* Analysis of Algorithms

* Order of Growth

* Best Case, Average Case, Worst Case

 Calculating The Running Time of a program

* Analysing the Time Efficiency of Non-recursive Algorithms
* Analysing the Time Efficiency of Recursive Algorithms

* Empirical analysis of time efficiency

Characteristics of the Algorithms

* Input

* Output

* Definiteness
* Finiteness

* Effectiveness

Analysis of algorithms

* Dimensions:
e Simplicity
* Time efficiency
* Space efficiency

* The term “analysis of algorithms” is usually used in a narrower, technical sense to mean an investigation
of an algorithm’s efficiency with respect to two resources: running time and memory space

e Approaches:

* Theoretical analysis
e Empirical analysis

* Time efficiency, also called time complexity, indicates how fast an algorithm
runs.

» Space efficiency, also called space complexity, refers to the amount of memory
units required by the algorithm in addition to the space needed for its input and
output.

Comparing Algorithms

Q. Given two algorithms A and B, how do we know which is faster?

A. Implement and run both and compare the time each takes!

To compare two algorithms, we can implement them, run them and compare their running times.

Challenges!

e The running time of a program is hardware and software dependent.
We need to run both algorithms on the same machine (or on machines with the same specs), using the same
programming language, the same compiler, etc.

e The running time of a program depends on the input size and on the input type.
We need to run the programs as many times as needed to cover all possible input sizes and types that might
affect the behavior of the programs.

e Running the programs might take a long time!

Takes as long as the fastest of the two programs requires.

Which program runs faster?

Program A: Program B:

x = 1; X = 1;

y = 2; y = 2;

sum = X + Y; z = 3;

4 operations k=4
m=25;
n = 6;
X = X + V;
X = X + Z;
X = X + K;
X = X + m;
X =X + n;

16 operations

Algorithm Swap(a,b)

{ temp=a; ------- 1 space
a=b; = - 1 d
b=temp; ----—---- 1 b
S temp
f(n)=3 s

Frequency count method

Algorithm sum(A,n)

{ s=0;
for(i=0;i<n;i++)
{
s=s+A[i];
}
Return s;

}

Frequency count method

Algorithm sum(A,n)

{ s=0; - 1
for(i=0;i<n;i++) ------mmmemememm- n+1
{
s=s+A[i]; - n
}
Returns; =————mmmmmmmmmmmmmmeo 1
Y

Algorithm sum(A,n)
{ s=0;
for(i=0;i<n;i++)
{
s=s+A[i];

}

Return s;

s(n)= n+3

Algorithm sum(A,B,n)

{ for(i=0;i<n;i++) ---------------- n+1
for(j=0;j<n;j++) ----mmmmm- n(n+1)
{
Cli,j]=ALi,j1+B[i,j]; - n*n
}
J 2n%+2n+1

Algorithm sum(A,B,n)
{ for(i=0;i<n;i++)

{

for(j=0;j<n;j++)

Cli,j1=Ali,jI+BIi,jl;
8

space
A n?
B n?
c n?
n 1
| 1
i1

0 n?

Algorithm sum(A,B,n)

{ for(i=0;i<n;i++) ---------------- n+1
{
for(j=0;j<n;j++) ----------- n(n+1)
c[i,j]=0; ---------- —--—-—- n*n
for(j=0;j<n;j++) { --—--—-- n* n* (n+1)
Cli,j1=A[j]+Bli,j]; o I,
i f(n)=2n3+ 3n%+2n+1
0n3
}

space:
A n?
B n?
c n?
n 1
] 1
| 1

k 1
3n’+4

Runtime Analysis Procedure

requires tracing skills

code _ Trace » summation - Answer

requires math skills

How Many Operations?

i=0; 1=0;

sum = 0; sum = 0;

while (i < 10) { while (i < 20) {
sum += 1; sum += 1;
1 +4= 1; 1 +=1;

} ¥

How many operation?

I x 1 1= 0; l % 1 1 = 0;
[x 1 sum = 0; [% 1 sum = 0;
1 x11 while (i < 10) { 1 %21 while (1 < 20) {
2% 10 sum += 1; 2 % 20 sum += 1;
2% 10 i+= 1; 2 % 20 1+=1;
Iy }
2+(Ix11)+(4x10) = 24+ (1x21)+(4x20) =
53 operations 103 operations

For simplicity, we will say:
- the left code performed the sum +=ioperation 10 times.

- the right code performed the sum += i operation 20 times.
We will always pick a certain operation to be the basis for our cost model.

How Many Operations?

How many times does sum +=i get executed?

i =0; i = 10; i=20;

sum = 0; sum = 0; sum = 0;

while (i<5) { while (1>0) { while (i<n) {
sum += 1i: sum += 1i: sum += i:
1 += 1; 1 -= 1y 1 += 1;

} } }

5 times 10 times n times

How Many Operations

How many times does op() get called?

i = 100; i = 0; i = 100;

while (i<n) { while (i<n) { while (i<n) {
op(); op() 7 op ()7
i+=1; i += 5; i += 5;

} } }

1 — 100 times [n /5] times [(n — 100) / 5] times

How Many Operations

How many times does op() get executed?

for (int i=0; i<n; i++)

op();

for (int 1i=0; i<n; i+=5)

op() 7

[n/5]

How Many Operations?

How many times does op() get called?

for (int i=0; i<n; i++) {
op():

op();
}

2n

for (int i=0; i<n; i+=3) {
op():
op():;
op()7:

¥

n

How Many Operations?

How many times does op() get called?

for (int i=0; i<n; i++) {
for (int j=0; j<n; j++)
op();

n-

for (int i=0; i<n; 1i++)
op();

for (int J=0; j<n; J++)
op();

2n

How Many Operations?

How many times does op() get called?

for (int i = 10; i < n; i++) {
for (int j = 5; jJ < n; j += 2)
op()7

(n —10) X %{H —5)

How Many Operations?

How many times does op() get called?

for (int i = 0; i < n; i++) {
for (int 7 = 0; jJ < n; j += 2)
op ()
for (int jJ = 0; jJ < n; j += 2)
op ()

n X (%n + ljn} = n?

How Many Operations?

How many times does op() get called?

for (int i = 0; 1 < n; i++)
for (int j = 0; j < n; j += 2)
for (int k = 10; k < n; k++)

op();

n X %n X (n—10) = %”3 — 5n2

How Many Operations?

How many times does op() get called?

for (int 1 = 0; 1 < n*n; i++)
op() 7
for (int 1 = 0; 1 < n; 1 += 2)
for (int jJ = 0; jJ < n; j += 2)
op();

2 I I
n“+(=n X —n)

g 1 J.
=n- —Hn-
T 4

5 5
= —Rn-
4

How Many Operations?

How many times does op() get called?

for (int i 0; 1 < n; i++)
for (int j = 1i; j < i1 + 7; j++)

op();
n
i*i<n
for (int i = 0; i*i < n; i++) i*i>=n
op(); izzn

v

Algorithm sum(A,n)

{ s=0;
for(i=0;s<=n;i++)
{

S=S+ i;

}

Assume s>n
S=k(k+1)/2
k? >n
k>Vn

1+2+3+4=

1+2+3+4+....

+k

How Many Operations?

How many times does op() get called?

for (int 1 = 1; 1 <= n; 1 *= 2)
op():;
i=1, 2. 4 8 ... +n n These are k + 1 steps, where 2’ = pnie k= log,(n)
20 Al A2 A3 kel Ak Total number of times op() is called = log,(n) + 1 i
n
n/2
for (int i = n; i >=1; i /= 2) n/2?
op(); n/ 23

] ! 4 - . .
o rICRERE 8, 4, 2, 1 These are k + 1 steps, where 2 = n ie k= log,(n))
— ok k=1 9k=2 93 52 5l 20 Total number of times op () is called = log,(n) + 1 n/ 2

How Many Operations?

How many times does op() get called?

for (int 1 = 1; 1 <= n; 1 *= 3)
op();
i=1, 3, 9, 27, n
=30 31 32 33 . 3
These are k + 1 steps, where 3k = nie k= log,(n)

Total number of times op() is called = log,(n) + 1

for (i = 1l; i <= whatever; i *= b)
op();

|log,(whatever)| + 1

Eh

Frequency count method

s=0;
for(i=1; i< n;i=i*2)
{

S++: e s=logn

}
for(j=1; j<'s; j=j*2)
{

statement; ---------- log s

Frequency count method

for(i=0; i< n; i++) --------- n
{
for(j=1;j< n; j=j*2) ------ n logn
{
statement; -------—--- nlogn
5 U —
} 2 nlogn+n

0 nlogn

How Many Operations?

How many times does op() get called?

for (int 1 = 1; 1 <= n; i++)
for (int j = 1;] <= 1i; J *= 2)
op ()7

1 number of op() calls

1 log,(1) + 1
2 log,(2) + 1
3 log,(3) + 1
n log,(n) + 1

Total = log,(1) +10og,(2) + log,(3) + ... +log,(n) +(nx 1)

=log,(1 X2X3X...Xxn)+nx1)=log,(n!)+n

~ nlog,(n) - Stirling's Approximation (see the math cheatsheet)

Frequency count method

for(i=0; i< n; i++) --—---——--- 0(n)
for(j=0;j< n; j=j+2) --—---- n/2 ----- O(n)
for(i=n; 1 >1;i--) --—----- 0(n)
for(j=1;j<n; j=j*2) ------ Ology(n)
for(j=1;j< n; j=j*3) --—---- 0 logs(n)

for(j=n;j>1;j=j/2) ------ 0 logy(n)

How Many Operations?

How many times does op() get called?

for (int 1 = 1; 1 <= n; 1i++)
for (int j = 1; j <= 1i; j++)
op();

If the nested loops
are dependent, we
can't analyze each
loop separately and
then multiply them!

How Many Operations?

How many times does op() get called?

If the nested loops
for (int 1 = 1; 1 <= n; 1i++) are dependent, we
for (int j = 1; 3 <= 1i; j++) can't analyze each
op():; loop separately and
then multiply them!

] number of op () calls

WN |

How Many Operations?

How many times does op() get called?

If the nested loops
for (int 1 = 1; 1 <= n; 1i++) are dependent, we

for (int j 1; J <= 1i; j++) can't analyze each
loop separately and

op ()7
then multiply them!
i) number of op() calls
1 [1] 1
2 [1, 2] 2
3 [1, 2, 3] 3

n [1, 2, 3, ..., n] n

How Many Operations?

How many times does op() get called?

If the nested loops

for (int 1 = 1; 1 <= n; 1i++) are dependent, we
for (int j = 1; 3 <= 1i; j++) can't analyze each
op(): loop separately and

then multiply them!

i) number of op() calls
1 [1] 1
2 [1, 2] 2
3 [1, 2, 3] 3
n [1, 2, 3, .., n] n

Total=14+24+3 4+ ...+ n

n

:Z;‘

i=0

How Many Operations?

How many times does op() get called?

If the nested loops

for (int 1 = 1; 1 <= n; 1i++) are dependent, we
for (int j = 1; 3 <= 1i; j++) can't analyze each
op(): loop separately and

then multiply them!

i) number of op() calls
1 [1] 1
2 [1, 2] 2
3 [1, 2, 3] 3
n [1, 2, 3, .., n] n

Total=14+24+3 4+ ...+ n

n = nn+1)
-3 S Li=T5

i=0) i=0

How Many Operations?

How many times does op() get called?

for (int 1 = 1; i1 <= n*n; i++)
for (int j = 1; j <= i; j++)

op();
i] number of op() calls
1 [1] 1
2 [1, 2] 2
3 [1, 2, 3] 3
nkn [1, 2, 3, ..., nxn] nn

Total=14+2+3+...+n?

i on*n*+ 1)
= [=
i=0 2

M1+

-

[

A very frequently
encountered sum:

* (k+1)
2

=

How Many Operations?

How many times does op() get called?

for (int 1 = 1; i1 <= n; i++)
for (int j = 1; j <= i; j++)
for (int k = 1; k <= i; k++)
op() 7

i number of op() calls

1 1x1

2 2 X 2

3 3 x 3

n nxn
Total =12 + 22 + 3% + ... + n?

Z ;2 — n(n + l)(2n +1) «—— see the math cheatsheet

	Slide 2: Contents
	Slide 3: Characteristics of the Algorithms
	Slide 4: Analysis of algorithms
	Slide 5: Analysis of algorithms
	Slide 6: Comparing Algorithms
	Slide 7
	Slide 8: Which program runs faster?
	Slide 9: Theoretical analysis
	Slide 10: Frequency count method
	Slide 11: Frequency count method
	Slide 12: Frequency count method
	Slide 13: Frequency count method
	Slide 14: Frequency count method
	Slide 15: Frequency count method
	Slide 16: Runtime Analysis Procedure
	Slide 17: How Many Operations?
	Slide 18: How many operation?
	Slide 19: How Many Operations?
	Slide 20: How Many Operations?
	Slide 21: How Many Operations?
	Slide 22: How Many Operations?
	Slide 23: How Many Operations?
	Slide 24: How Many Operations?
	Slide 25: How Many Operations?
	Slide 26: How Many Operations?
	Slide 27: How Many Operations?
	Slide 28: How Many Operations?
	Slide 29: Frequency count method
	Slide 30: How Many Operations?
	Slide 31: How Many Operations?
	Slide 32: Frequency count method
	Slide 33: Frequency count method
	Slide 34: How Many Operations?
	Slide 35: Frequency count method
	Slide 36: How Many Operations?
	Slide 37: How Many Operations?
	Slide 38: How Many Operations?
	Slide 39: How Many Operations?
	Slide 40: How Many Operations?
	Slide 41: How Many Operations?
	Slide 42: How Many Operations?

