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Characteristics of the Algorithms

• Input

• Output

• Definiteness

• Finiteness

• Effectiveness



Analysis of algorithms
• Dimensions:

• Simplicity 

• Time efficiency

• Space efficiency

• The term “analysis of algorithms” is usually used in a narrower, technical sense to mean an investigation 
of an algorithm’s efficiency with respect to two resources: running time and memory space

• Approaches:
• Theoretical analysis

• Empirical analysis



Analysis of algorithms

• Time efficiency, also called time complexity, indicates how fast an algorithm 
runs. 

• Space efficiency, also called space complexity, refers to the amount of memory 
units required by the algorithm in addition to the space needed for its input and 
output.



Comparing Algorithms

Q. Given two algorithms A and B, how   do we know which is faster?

A. Implement and run both and compare the time each takes!



To compare two algorithms, we can implement them, run them and compare their running times.

Challenges!

• The running time of a program is hardware and software dependent.
We need to run both algorithms on the same machine (or on machines with the same specs), using the same 
programming language, the same compiler, etc.

• The running time of a program depends on the input size and on the input type.
We need to run the programs as many times as needed to cover all possible input sizes and types that might 
affect the behavior of the programs.

• Running the programs might take a long time!

Takes as long as the fastest of the two programs requires.



Which program runs faster?



Algorithm Swap(a,b)

{        temp=a;  ------- 1                                       space

a=b;         -------- 1                                         a

b=temp;   -------- 1                                        b

}     ---------------------------------- temp

f(n) = 3                                                       ----------------

s(n)= 3

Theoretical analysis



Frequency count method

Algorithm  sum(A,n)

{      s=0;

for(i=0;i<n;i++)

{      

s=s+A[i];

}

Return s;

}



Frequency count method

Algorithm  sum(A,n)         
{      s=0;   ----------------------------- 1

for(i=0;i<n;i++)  -------------------n+1
{      

s=s+A[i];      --------------------- n
}

Return s;        ------------------------ 1

}                                                     ------------
2n+3



Frequency count method

Algorithm  sum(A,n)                                 space 

{      s=0;                                                        A=n

for(i=0;i<n;i++)                                    n=1

{                                                             i=1

s=s+A[i];                                          s=1

}                                                      ___________

Return s;                                                 s(n)=  n+3

}



Frequency count method

Algorithm  sum(A,B,n)         

{              for(i=0;i<n;i++)  ----------------n+1                  

{      

for(j=0;j<n;j++)    ----------- n(n+1)

{

C[i,j]=A[i,j]+B[i,j];   ---------- n * n

} 

}                                                 ------------

}                                                      2 𝑛2 + 2n + 1  

0( 𝑛2)



Frequency count method

Algorithm  sum(A,B,n)         

{              for(i=0;i<n;i++)  ----------------n+1                         space:

{                                                           A 𝑛2

for(j=0;j<n;j++)    ----------- n(n+1)                            B     𝑛2

{                                                                                                  c      𝑛2

C[i,j]=A[i,j]+B[i,j];   ---------- n * n                              n 1

} }                                                 ------------ I      1

2 𝑛2 + 2n + 1                      j       1

0 𝑛2 ________

3 𝑛2+3      0 𝑛2



Frequency count method

Algorithm  sum(A,B,n)         

{ for(i=0;i<n;i++)  ---------------- n+1                               space:

{ A 𝑛2

for(j=0;j<n;j++)    ----------- n(n+1)                            B     𝑛2

{ c[i,j]=0;  ---------- ------- n * n                               c      𝑛2

for(j=0;j<n;j++) { ------ n * n* (n+1)                  n      1

C[i,j]=A[i,j]+B[i,j];   ---------- n * n  *n                         j       1

}                            f(n)= 2 𝑛3+  3 𝑛2 + 2n + 1          I      1

}                                           0 𝑛3 k      1

} 3 𝑛2+4

} - 0 𝑛2



Runtime Analysis Procedure 

requires tracing skills 

code                          Trace                   summation                    Answer

requires math skills



How Many Operations?



How many operation?

For simplicity, we will say:

- the left code performed the sum += i operation 10 times.

- the right code performed the sum += i operation 20 times.

We will always pick a certain operation to be the basis for our cost model.



How Many Operations?

Note: In all of the examples, n is assumed to be positive

How many times does sum += i get executed?



How many times does op() get called?

How Many Operations?



How Many Operations?

How many times does op() get executed?



How Many Operations?

How many times does op() get called?

assuming n is a multiple of 3. If not, then the answer is: ⌈n/3⌉ × 3



How Many Operations?

How many times does op() get called?



How Many Operations?

How many times does op() get called? (assuming n is a multiple of 2)



How Many Operations?

How many times does op() get called?



How Many Operations?

How many times does op() get called? (assuming n is a multiple of 2)



How Many Operations?

How many times does op() get called? (assuming n is a multiple of 2)



How Many Operations?

How many times does op() get called?

(the inner loop always repeats 7 times, regardless of what the value of i is)

(the loop stops when i2 = n i.e. when i = n )

i* i<n
i* i >= n
𝑖2= 𝑛
i=



Frequency count method

Algorithm  sum(A,n)

{      s=0;

for(i=0;s<=n;i++)
{      

s=s+ i;

}

}

i s
--------- -----------
0                     0+0=0
1                      0+1=1
2                     1+2=3
3                      1+2+3=
4                      1+2+3+4=
.
.
.
.
K                      1+2+3+4+…..+kAssume  s>n

S=k(k+1)/2
𝑘2 > 𝑛

k>√𝑛



How Many Operations?

How many times does op() get called? (assuming n is a power of 2)

i
-----
n
n/2
n/22

n/ 23

n/ 2𝑘



How Many Operations?

How many times does op() get called?



Frequency count method

s=0;

for(i=1; i< n;i=i*2)

{      

s++;                   -------- s=log n

}

for(j=1 ; j< s; j=j*2)

{      

statement;  ---------- log s

}                                        log log n



Frequency count method

for(i=0; i< n; i++)   --------- n

{      

for(j=1;j< n; j=j*2)   ------n logn

{      

statement;  ---------- n log n

}                              -----------------

} 2 n logn+ n 

0 nlogn



How Many Operations?

How many times does op() get called?



Frequency count method

for(i=0; i< n; i++)   ---------0( n)

for(j=0;j< n; j=j+2)   ------ n/2 ----- 0( n) 

for(i=n; I >1; i--)   ------- 0( n)

for(j=1;j< n; j=j*2)   ------ 0

for(j=1;j< n; j=j*3)   ------ 0

for(j=n ; j> 1; j=j/2)   ------ 0



How Many Operations?

How many times does op() get called? (assuming n is a multiple of 2)



How Many Operations?

How many times does op() get called?



How Many Operations?

How many times does op() get called?



How Many Operations?

How many times does op() get called?



How Many Operations?

How many times does op() get called?



How Many Operations?

How many times does op() get called?



How Many Operations?

How many times does op() get called?
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