
Contents

• Analysis of Algorithms

• Order of Growth

• Best Case, Average Case, Worst Case

• Calculating The Running Time of a program

• Analysing the Time Efficiency of Non-recursive Algorithms

• Analysing the Time Efficiency of Recursive Algorithms

• Empirical analysis of time efficiency

Characteristics of the Algorithms

• Input

• Output

• Definiteness

• Finiteness

• Effectiveness

Analysis of algorithms
• Dimensions:

• Simplicity

• Time efficiency

• Space efficiency

• The term “analysis of algorithms” is usually used in a narrower, technical sense to mean an investigation
of an algorithm’s efficiency with respect to two resources: running time and memory space

• Approaches:
• Theoretical analysis

• Empirical analysis

Analysis of algorithms

• Time efficiency, also called time complexity, indicates how fast an algorithm
runs.

• Space efficiency, also called space complexity, refers to the amount of memory
units required by the algorithm in addition to the space needed for its input and
output.

Comparing Algorithms

Q. Given two algorithms A and B, how do we know which is faster?

A. Implement and run both and compare the time each takes!

To compare two algorithms, we can implement them, run them and compare their running times.

Challenges!

• The running time of a program is hardware and software dependent.
We need to run both algorithms on the same machine (or on machines with the same specs), using the same
programming language, the same compiler, etc.

• The running time of a program depends on the input size and on the input type.
We need to run the programs as many times as needed to cover all possible input sizes and types that might
affect the behavior of the programs.

• Running the programs might take a long time!

Takes as long as the fastest of the two programs requires.

Which program runs faster?

Algorithm Swap(a,b)

{ temp=a; ------- 1 space

a=b; -------- 1 a

b=temp; -------- 1 b

} ---------------------------------- temp

f(n) = 3 ----------------

s(n)= 3

Theoretical analysis

Frequency count method

Algorithm sum(A,n)

{ s=0;

for(i=0;i<n;i++)

{

s=s+A[i];

}

Return s;

}

Frequency count method

Algorithm sum(A,n)
{ s=0; ----------------------------- 1

for(i=0;i<n;i++) -------------------n+1
{

s=s+A[i]; --------------------- n
}

Return s; ------------------------ 1

} ------------
2n+3

Frequency count method

Algorithm sum(A,n) space

{ s=0; A=n

for(i=0;i<n;i++) n=1

{ i=1

s=s+A[i]; s=1

} ___________

Return s; s(n)= n+3

}

Frequency count method

Algorithm sum(A,B,n)

{ for(i=0;i<n;i++) ----------------n+1

{

for(j=0;j<n;j++) ----------- n(n+1)

{

C[i,j]=A[i,j]+B[i,j]; ---------- n * n

}

} ------------

} 2 𝑛2 + 2n + 1

0(𝑛2)

Frequency count method

Algorithm sum(A,B,n)

{ for(i=0;i<n;i++) ----------------n+1 space:

{ A 𝑛2

for(j=0;j<n;j++) ----------- n(n+1) B 𝑛2

{ c 𝑛2

C[i,j]=A[i,j]+B[i,j]; ---------- n * n n 1

} } ------------ I 1

2 𝑛2 + 2n + 1 j 1

0 𝑛2 ________

3 𝑛2+3 0 𝑛2

Frequency count method

Algorithm sum(A,B,n)

{ for(i=0;i<n;i++) ---------------- n+1 space:

{ A 𝑛2

for(j=0;j<n;j++) ----------- n(n+1) B 𝑛2

{ c[i,j]=0; ---------- ------- n * n c 𝑛2

for(j=0;j<n;j++) { ------ n * n* (n+1) n 1

C[i,j]=A[i,j]+B[i,j]; ---------- n * n *n j 1

} f(n)= 2 𝑛3+ 3 𝑛2 + 2n + 1 I 1

} 0 𝑛3 k 1

} 3 𝑛2+4

} - 0 𝑛2

Runtime Analysis Procedure

requires tracing skills

code Trace summation Answer

requires math skills

How Many Operations?

How many operation?

For simplicity, we will say:

- the left code performed the sum += i operation 10 times.

- the right code performed the sum += i operation 20 times.

We will always pick a certain operation to be the basis for our cost model.

How Many Operations?

Note: In all of the examples, n is assumed to be positive

How many times does sum += i get executed?

How many times does op() get called?

How Many Operations?

How Many Operations?

How many times does op() get executed?

How Many Operations?

How many times does op() get called?

assuming n is a multiple of 3. If not, then the answer is: ⌈n/3⌉ × 3

How Many Operations?

How many times does op() get called?

How Many Operations?

How many times does op() get called? (assuming n is a multiple of 2)

How Many Operations?

How many times does op() get called?

How Many Operations?

How many times does op() get called? (assuming n is a multiple of 2)

How Many Operations?

How many times does op() get called? (assuming n is a multiple of 2)

How Many Operations?

How many times does op() get called?

(the inner loop always repeats 7 times, regardless of what the value of i is)

(the loop stops when i2 = n i.e. when i = n)

i* i<n
i* i >= n
𝑖2= 𝑛
i=

Frequency count method

Algorithm sum(A,n)

{ s=0;

for(i=0;s<=n;i++)
{

s=s+ i;

}

}

i s
--------- -----------
0 0+0=0
1 0+1=1
2 1+2=3
3 1+2+3=
4 1+2+3+4=
.
.
.
.
K 1+2+3+4+…..+kAssume s>n

S=k(k+1)/2
𝑘2 > 𝑛

k>√𝑛

How Many Operations?

How many times does op() get called? (assuming n is a power of 2)

i

n
n/2
n/22

n/ 23

n/ 2𝑘

How Many Operations?

How many times does op() get called?

Frequency count method

s=0;

for(i=1; i< n;i=i*2)

{

s++; -------- s=log n

}

for(j=1 ; j< s; j=j*2)

{

statement; ---------- log s

} log log n

Frequency count method

for(i=0; i< n; i++) --------- n

{

for(j=1;j< n; j=j*2) ------n logn

{

statement; ---------- n log n

} -----------------

} 2 n logn+ n

0 nlogn

How Many Operations?

How many times does op() get called?

Frequency count method

for(i=0; i< n; i++) ---------0(n)

for(j=0;j< n; j=j+2) ------ n/2 ----- 0(n)

for(i=n; I >1; i--) ------- 0(n)

for(j=1;j< n; j=j*2) ------ 0

for(j=1;j< n; j=j*3) ------ 0

for(j=n ; j> 1; j=j/2) ------ 0

How Many Operations?

How many times does op() get called? (assuming n is a multiple of 2)

How Many Operations?

How many times does op() get called?

How Many Operations?

How many times does op() get called?

How Many Operations?

How many times does op() get called?

How Many Operations?

How many times does op() get called?

How Many Operations?

How many times does op() get called?

How Many Operations?

How many times does op() get called?

	Slide 2: Contents
	Slide 3: Characteristics of the Algorithms
	Slide 4: Analysis of algorithms
	Slide 5: Analysis of algorithms
	Slide 6: Comparing Algorithms
	Slide 7
	Slide 8: Which program runs faster?
	Slide 9: Theoretical analysis
	Slide 10: Frequency count method
	Slide 11: Frequency count method
	Slide 12: Frequency count method
	Slide 13: Frequency count method
	Slide 14: Frequency count method
	Slide 15: Frequency count method
	Slide 16: Runtime Analysis Procedure
	Slide 17: How Many Operations?
	Slide 18: How many operation?
	Slide 19: How Many Operations?
	Slide 20: How Many Operations?
	Slide 21: How Many Operations?
	Slide 22: How Many Operations?
	Slide 23: How Many Operations?
	Slide 24: How Many Operations?
	Slide 25: How Many Operations?
	Slide 26: How Many Operations?
	Slide 27: How Many Operations?
	Slide 28: How Many Operations?
	Slide 29: Frequency count method
	Slide 30: How Many Operations?
	Slide 31: How Many Operations?
	Slide 32: Frequency count method
	Slide 33: Frequency count method
	Slide 34: How Many Operations?
	Slide 35: Frequency count method
	Slide 36: How Many Operations?
	Slide 37: How Many Operations?
	Slide 38: How Many Operations?
	Slide 39: How Many Operations?
	Slide 40: How Many Operations?
	Slide 41: How Many Operations?
	Slide 42: How Many Operations?

