PROBLEM

• Steps:

1. Compute ratio = Pi / Wi

2. Order the items descending based on ratio.

3. Choose items so that they do not exceed the capacity of knapsack.

4. The overall profit = sum (profit of the selected items)

• Note: Greedy Strategy is good for "Fractional Knapsack Problem"

FRACTIONAL KNAPSACK PROBLEM

FRACTIONAL KNAPSACK PROBLEM

0/1 KNAPSACK PROBLEM

• Items are indivisible; you either take an item or not.

• There are many approaches to solve the problem:

- Greedy Approach. (Does not ensure an optimal solution)

- Dynamic Programming Approach. (Ensure an optimal solution)

- Other approaches.

SOLVING 0/1 KNAPSACK
USING GREEDY TECHNIQUE (DON’T USE IT)

SOLVING 0/1 KNAPSACK

USING

DYNAMIC

PROGRAMMING

SOLVING 0/1 KNAPSACK USING

DYNAMIC PROGRAMMING

SOLVING 0/1 KNAPSACK USING

DYNAMIC PROGRAMMING

SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

SOLVING 0/1 KNAPSACK USING
DYNAMIC PROGRAMMING

CONCLUSION

• Creating an algorithm design and choosing the best algorithm design strategy for a

particular problem is an art that requires a good understanding of each strategy, the strengths

and weak points of applying it to each type of problem, and taking into consideration the

environment and constraints for solving the problem.

• For example, some strategies solve the problem with less time, but require extra

memory, while others may solve it with less space requirements, but they do need more

time.

END OF CHAPTER5

	Slide 1: Algorithms Design Strategies
	Slide 2: Key Points of chapter5
	Slide 3: Classification of Algorithms
	Slide 4: Classification of Algorithms (Type of problems solved)
	Slide 5: Classification of Algorithms (Design techniques)
	Slide 6: Algorithm design strategies
	Slide 7: Brute Force
	Slide 8: Brute Force
	Slide 9: Divide and Conquer
	Slide 10: Divide and Conquer
	Slide 11: Dynamic Programming (Tabular Method)
	Slide 12: Dynamic Programming (Tabular Method)
	Slide 13: Elements of Dynamic Programming
	Slide 14: Dynamic Programming examples
	Slide 15: Optimization problems
	Slide 16: Dynamic programming versus divide and conquer
	Slide 17: Fibonacci numbers Problem
	Slide 18: Fibonacci numbers Problem
	Slide 19: Longest common subsequence (LCS)
	Slide 20: Longest common subsequence (LCS)
	Slide 21: Solving lcs using brute force
	Slide 22: Solving lcs using brute force
	Slide 23: Solving lcs using DP (Recursion Function)
	Slide 24: Solving lcs using DP
	Slide 25: Solving lcs using DP
	Slide 26: Examples of Solving lcs using DP
	Slide 27: Examples of Solving lcs using DP
	Slide 28: Examples of Solving lcs using DP
	Slide 29: Examples of Solving lcs using DP
	Slide 30: Greedy Approach
	Slide 31: Greedy Approach
	Slide 32: Knapsack problem
	Slide 33: Knapsack problem
	Slide 34: Fractional Knapsack Problem
	Slide 35: Fractional Knapsack Problem
	Slide 36: Fractional Knapsack Problem
	Slide 37: Fractional Knapsack Problem
	Slide 38: 0/1 Knapsack Problem
	Slide 39: Solving 0/1 knapsack using Greedy Technique (Don’t use it)
	Slide 40: Solving 0/1 Knapsack using Dynamic Programming
	Slide 41: Solving 0/1 Knapsack using Dynamic Programming
	Slide 42: Solving 0/1 Knapsack using Dynamic Programming
	Slide 43: Solving 0/1 Knapsack using Dynamic Programming
	Slide 44: Solving 0/1 Knapsack using Dynamic Programming
	Slide 45: Solving 0/1 Knapsack using Dynamic Programming
	Slide 46: Solving 0/1 Knapsack using Dynamic Programming
	Slide 47: Solving 0/1 Knapsack using Dynamic Programming
	Slide 48: Solving 0/1 Knapsack using Dynamic Programming
	Slide 49: Solving 0/1 Knapsack using Dynamic Programming
	Slide 50: Solving 0/1 Knapsack using Dynamic Programming
	Slide 51: Solving 0/1 Knapsack using Dynamic Programming
	Slide 52: Solving 0/1 Knapsack using Dynamic Programming
	Slide 53: Solving 0/1 Knapsack using Dynamic Programming
	Slide 54: Conclusion
	Slide 55: End of Chapter5

