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CHAPTER

Techniques of Integration

In Calculus 1, you studied several basic techniques for evaluating simple inte-
grals. In this chapter, you will study other integration techniques, such as in-
tegration by parts, that are used to evaluate more complicated integrals. You
will also learn how to evaluate improper integrals.

1.1 Basic Integration Rules

In this chapter, you will study several integration techniques that greatly ex-
pand the set of integrals to which the basic integration rules can be applied.
A major step in solving any integration problem is recognizing which basic
integration rule to use. As shown in Example 1.1, slight differences in the in-
tegrand can lead to very different solution techniques.

Example 1.1. Evaluate each integral

1 X x?
d b d d
a)fxz+1 . )fx2+1 o c)fxz+1 .

1
x2+1

dx=tan 'x+C.

Solution1.1. a) f

1 2 1
b)f a dx:—f *_dx=-In(1+x3)+C.
x2+1 2J) x2+1 2

x? 1 4
c) f dx:f 1- dx=x—-tan  x+C.
x2+1 x2+1

5
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Some times you need to use two basic rules to solve a single integral as
shown in Example 1.2.

1 x+3
Example 1.2. Evaluate dx.

0 V4-—x?

Solution 1.2. Begin by writing the integral as the sum of two integrals. Then
apply the Power (Substitution) Rule and the Arcsine Rule, as follows.

1 x+3 1y 13
f dx:f dx+f dx
0 V4-—x2 0 V4—x2 0 V4-—x2

11 2x 1 1
ey (s
2Jo V4-—x? 0 V22— x2

x11
:[—v4—x2+3sin_15]

0
:2—\/§+g

Often you need your intelligence in the appropriate substitution to solve
the integration. Consider the following three examples.

Example 1.3. Evaluate

fﬁdx.

Solution 1.3. Because two different radicals appear in the problem, the sub-
stitution x = 5, [6 = Least Common Multiple of 2 and 3] will eliminate both,
and you have

1 6u° us
— _dx=| =2 _du=6 d
f\/}—e/} * fu?’—u2 “ fu—l “

o

:2u3+4u2+6u+6ln|u—1|+C

=2VXx+4Vx+6Vx+6In|Vx-1|+C

wWru+l+ du

u-—1

2
16 + x5

Example 1.4. Find f dx.
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Solution 1.4. Because the denominator can be written in the form 16 + x% =
42 1 (x3)% you can try the substitution u = x3. Then du = 3x2dx and you have

2 2
b 1 3x 1 1
[P .
16+x 3 42 + (x3) 3J 4°+u

3

1 qu 1 1 X
=—tan —+C=—tan —+C
12 4 12 4
3e*+5
Example 1.5. Evaluate
2eX+7

Solution 1.5. One of the methods to solve this integral is by writing the inte-
gral as the sum of two integrals as in Example 1.2. To do this, we find constants
a and S such that

3ex+5:a[2ex+7)+,6%(29x+7):2(a+,6)ex+7a

Comparing the coefficients in both sides of the above equation yields to solve

5 11
the two equations 2(a + ) = 3 and 7a = 5 which gives us a = - and f = —

14
So,

3e*+5 5 2657 11 2e*
dx=2 | = Ldx+—
2e*+7 7J) 257 14 ) 2e*+7
5 11

=-x+—In(2e*+7)+C
7 14
Surprisingly, two of the most commonly overlooked integration rules are

the Log Rule and the Power (Substitution) Rule. Notice in the next two exam-
ples how these two integration rules can be disguised.

1
1+e*

dx.

Example 1.6. Find f

Solution 1.6. The integral does not appear to fit any of the basic rules. How-
ever, multiply both the numerator and the denominator by e~ and then the
quotient form suggests the Log Rule as follows.

1 1 e ¥ —e
f dx:f dex:—f — =ln(e™*+1)+C
1+e* l+e* e* e *+1

Example 1.7. Evaluate f (cotx) [In(sinx)] dx.
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Solution 1.7. Again, the integral does not appear to fit any of the basic rules.
However, considering the two primary choices for u [u = cotx and u = In(sin x)]
you can see that the second choice is the appropriate one because

COS X

du= dx=cotxdx

sin x
50 1 1
f(cotx) [In (sin x)] dx:fudu: 5u2+C: E[ln(sinx)]2+C

Trigonometric identities can often be used to fit integrals to one of the ba-
sic integration rules.

Example 1.8. Find f tan®(2x) dx.

Solution 1.8. Note that tan? ¢ is not in the list of basic integration rules. How-
ever, sec? ¢ is in the list. This suggests the trigonometric identity tan® ¢ = sec? t—
1.

ftan2(2x) dx = f [sec2(2x) -1] dx= %tan(Zx) -x+C

Completing the square helps when quadratic functions are involved in the
integrand. For example, the quadratic ax® + bx + ¢ can be written as the dif-
ference of two squares by adding and subtracting (b/2)?. If the leading coeffi-
cientis not 1, it helps to factor before completing the square.

Example 1.9. Find f —dx.
—4x+7

Solution 1.9. You can write the denominator as the sum of two squares, as
follows.
2 (2 _ 2
X —4x+7=(x"-4x+4)-4+7=(x-2)"+3

Now, in this completed square form, we have

f “axr7 f(x s = pEn e
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Exercise 1.1. Evaluate each of the following integrals.

1

1
. f—(Sx—3)4 dx.

1
2. f—dx. Hint: Let u=1-2/x

VE(-2/3)

1 2
3. f n(r) dx. Hint: Let u =In(x*) = 2Inx

1SN

X

dx. Hint: Complete the square of 10x — x?

6
.f\/IOx—xz
.f\/ex—ldx.Hint:LetuZ:ex—l

6 2x+5
6. f dx
0 2x+4

o]

©

10

11

12.

e—1 x—1
x'+e
) f—dx
x€+e*

e -1
' fezx+1'
1 ) x—lO
. fm dx. Hint: Mlﬂtlply by ﬁ
1 Vi+1+yx
. | ———— dx. Hint: Multiply by ——
f\/x+ —Vx Py y\/x+1+\/§
X 2
f — | dx. Hint: Note that x2 = [(x—1) + 1]2
(x—1)2+1

f‘l vIn(9 - x)
2 vVIn9-x) +vIn(x+3)
Hint: As x goes from 2 to 4, 9 — x and x + 3 go from 7 to 5, and from

5 to 7, respectively. This symmetry suggests the substitution x =6 -y
reversing the interval [2,4].
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1.2 Integration by Parts

In this section you will study an important integration technique called inte-
gration by parts. This technique can be applied to a wide variety of functions
and is particularly useful for integrands involving products of algebraic and
transcendental functions. For instance, integration by parts works well with
integrals such as

fx"lnxdx, fx"sin_lxdx, fx”e“xdx, and fe‘”sin(bx) dx

Integration by parts is based on the formula for the derivative of a product of
two functions f(x) and g(x).

Theorem 1.2.1. Ifu and v are functions of x and have continuous derivatives,

then
fudv:uv—fvdu.

This formula expresses the original integral in terms of another integral.
Depending on the choices of u and v it may be easier to evaluate the sec-
ond integral than the original one. However, some authors suggest a way for
selecting the first and second function. If we denote Logarithmic, Inverse
trigonometric, Algebraic, Trigonometric, and Exponential functions by their
first alphabet respectively, then the first function u is selected according to the
letters of the group LIATE.

Example 1.10. Evaluate f xe*dx.
Solution 1.10. The LIATE suggests u = x as the first option and dv = e*dx.

So,
u=x—du=dx and dv=e*dx—v=¢e"

Now, integration by parts produces

fxexdx:xex—fexdx:xex—ex+c

Example 1.11. Findelen\/de.
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Solution 1.11. First notice that
foZInﬁdx:fozln(x%) dx:flenxdx

In this case, we let
1 5 x3
uzlnx—»du:;dx and dv=x dx—»vzg

Integration by parts produces

fozln\/}dx:flenxdx

Lo (2]}

1 1 1 1
:—xglnx——fxzdx:—xglnx——x3+C
3 3 3 9

1

Example 1.12. Evaluate f sin"! xdx.
0

Solution 1.12. Let u =sin"'x — du = dxand dv=dx — v = x. Inte-

1-—x?
gration by parts now produces

. . X
fsm ' xdx = xsin lx—f dx

V1-—x2
=xsin"'x+ L 2x dx
2J V1-x2

=xsin"'x+V1-x2+C

Using this anti-derivative, you can evaluate the definite integral as follows.
1 -
f sin"'xdx= [xsin_1x+ V1 —xz]o =5" 1
0

Some integrals require starting by substitution method then integrate by
parts, may repeatedly.

1
Example 1.13. Find / 3 sin Vxdx.
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Solution 1.13. First we use the substitution x = y® — dx = 3y?dy to solve this
integral, and we obtain

1
fgsinf/}dx:fyzsinydy

Let u=y*>—du=2ydyand dv =sinydy — v = —cos y. Integration by parts
now produces

fyzsinydy:—yzcosy+f2ycosydy

This first use of integration by parts has succeeded in simplifying the original
integral, but the integral on the right still doesn’t fit a basic integration rule. To
evaluate that integral, you can apply integration by parts again. This time, let
u=2y—du=2dyanddv =cosydy — v =siny. Now, integration by parts
produces

f2ycosydy:2ysiny—f25inydy:2ysiny+2cosy+C
Combining these two results, you can write
f%sinf’/}dx:fyzsinydy
=—y*cosy+2ysiny+2cosy+C
:—Wcosf/}+2\3/§sin\3/}+2ms\3/}+C

The following example will require a technique that deserves special at-
tention.

Example 1.14. Evaluate f e*cosxdx.
Solution 1.14. Let u =cosx — du = —sinxdx and dv = e*dx — v = e*. Thus,

fexcosxdx:excosx+fexsinxdx

Since the integral f e* sin x d x is similar in form to the original integral f e*cosxdx

, it seems that nothing has been accomplished. However, let us integrate this
new integral by parts. We let u = sinx — du = cosxdx and dv = e*dx — v =
e*. Thus,

fexsinxdx:exsinx—fexcosxdx
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Combining these two results, you can write
fexcosxdx =e’cosx+ exsinx—fexcosxdx
which is an equation we can solve for the unknown integral. We obtain
2[ e*cosxdx=e*cosx+e sinx

and hence

1 1 .
fexcosxdx: Eexcosx+ Eexsmx+C

Example 1.15. Find f sec xdx.

Solution 1.15. The most complicated portion of the integrand that can be
easily integrated is sec® x so you should let u = sec x — du = sec xtan xd x and
dv = sec? xdx — v = tan x. Integration by parts produces

fsechdx:secxtanx—fsecxtanzxdx
:secxtanx—fsecx(seczx—l) dx
:secxtanx—fsechdx+fsecxdx

Zfsechdx:secxtanx+fsecxdx

Zfsechdx:secxtanx+lnlsecx+tanx|+C

1 1
fsechdx = Esecxtanx+ Elnlsecx+tanx| +C

In each of the following problems, the integration by parts is a bit more
challenging.

Example 1.16. Evaluate f (sin_lx)2 dx.
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Solution 1.16. Let @ =sin~! x. So, x = sinf and dx = cos6 df. Thus,
f (sin™* x)2 dx = sz cosfdh (et u=06%and dv = cos6 do)
=6?sin0 —f26 sinfdf (letu=260anddv =sinfdb)

= 6?sin0 + 20 cosO —chose do

=6?sin0 + 20 cosO — 2sinf + C

:x(sin_lx)2+2 1-x2sin"'x—2x+C
X
0
1—x2
Zex
Example 1.17. Evaluate f dx.
(x+2)2
Solution 1.17. let u = x?¢* and dv = dx
(x+2)2
x%e* x%e* (x+2)xe*
f dx=- +f dx
(x+2)2 x+2 x+7
2 X
x“e
=— +fxexdx
xX+2
2 X
x“e
=— +xe*—e*+C
xX+2

Exercise 1.2. Evaluate each of the following integrals.

1. f (x*—x+1)e*dx. Hint: by parts, let u= x> —x+1
2. fx\/x —5dx. Hint: by substitution, let y=x-5

/8
3. f xsec® xdx. Hint: by parts, let u = x
0
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4. f cos(Inx) dx. Hint: Start by substituting y =Inx

5. fxex sinxdx. Hint: by parts, let u = x

6. fln (x+ Vx?+ 1) dx. Hint: by parts, let u =In (x+ Vx2+ 1)

1-sinx

X
7. dx. Hint: Multiply b
[1+sinx + B WHply yl—sinx

8. flnx—zl dx.
(Inx)

fx(l +Inx)? dx. Hint: by parts, let u = (1 +In x)?

©

10. f(anx) (Inx) dx. Hint: In(ab) =lna+Inb
1
11. fln(i) dx. Hint: ln(%) =lna-Inb
x-—1
12. [\/}tan_l\/}dx.

1.3 Trigonometric Integrals

In this section you will study techniques for evaluating integrals of the form
f sin”xcos" xdx  and f sec tan” dx

where either m or n is a positive integer. To find anti-derivatives for these
forms, try to break them into combinations of trigonometric integrals to which
you can apply the Power Rule. To break up [sin™ xcos” xdx into forms to
which you can apply the Power Rule, use the following identities.

sin®0 + cos®0 =1
1 —cos(260)

2
20 _ 1+ cos(20)

2

sin®0 =

Cos
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Algorithm 1.1. Guidelines for Evaluating Integrals Involving Powers of Sine
and Cosine

1. If the power of the sine is odd and positive, save one sine factor and
convert the remaining factors to cosines. Then, expand and integrate.

Convert to cos
0odd
A Save for du

~ ——
. . k -
fstk+ 'xcos" xdx = f (sin®x)" cos”x sinxdx

k :
=f(1—coszx) cos” xsinxdx

2. If the power of the cosine is odd and positive, save one cosine factor and
convert the remaining factors to sines. Then, expand and integrate.

Convert to sin
0dd Save for du

~
. . Kk —
fsmmxcos%“xdx:fsmmx (cos®x)" cosxdx
. . k
= fsmmx(l —sin®x)" cosxdx
3. If the powers of both the sine and cosine are even and non-negative,
make repeated use of the identities

. 2 1—cos(2x) 2 1+cos(2x)
sin"x = ———— and cos"x=——"——

to convert the integrand to odd powers of the cosine. Then proceed as
in guideline 2.

Example 1.18. Evaluate f sin® xcos* xdx.

Solution 1.18. Because you expect to use the Power Rule with u = cos x, save
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one sine factor to form du and convert the remaining sine factors to cosines.

fsin3xcos4xdx:fsinzxcos4xsinxdx
:f(l—coszx)cos4xsinxdx
:f(cos4x—c056x)sinxdx Let u=cosx
:f( ®—u')du
:;J—éf+C

1 7 1 5
=-cos'x——-cos’x+C
7 5

In the next example the power of the cosine is 3, but the power of the sine
o1
is —5.

2

/2 COSS X

Example 1.19. Find dx.

/6 Vsinx

Solution 1.19. Because you expect to use the Power Rule with u = sin x, save
one cosine factor to form du and convert the remaining cosine factors to
sines.

f’”z cos® x /2 cos? xcos X
x= T dx
/6 Vsinx 76 vsinx

dx Letu=sinx

_f”’z (1—sin®x) cos x
~Jare Vsinx
1
:f u_%(l—uz) du
1

/2
' 32-19v2
1/2 20

Example 1.20. Evaluate f cos® xdx.
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Solution 1.20. Because m and n are both even and non-negative (m = 0) you
1+cos(2x) 2
== .

can replace cos® x by

fcos4xdx:f —1+C(;s(2x)

cos(2x) N cos? (2x)
2 4

cos(2x) N 1+ cos(4x)
2 8

3
= —f dx+1fcos(2x) dx+1fcos(4x) dx
8 2 8

2
dx

dx

+

+ dx

1
2
1
4

3 1
=—-x+-sin(2x) + —sin(4x) + C
8 4 32

Theorem 1.3.1. WALLIS’S FORMULAS

1. Ifnisodd (n=3), then

[ s (25

2. Ifniseven (n=2), then

[ nsae R (20

These formulas are also valid if cos™ x is replaced by sin” x.

/2

Example 1.21. Evaluate f (8cos® x —3sin’ x) dx.
0

Solution 1.21. By using Wallis’s Formulas, we have

/2

7l2 /2
f (8cos* x —3sin’ x) dx:8f cos4xdx—3f sin® xdx
0

SCEREE
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The following guidelines can help you evaluate integrals of the form | sec™ xtan” x d x.

Algorithm 1.2. Guidelines for Evaluating Integrals Involving Powers of Se-
cant and Tangant

1. If the power of the secant is even and positive, save a secant-squared
factor and convert the remaining factors to tangents. Then expand and
integrate.

Even Convert to tan Save for du

2k 2 k-1 2
fsec xtan”xdx:f (sec”x)” ~ tan" xsec” xdx

k-1
:f(l +tan2x) tan” xsec® xdx

2. If the power of the tangent is odd and positive, save a secant-tangent
factor and convert the remaining factors to secants. Then expand and
integrate.

Convert to sec
0dd Save for du
—— — |

fsecmxtan%“xdx:fsecm Ty (tanzx) secxtanxdx

_ k
:fsecm 1x(sec‘zx—l) secxtanxdx

3. If there are no secant factors and the power of the tangent is even and
positive, convert a tangent-squared factor to a secant-squared factor,
then expand and repeat if necessary.

Convert to sec

——N—
ftan”xdx:ftan"_zx (tan®x) dx
= ftan”_2 x(sec*x—1) dx
4. If the integral is of the form [sec” xdx where m is odd and positive,

use integration by parts, as illustrated in Example 1.15 in the preceding
section.

5. If none of the above applies, try converting to sines and cosines.
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ndx

ta
Example 1.22. Evaluate f dax.

Secx

Solution 1.22. Because you expect to use the Power Rule with u = sec x, save
a factor of sec xtan x to form du and convert the remaining tangent factors to
secants.

tan® x

VvV SeCx

1
dx:f(secx)_ftansxdx
3
:f(secx)_ftanzxsecxtanxdx

3
:f(secx)_f(seczx—l)secxtanxdx Let u =secx

:fu_%(uz—l)du:f(u%—u_%) du

2 3 _1
:§u2+2u 2+C

2 3 _1
:§se02 x+2sec 2x+C

Example 1.23. Find f sec*(3x)tan®(3x) d.x.
Solution 1.23. Let u = tan(3x) then du = 3sec?(3x)dx and you can write

fsec4(3x) tan®(3x) dx:fsecz(Sx) tan®(3x) sec®(3x) dx

:f(1+tan2(3x))tan3(3x)secz(?)x) dx
1

1
:5f(1+u2)u3du:§f(u3+u5)du
1 1
=—u'+—u’+C
12 18

1 4 1 6
= —tan“(3x) + —tan’(3x) +C
12 18

/4

Example 1.24. Evaluate f tan* x dx.
0
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Solution 1.24. Because there are no secant factors, you can begin by convert-
ing a tangent-squared factor to a secant-squared factor.

ftan4xdx:ftanzxtanzxdx:ftanzx(seczx—1) dx
:ftanzxseczxdx—ftanzxdx
:ftanzxseczxdx—f(seczx—1) dx

1 3
:gtan x—tanx+x+C

You can evaluate the definite integral as follows.

/4
/ tan* xdx =
0

For integrals involving powers of cotangents and cosecants, you can fol-
low a strategy similar to that used for powers of tangents and secants. Also,
when integrating trigonometric functions, remember that it sometimes helps
to convert the entire integrand to powers of sines and cosines.

1 3
gtan X—tanx+x

o 4 3

secx
dx.

Example 1.25. Find f 5
tan- x

Solution 1.25. Because the guidelines do not apply, try converting the inte-
grand to sines and cosines. In this case, you are able to integrate the resulting
powers of sine and cosine as follows.

secx 1 cos? x
[ e[ (aoe (o)
tan? x cosx )/ \ sin x

COSX .
:f dx Letu=sinx— du=cosxdx

2

sin” x
1 1
:f—zdu:——+C
u u
1
=———+C=-cscx+C
sinx

Integrals involving the products of sines and cosines of two different an-
gles occur in many applications. In such instances you can use the following
product-to-sum identities.
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sin(mx) sin(nx) = % {cos[(m—n)x] —cos[(m+ n)x]}
sin(mx) cos(nx) = %{sin [(m—n)x] +sin[(m + n)x]}

cos(mx)cos(nx) = % {cos[(m—n)x]+cos[(m+ n)x]}

Example 1.26. Find f sin(5x) cos(4x) dx.

Solution 1.26. Considering the second product-to-sum identity above, you
can write

fsin(Sx) cos(4x)dx = %f(sinx+sin(9x)) dx

1 1
=——cosx——cos(9x)+C
2 18

Exercise 1.3. Evaluate the following integrals.
1. f sin® xdx

2. fsin5 xcosxdx

ol

fsinxtan2 xdx

=~

fxsinzxdx
5. f(tan4x—sec4x) dx
2
fcos( X) dx
CcoS X

/2 12
f sin“xdx
0

&

N

®

fsin(—4x) sin(3x) dx
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1.4 Trigonometric Substitutions

Now that you can evaluate integrals involving powers of trigonometric func-
tions, you can use trigonometric substitution to evaluate integrals involving
the radicals Va? — x2, vV a? + x* and v x2 — a?. The objective with trigonomet-
ric substitution is to eliminate the radical in the integrand. You do this by
using the Pythagorean identities

cos’0 =1-sin’0, sec’0=1+tan’0, tan’0=sec’0—1
Note 1.1. TRIGONOMETRIC SUBSTITUTION

1. For integrals involving v a? — x?, let x = asinf. Then

VvV a?—x2=acosO where —n/2<0<m/2

a2 — x2

2. For integrals involving v a2 + x2, let x = atanf. Then

VvV a?+ x?2 = asecO where —m/2<0 <m/2

3. For integrals involving v x2 — a?, let x = asec6. Then

22— atanf if x>a where 0=<0<m/2
" | —atan® if x<-a where m/2<0<nm
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x2 — g2

The restrictions on 0 ensure that the function that defines the substitution
is one-to-one. In fact, these are the same intervals over which the arcsine,
arctangent, and arcsecant are defined.

1
Example 1.27. Find f z—dx.
X

9 — x2

Solution 1.27. First, note that none of the basic integration rules applies. To
use trigonometric substitution, you should observe that v'9 — x? is of the form
v a? — x2. So, you can use the substitution x = asinf = 3sinf. Using differen-
tiation and the triangle shown below, you obtain

dx=3cos0dl, V9-x2=3cosh, x*>=09sin’0

So, trigonometric substitution yields

f 1 dx—f 3cosf 40
2vV9—x2  J (9sin? 6) (3cosh)

1 1 1 1
=—| — d@z—fcsczedez——cot9+c
9J sin%6 9 9
9 — x2
=- +C
9x
X
0
9 — x2

1
Example 1.28. Find f ———dx.
Vax?+1
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1
Solution 1.28. Let2x = tanf then dx = 2 sec’0dx and V4x2 + 1 = sec@. Trigono-
metric substitution produces

1 1 [ sec?6 1
——dx=- do = — 0do
f\/m o Zfsecﬁ 2[3“

1
= Elnlsec9+tan9| +C

1
:Eln‘\/4x2+1+2x)+C

1+4 2x

1
Example 1.29. Evaluate f —5 dx.
(x2+1)

3
Solution 1.29. Begin by writing (x+1)*'* as (\/ X%+ 1) . Then, let x = tan6.

Using dx = sec?0d6 and v x2 + 1 = secf you can apply trigonometric substi-
tution, as follows.

2
‘[;wdx:‘[;gdx:fsecsedﬁ
(32 +1) (v ) e

:deezfcosedezsinmc
secO

X
= +C

x2+1

2+ X

0

For definite integrals, it is often convenient to determine the integration
limits for 0 that avoid converting back to x.
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2 x2 -3
dx.

Example 1.30. Evaluate f
N

Solution 1.30. Because vV x? — 3 has the form v x? — a?, you can consider x =
v3secH. Then dx = v3secOtanfdO and vx2—-3 = v/3tanf. To determine
the upper and lower limits of integration, use the substitution x = v/3sec@ as
follows.

when x=v3 —sec/=1—-60=0

2 /4
when x=2 —-secO=— —0=—
3 6

So, you have

fz Vx?-3 4 f’”ﬁ (V3tan6) (v3sechtanb) 10
X =
V3 X 0 V3sech

/6
= f V3tan?0 do
0
/6
=\/§f (sec?0-1) do
0

Zﬁ[tanﬁ—e]g/ﬁzl—%

Exercise 1.4. Evaluate the following integrals.

1. fx\/1+x2dx

1
s [
V49 — x2

) f(x+ DV x2+2x+2dx

3/5

) V9-25x2dx
0

w

I

1
5. ——dx
f4+4x2+x4

=2}
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7. f\/l—ezxdx
8. fcosx\/4sin2x+9dx

-1 -1
9. f\/%dx. Hint: Multiplyby\/%

1.5 Partial Fractions

This section examines a procedure for decomposing a rational function into
simpler rational functions to which you can apply the basic integration for-
mulas. This procedure is called the method of partial fractions. Its use de-
pends on the ability to factor the denominator, and to find the partial frac-
tions.

Recall from algebra that every polynomial with real coefficients can be fac-
tored into linear and irreducible quadratic factors. For instance, the polyno-
mial x° + x* — x — 1 can be written as

C+xt-x-1=x-1Dx+D*(x*+1)

where (x — 1) is a linear factor, (x + 1)2is a repeated linear factor, and (x2 + 1)
is an irreducible quadratic factor. Using this factorization, you can write the
partial fraction decomposition of the rational expression as follows
P(x) A B C Dx+E
= + + +
X4+xt-x-1 x-1 x+1 (x+1)2 x2+41

where P(x) is a polynomial of degree less than 5, and A, B,C, D, E are con-
stants.

N
Note 1.2. Decomposition of % Into Partial Fractions
X

1. Divide if improper: If N(x)/D(x) is an improper fraction (that is, if the
degree of the numerator is greater than or equal to the degree of the
denominator), divide the denominator into the numerator to obtain

N _ (a polynomial) + N (9
D) POV D(x)
where the degree of N*(x) is less than the degree of D(x). Then apply
N*(x)

Steps 2, 3, and 4 to the proper rational expression D
X
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2. Factor denominator: Completely factor the denominator into factors of
the form (ax+ )™ and (ax? + bx + )" where ax? + bx + c is irreducible.

3. Linear factors: For each factor of the form (ax+ )" the partial fraction
decomposition must include the following sum of m fractions.
A1 A2 Am
+ e
(@ax+pP)  (ax+p)? (ax+p)m

4. Quadratic factors: For each factor of the form (ax® + bx + ¢) " the partial
fraction decomposition must include the following sum of 7 fractions.

Bix+(C; Byx+Cy B,x+C,
+ +--- 4+

(ax?+bx+c)  (ax?+bx+c) (ax2+bx+c)"
) 1
Example 1.31. Flndfz—dx.
Xx“—5x+6

Solution 1.31. Because x*—5x+6 = (x—3)(x—2) you should include one par-
tial fraction for each factor and write

1 A B
= +
x2-5x+6 x-3 x-2

where A and B are to be determined. Multiplying this equation by the least
common denominator (x — 3)(x — 2) yields the basic equation

1=A(x-2)+B(x-3)

Because this equation is to be true for all x, you can substitute any convenient
values for x to obtain equations in A and B. The most convenient values are
the ones that make particular factors equal to 0. To solve for A, let x = 3 to
obtain A = 1. To solve for B, let x = 2 to obtain B = —1. So,

1
[ o]
x“—5x+6

=ln|x-3|-In|x-2|+C=1In

1 1

x-3 x-2

dx

+C

X —

5x2+20x+6

Example 1.32. Evaluate f ——
X3+2x%+x
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Solution 1.32. Because x> +2x?+x = x(x+1)? you should include one fraction
for each power of x and x + 1 and write

5x*+20x+6 A B C

=—+ +
xX34+2x2+x  x (x+1) (x+12

Multiplying by the least common denominator x(x+1)? yields the basic equa-
tion
5x°+20x+6=A(x+1)*+Bx(x+1) + Cx

To solve for A let x = 0. This eliminates the B and C terms and yields A = 6.
To solve for C let x = —1. This eliminates the A and B terms and yields C = 9.
The most convenient choices for x have been used, so to find the value of B,
you can use any other value of x along with the calculated values of A and C.
Using x =1, A=6, and C =9 produces B = —1. So, it follows that

f5x2+20x+6 f6 1 9 ]
———dx= - — +
x34+2x24+x x (x+1) (x+1)2
(x+1)71
:61n|x|—1n|x+1|+9—1+C
6
X
=In -—+C
x+1 x+1

When using the method of partial fractions with linear factors, a conve-
nient choice of x immediately yields a value for one of the coefficients. With
quadratic factors, a system of linear equations usually has to be solved, re-
gardless of the choice of x.

2x3—4x-8

E le 1.33. Find dx.
ample n f(xz—x)(x2+4) *

Solution 1.33. Because (x* — x) (x* +4) = x (x — 1) (x* + 4) you should include
one partial fraction for each factor and write

2x3-4x-8 A B Cx+D

(x% - x) (x? +4) Y x-1 x2+4

Multiplying by the least common denominator x (x — 1) (x* + 4) yields the ba-
sic equation

2x° —4x—-8=A(x—1) (x* +4) + Bx(x* +4) + (Cx + D)x(x - 1)
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To solve for A, let x = 0 and obtain A = 2. To solve for B, let x = 1 and obtain
B = —-2. At this point, C and D are yet to be determined. You can find these
remaining constants by choosing two other values for x and solving the re-
sulting system of linear equations. If x = —1, then, using A =2 and B = -2 you
can obtain —C+ D = 2. If x =2, you have 2C + D = 8. Solving these two linear
equations yields C = 2 and consequently D = 4. It follows that

/ (fig;g?f@ ax=|

=2In|x|-2In|x-1| +ln(x2+4) +2tan”! (g) +C

2 2 2x 4
- — + +
x x—-1 x2+4 x2+4

dx

An improper rational function can be integrated by performing a long di-
vision and expressing the function as the quotient plus the remainder over the
divisor. The remainder over the divisor will be a proper rational function.

3, .2
xX’+x-1
Example 1.34. Find f ———dx.
xc+1
Solution 1.34. The integrand is an improper rational function since the nu-
merator has degree 3 and the denominator has degree 2. Thus, we first per-
form the long division.

x+1

¥*+1) P+x* -1
—x3 —x

x*—-x-1

-x2 -1

-x—2

It follows that the integrand can be expressed as

X+x-1 X+2
x2+1 x2+1
and hence
3, .2
x>+x°-1 xX+2
f—dx:f x+1-— dx
x2+1 x2+1

1 2 1
:fxdx+f1dx——f—xdx—2f—dx
2J x2+1 x2+1
2

1 1
:Ex +x—51n(x2+1)—2tan_1x+C
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Some times it is not necessary to use the partial fractions technique on all
rational functions like in the previous example. Also, if the integrand is not
in reduced form, reducing it may eliminate the need for partial fractions, as
shown in the following example.

x?-x-2

Example 1.35. Evaluate f ——dx.
x3-2x-4

Solution 1.35.

fxz—x—zd _f (x+1)(x—2)
x3-2x—4 (x—2 (X2 +2x+2)

:lfﬂdleln(x2+2x+2)+c
2J (x®+2x+2) 2

Finally, partial fractions can be used with some quotients involving tran-
scendental functions.

. COS X
Example 1.36. Find f — dx.
sin x(sinx —1)

Solution 1.36. Let u =sinx — du = cosxdx. So,
CcCoS X 1
[ - —
sinx(sinx—1) u(u-—1)

[] -

=Inju-1|-Inju|+C=In

du < By Partial Fractions
u—-1 u

+C

sinx—1
=ln|———

- ‘+C:ln|1—cscx|+C
sinx

The previous example involves a rational expression of sinx and cosx.
If you are unable to find an appropriate method to solve an integral of this
forms, try using the following special substitution to convert the trigonomet-
ric expression to a standard rational expression.

Note 1.3. Substitution for Rational Functions of Sine and Cosine For inte-
grals involving rational functions of sine and cosine, the substitution

sin x X
U=—= tan(—)
1+cosx 2
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yields
1-u? 2u 2
cosx=——, sinx=——, and dx= du
14 u? 1+ u? 1+ u?
1
Example 1.37. Find f - dx.
1—-sinx+cosx

Solution 1.37. The integrand is a rational function of sin x and cos x that does
not match any appropriate we have learned before, so we make the substitu-
tion u = tan(x/2). Thus, from Note 1.3 we obtain

1 1 2
f - dx:f > 5> du
1-sinx+cosx -2 v l+u

2
S e

1
—fl—du— —In|1-u|+C=-In|1-tan(x/2)|+C

Exercise 1.5. Evaluate the following integrals.

3
x°—x+3

L[5,
xX24+x-2

dx

2x3 —4x*>-15x+5
f —-2x—8

2x—1

(x+1)3

sin x
.

dx. Hint: 2x—-1=2(x+1)-3.

sinx +tanx

\/_

o1

fﬁl+¢_ dx

CcCOoS X
7. dx
sin®x+3sinx+2

8.
f (e* + 1)3
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x5
O f D0 o

1 41_ 4
lo.fudx
0

1+ x2

1.6 Improper Integrals

b
The definition of a definite integral f f(x) dx requires that the interval [a, b]

be finite. Furthermore, the Fundameantal Theorem of Calculus, by which you
have been evaluating definite integrals, requires that f be continuous on [a, b].

In this section you will study a procedure for evaluating integrals that do
not satisfy these requirements, usually because either one or both of the limits
of integration are infinite, or f has a finite number of infinite discontinuities
in the interval [a, b]. Integrals that possess either property are improper inte-
grals.

Definition 1.6.1. A function f is said to have an infinite discontinuity at c if,
from the right or left,

}Cl_lgf(x) =00 or }Cl_lgf(x) = —00
Definition 1.6.2. Improper Integrals with Infinite Integration Limits

1. If f is continuous on the interval [a,c0), then

o0 b
f f)dx=1lim | f(x)dx
b—o0 a

a

2. If f is continuous on the interval (—oo, b], then
b _ b
f_wf(x)dx:alirpooﬁ fx)dx

3. If f is continuous on the interval (—oo,00), then

f fx) dx:f f(x) dx+f f(x)dx where c any real number.
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In the first two cases, the improper integral converges if the limit exists, other-
wise, the improper integral diverges. In the third case, the improper integral
on the left diverges if either of the improper integrals on the right diverges.

1]
Example 1.38. Evaluate f ;dx.
1

Solution 1.38.
® 1 . [P1 . b
f —dx = lim —dx= lim [Inx]; = lim (Inb-0) = o0
1 X b—ooJ1 X b—o0 b—o0

(e .9]

Example 1.39. Evaluate f e *dx.
0

Solution 1.39.

0o b b
f e *dx=lim | e *dx=lim [-e ], = lim (—e_b - 1) =1
0 b—o0 b—

b—o0Jo 0
o0
Example 1.40. Evaluate f > dx.
0o Xx-+1
Solution 1.40.
| b 1 T
f dx = lim dx = lim [tan_1 x]g = lim (tan_1 b-0)==
0o x2+1 b—oody X241 b—oo b—oo 2

o0
Example 1.41. Evaluate f (1-x)e “dx.
1

Solution 1.41. Use integration by parts, with u =1—-x and dv = e *dx.

f(l—x)e_xdx: —e_x(l—x)—fe_xdx
=—e " +xe "+ +C=xe""+C

Now, apply the definition of an improper integral.

[es) b
f (1-x)e *dx= limf (1-x)e “dx
1 1

b—o0

= lim [xe™¥]”
b—00

(_ b) 1 1
=|lim —|-—-=—-
b—oo e e e
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(o¢] ex
Example 1.42. Evaluate f ———dx.
oo 1+ 2%
Solution 1.42. Note that the integrand is continuous on (—co,0). To evaluate
the integral, you can break it into two parts, choosing ¢ = 0 as a convenient
value, and using the substitution u = e”*.

(o) eX 0 e* (o) eX
f —de:f —de+f > dx
—co 1 +e°% —co 1 +e~* o l+e*

= lim [tan_l(ex)]g+l}im [tan”! (ex)]g
—00

b——o0

= lim [%—tan_1 (eb)] + lim [tan_l(eb)—%]z

b——o0 b—oo
b/ T T
=Z_0+2-Z
4 2 4
_ /4
S 2

The second basic type of improper integral is one that has an infinite dis-
continuity at or between the limits of integration.

Definition 1.6.3. Improper Integrals with Infinite Discontinuities

1. If f is continuous on the interval [a, b), and has an infinite discontinuity
at b, then

b c
f fx)dx = lim f fx)dx
a c—=b~Ja

2. If f is continuous on the interval (a, b], and has an infinite discontinuity
at a, then

b b
f fx)dx = lim+f fx)dx

3. If f is continuous on the interval [a, b], except for some ¢ € (a, b) at
which f has an infinite discontinuity, then

b c b
f f(x)dx:f f(x)dx+f fx)dx
a a Cc

In the first two cases, the improper integral converges if the limit exists, other-
wise, the improper integral diverges. In the third case, the improper integral
on the left diverges if either of the improper integrals on the right diverges.
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1

1
Example 1.43. Evaluate f —dx.
P 0 vVx

Solution 1.43. The integrand has an infinite discontinuity at x = 0. You can
evaluate this integral as shown below.

1 1 1 1 x2/3 1 3 3 3
—dx=1i —dx=1i — | =lim = |1-VDb?|=-
ﬁ X 1m X 1im [Z/S]b m 2[ ] 5

vx b—0+Jp /x b—0* b—0*
21
Example 1.44. Evaluate f —dx.
0 X

Solution 1.44. Because the integrand has an infinite discontinuity at x = 0,
you can write

21 21
f —3dx:lim —3dx:lim 5
0 2x

2
= lim
X b—0tJp x b—0* p b—0"| 8 2b?

2

1
Example 1.45. Evaluate f de.
-1

Solution 1.45. This integral is improper because the integrand has an infinite
discontinuity at the interior point x = 0. So, you can write

21 01 21
f —dx:f —dx+f —dx
_1x3 _1x3 0 )C3

From Example 1.44 you know that the second integral diverges. So, the origi-
nal improper integral also diverges.

The integral in the next example is improper for two reasons. One limit of
integration is infinite, and the integrand has an infinite discontinuity at the
outer limit of integration.

Example 1.46. Evaluate

oo 1
—dx.
fo Vx(x+1) o
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Solution 1.46. To evaluate this integral, split it at a convenient point (say, x =
1) and write

[es) 1 1 1 00 1
———dx=| ——d —d
fo Vx(x+1) x fo\/}(xﬂ) x+f1 Vx(x+1) o

1 1 ¢ 1
= 1 —  dx+li - d
bgng Vi +1) x+cgglof1 Vi)
= blirg)r [2tan™! V/x] ; + Chlg [2tan™! \/}]f
V4 T VA
=2(;)-0+2(3)-2(3)
=7

This section concludes with a useful theorem describing the convergence
or divergence of a common type of improper integral.

Theorem 1.6.1. A Special Type of Improper Integral

1
1 — ] 1
[“Laee| 55 70>
1 diverges if p<1

Exercise 1.6. Evaluate the following integrals.

/4 1 1 1 ) 1
(l)f cscxdx (Z)f dx (3)f xlnxdx (4)[ —dx
0 0 3x-5 0 5 xVx2-25

1.7 Strategy for Integration

As we have seen, integration is more challenging than differentiation. In find-
ing the derivative of a function it is obvious which differentiation formula we
should apply. But it may not be obvious which technique we should use to
integrate a given function.

Until now individual techniques have been applied in each section. For
instance, we usually used substitution, integration by parts, and partial frac-
tions. But in this section we present a collection of miscellaneous integrals in
random order and the main challenge is to recognize which technique or for-
mula to use. No hard and fast rules can be given as to which method applies
in a given situation, but we give some advice on strategy that you may find
useful.
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A prerequisite for applying a strategy is a knowledge of the basic integra-
tion formulas. In the following table we have collected the integrals from our
previous list together with several additional formulas that we have learned in
this chapter. Most of them should be memorized. It is useful to know them
all, but the ones marked with an asterisk need not be memorized since they
are easily derived. Formula 19 can be avoided by using partial fractions, and
trigonometric substitutions can be used in place of Formula 20.

Table of Integration Formulas Constants of integration have been omitted.

= 1+1 -1
1. ‘ x"dx = (n#—1) 2 ' —dx=In| x|
J n+ Jox
. ] N a*
3 ‘ e‘dx = e* 4. ' a‘dx =
J J Ina
5. ‘ sin xdx = —cos x 6. ‘ cos x dx = sin x
1. ‘ sec’x dx = tan x 8. ‘ cscixdx = —cot x
9, ‘ sec X tan x dx = sec x 10. ‘ csc x cot x dx = —csc x

-
=y
-
N

: ‘secxdlen\secx+tanx ‘cscxdlen\cscxfcotx

-
w
-
-

. “tanXdX:ln|seCX| . ‘.COTXdX:]n‘SiI]X‘

-
-

5. ‘ sinh x dx = cosh x 6. ' cosh x dx = sinh x

17 “L:ltan’l = 18 "L:sin‘1 = a>0
") xP+ a8t a a ") Jat - &2 all ©

“ dX _ ]. T
¥ —a 2a

X 'd

*19.
Xecha

N dx
*20. J ﬁ:h]‘){+ «/XZiazl

Once you are armed with these basic integration formulas, if you don’t im-
mediately see how to attack a given integral, you might try the following four-
step strategy.

1. Simplify the Integrand if Possible. Sometimes the use of algebraic ma-
nipulation or trigonometric identities will simplify the integrand and
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make the method of integration obvious. For example,

f\/}(n\/}) dxzf(ﬁﬂc) dx
and‘[(sinx+cosx)2 dx:f(sin2x+2cosxsinx+coszx) dx

:f[1+sin(2x)] dx

2. Look for an Obvious Substitution. Try to find some function u = g(x)
in the integrand whose differential du = g’(x)d x also occurs, apart from
a constant factor. For instance, in the integral

X
fxz—ldx

we notice that if u = x2 — 1, then du = 2xdx. Therefore we use the sub-
stitution u = x? — 1 instead of the method of partial fractions.

3. Classify the Integrand According to Its Form. If Steps 1 and 2 have not
led to the solution, then we take a look at the form of the integrand f(x).

a) Trigonometric functions. If is a product of powers of sinx and
cos x, of tan x and sec x, or of cotx and csc x, then we use the sub-
stitutions recommended in Section 1.3.

b) Rational functions. If f is a rational function, we use the proce-
dure of Section 1.5 involving partial fractions.

c) Integration by parts. If f(x) is a product of a power of x (or a poly-
nomial) and a transcendental function (such as a trigonometric,
exponential, or logarithmic function), then we try integration by
parts, choosing u and dv according to the advice given in Section
1.2.

d) Radicals. Particular kinds of substitutions are recommended when
certain radicals appear.

i. If V+x2+ a? occurs, we use a trigonometric substitution ac-
cording to the table in Section 1.4.

ii. If Vax+ b occurs, we use the rationalizing substitution u =
Vax + b. More generally, this sometimes works for {/g(x).
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4. TryAgain. If the first three steps have not produced the answer, remem-
ber that there are basically only two methods of integration: substitu-
tion and parts.

a) Try substitution. Even if no substitution is obvious (Step 2), some
inspiration or ingenuity (or even desperation) may suggest an ap-
propriate substitution.

b) Try parts. Although integration by parts is used most of the time
on products of the form described in Step 3(c), it is sometimes ef-
fective on single functions. Looking at Section 1.2, we see that it
works on sin~! x.

¢) Manipulate the integrand. Algebraic manipulations (perhaps ra-
tionalizing the denominator or using trigonometric identities) may
be useful in transforming the integral into an easier form. These
manipulations may be more substantial than in Step 1 and may
involve some ingenuity.

d) Relate the problem to previous problems. When you have built up
some experience in integration, you may be able to use a method
on a given integral that is similar to a method you have already
used on a previous integral. Or you may even be able to express
the given integral in terms of a previous one.

e) Use several methods. Sometimes two or three methods are re-
quired to evaluate an integral. The evaluation could involve several
successive substitutions of different types, or it might combine in-
tegration by parts with one or more substitutions.

Exercise 1.7. Evaluate the following integrals.

3
(n]1 dx Q%[@ﬁdx (mj)gx'”
X

3x2+10
1 1+x
(4)f dx (5)[\/—dx
xvVInx I-x

tan x




CHAPTER 2

Infinite Series

Infinite series are sums of infinitely many terms. One of our aims in this chap-
ter is to define exactly what is meant by an infinite sum. Their importance in
calculus stems from Newton’s idea of representing functions as sums of in-
finite series. For instance, in finding areas he often integrated a function by
first expressing it as a series and then integrating each term of the series. We
will pursue his idea in order to integrate such functions as e, recall that
we have previously been unable to do this. Many of the functions that arise
in mathematical physics and chemistry, such as Bessel functions, are defined
as sums of series, so it is important to be familiar with the basic concepts of
convergence of infinite sequences and series.

Physicists also use series in another way. In studying fields as diverse as
optics, special relativity, and electromagnetism, they analyze phenomena by
replacing a function with the first few terms in the series that represents it.

2.1 Sequences

In mathematics, the word sequence is used in much the same way as in or-
dinary English. To say that a collection of objects or events is in sequence
usually means that the collection is ordered so that it has an identified first
member, second member, third member, and so on.

Mathematically, a sequence is defined as a function whose domain is the
set of positive integers. Although a sequence is a function, it is common to
represent sequences by subscript notation rather than by the standard func-

41
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tion notation. For example,
al) az; a:‘}) Tty al’l)

The numbers ay, ay, as,--- are the terms of the sequence. The number a, is
the nth term of the sequence, and the entire sequence is denoted by {a,} or
{an})oflozl‘

Example 2.1. Listing the first few terms of the given sequences.

2
a) a, =3+ (=1)" b){znn_l}

Solution 2.1.

a) The terms of the sequence a,, =3+ (—1)" are

n=1 , n=2 , n=3 , n=4 |,
l l l l
2 » 4 » 2 ) 4 )
n2
b) The terms of the sequence {2" ] } are
n=1 , n=2 , n=3 , n=4 |,
l l l l
1 4 9 16
4 3 4 7 ’ 15

There are sequences that don’'t have a simple defining equation like the
one in the next example.

Example 2.2. Find the terms of the recursively defined Fibonacci sequence
fawhere fi=1, ob=1,and f, = fy-1 + fn-2 for n=3.

Solution 2.2. The terms of the sequence f;, are

1, 1, 2, 3, 5 8, 13,

Initial Terms
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Example 2.3. Find a formula for the general term a,, of the sequence

{3 4 5 6 7 }
5 25'125" 625'3125"

assuming that the pattern of the first few terms continues.

Solution 2.3. Notice that the numerators of these fractions start with 3 and
increase by 1 whenever we go to the next term. The second term has numer-
ator 4, the third term has numerator 5; in general, the nth term will have nu-
merator n+ 1. The denominators are the powers of 5, so a;, has denominator
5". The signs of the terms are alternately positive and negative, so we need to
multiply by a power of (—1)". Here we want to start with a positive term and
so we use (—1)""! or (=1)"*1. Therefore,

yn-1 n+2

Definition 2.1.1. Definition of the Limit of a Sequence
A sequence {a,} has the limit ¢ and we write hm a,=¢ora,— ¥fasn— ocoif

we can make the terms a,, as close to £ as we hke by taking 7 sufficiently large.
If nhm a, exists, we say the sequence converges (or is convergent). Otherwise,
—00

we say the sequence diverges (or is divergent).

Theorem 2.1.1. Let ¢ be a real number. Let f(x) be a function of a real vari-
able such that gim f(x)=¢. If{a,} is a sequence such that f(n) = a, for every
—00

positive integer n then r}im ap,="2¢.
—00
n
Example 2.4. Find the limit of the sequence whose nth termis a, = (1 + —) .
n

Bx
Solution 2.4. Previously, in Calculus 1, you learned that )}im (1 + ﬁ) = %P,
—00 X
So, you can apply Theorem 2.1.1 to conclude that

n
=e

lim a, = lim (1 +—
n—oo n—oo n

UJI[\J
|

l\JI*—‘

Example 2.5. Find the limit of the sequence 0,
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n—1 1
Solution 2.5. This is the sequence with general term a, = —— =1-—. Then
n n
1
by Theorem 2.1.1, lim [1-—|=1.
n—oo n

. n+lnn .
Example 2.6. Determine whether the sequence p converges or di-
verges.

. . n+lnn . .
Solution 2.6. Apply Theorem 2.1.1 directly on a, = . to obtain using
L'Hospital’s Rule

. n+lnn . 1+ %
lim — = lim =0 (Converges)
n—oo n n—oo 2n
2
n“(4n+1)(5n+3
Example 2.7. Determine whether the sequence { ( P )_:2 ) } converges
n
or diverges.
Solution 2.7. By Theorem 2.1.1, we obtain
. n*@n+06Gr+3) .. n*@n)(Gn)
lim = lim ————
n—oo 6n3+2 n—oo  6n3
_ 204 . 20m )
=lim —=1lim — =0 (Diverges)
n—oo @ %f n—oo 6

The following properties of limits of sequences parallel those given for lim-
its of functions of a real variable in Calculus I.

Theorem 2.1.2. Properties of Limits of Sequences
Let r}im a, = Aand nlim b, =B. Then
—00 —00

(1) nlirn la,+b,]=A+B 2) nlim [ca,]=cA
; _ . an| A .
(3 lim [a, by) = AB (4) lim b_] =3 ifby, B#0

n

2—-3e7 "

Example 2.8. Determine whether the sequence {—_
6+4e "

} converges or di-
verges.
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Solution 2.8. Observe that lim [2-3e7"] =2 and lim [6+4e7"] =6. Ac-
—00 —00

cording to Theorem 2.1.2, we have
(Converges)

. 2-3e™™ 2 1
Iim ———=—-=-
n—oo6+4e " 6 3

Theorem 2.1.3. Sequences of the Forms " and —.
1. Supposer is a nonzero constant. The sequence {r"} converges to0 if |r| <

1 and diverges if|r| > 1.
1 . .
2. The sequence — converges to 0 for r any positive rational number.

Example 2.9. Determine the convergence or divergence of the sequence with

the given nth term.

=) 0=

MW a,=e"

Solution 2.9. By Theorem 2.1.3,
n 1
) and |r| = — <1, then a, = e™" converges to 0.

1. sincea, =e "= (—
e

n
2. since |r| = = > 1, then the sequence a, = (—) diverges.
4 . . ..
= — converges to 0 since r = > is positive ra-

3. the sequence a, =
vn®  n

3
2

tional number.
Theorem 2.1.4. Squeeze Theorem for Sequences
If
lim a, =¢ = lim b,
n—oo n—oo
and there exists an integer N such that a, < ¢, < by, foralln = N, then

lim ¢, =¢
n—oo

n
Example 2.10. Show that the sequence { 5 } converges.
n
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Solution 2.10. We have,
1 - cosn - 1

n2~ n?2 " n?

1 1 cosn
Since both {——2} and {—2} tend to 0, then by Theorem 2.1.4, { 5 } con-
n n n
verges to 0.
271
Example 2.11. Determine whether the sequence { — } converges or diverges.
n!

. : ") _oo ,
Solution 2.11. Even though lim — | = — we can not use L'Hospital’s Rule
n—oo\n!) oo

since we have studied no function f(x) = x!. We can use Theorem 2.1.4 as
follows.

n factors of 2 n fractions
——NN— -~ o ~
<2”_ 2:2:2-:2:2:2 _2 2 2 2 2 2
“nl 1-2:3--(n-2)-(n-1)-n 123 n-2n-1n
nfa;;ms
22 22 2\"% 9 (2\"
<2.1.2.2...2. Z=-2(Z2 —
33 33 3 213

n—2 fractions

Since lim
n—oo

9(2\"

> (5) ] = 0byTheorem 2.1.3, then by Theorem 2.1.4 the sequence
2n

{—} converges to 0.
n!

Theorem 2.1.5. Absolute Value Theorem
For the sequence {a}, ifnlim |a,| =0 then r}im a, =0.
—00 —00

-1 n
Example 2.12. Determine whether the sequence {( ) } converges or di-
verges.
. . . |=D” .
Solution 2.12. Since lim = lim [—| = 0, then by Theorem 2.1.5,
n—oo| /n n—o0 n

(—1)"
vn

Example 2.13. Determine whether the sequence a;, = (—1)" converges or di-
verges.

the sequence { } converges to 0.
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Solution 2.13. If we write out the terms of the sequence, we obtain
{_1) 1)_1) 1)"'}

Since the terms oscillate between 1 and —1 infinitely often, a,, does not ap-
proach any number. Thus lim [(-1)"] does not exist; that is, the sequence
n—oo

a, = (—1)" is divergent.

Theorem 2.1.6. If f(x) is continuous and the limit nlim an = ¢ exists, then
—00

lim £ (a,) = £ lim a,) = f(0).
n—oo n—oo
. . . (T
Example 2.14. Find lim sm(—).
n—oo n
Solution 2.14. Because the sine function is continuous at 0, Theorem 2.1.6

enables us to write

. . (T . . T .
lim s1n(—) = sm( lim —) =sin0=0.
n—oo n n—oon

Example 2.15. Show that the sequence {(1 +n) %} converges.
Solution 2.15. By Theorem 2.1.1 and Theorem 2.1.6,

1
. 1 . In| (1 n
Iim 1+ n)» = lim en[( ) ]
n—oo n—oo

. 1 . In(1+n)
lim ln[(1+n)n] lim —
= eh—o00 = en—0© n

lim 0
:en—'001+n =e =1

Theorem 2.1.7. If{a,} converges to ¢, then r}im Ane1 = ’}im a,="¢.
—00 —00

Example 2.16. Assuming that the sequence defined by the recurrence relation

6+ a,
2

a =2, an+l = , forn=1,2,3,---

converges, show that the limit is 6.
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Solution 2.16. Since the sequence {a;,} converges, then nlim a, = ¢ exists.
—00

Theorem 2.1.7 does not tell us what the value of the limit is. But we can use
the given recurrence relation to write

6+ a,
2

_6+€
2

= /(=6

¢=lim a,.; = lim
n—oo0 n—oo

The next theorem gives some limits that arise frequently.

Theorem 2.1.8. The following sequences converge to the limits listed below:

|
(1) lim 22— @) lim Yn=1
n—oo n n—oo )
3) ’}En xX"=0 (xI<1 4) nliln xn=1, (x>0)
. x\n X .X
(5) lim (1 + —) =e' (anyx) (6) im — =0 (anyx)
n—oo n n—oo n!

Exercise 2.1.

1. Determine whether the sequence converges or diverges.

@ L=z (2) cos(nm) @ -2
3en 341
1 n
(4) n?/n+) (5) sin(n) (6) (‘g)
2
3 _ sin“n . (nm
(7) nde" ® ) sm( > )
4n+1 . (6 n!
(10) ln(gn_ 1) 11 ns1n(;) (12) s
az =" g &1 (15) (1) 2n’
el+e n?+1 nd+1
n+3\" 2\"
(16) (—) (17) (1——) (18) Vi+1-n
n+1 n
1+ (=" (n—2)! 1)\"
19 — 2 (20) enl1+=
n n! n2
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(22) (2+ 4 )% (23) n (24) e’ +3"
n? n+Yn 57
3—4" L n? 2nm
(25) — (26) tan (27) tan
2+7-3" n+1 1+8n
1
n+1 3\n 1 1
(28) (29) (—) (30) [2—— 3+ —
In+1 n 31 21
1171 1 -1 1 -1
31) — | —dx 32) =, —, —, =, 33) 2In(3n) —In (1 + n?
()nflx G239 378 (33) 2In(3m) ~In( )
. 1 5.
2. The recursively defined sequence a;;1 = 3 [an + - is know to con-

n
verge to a given initial value a; > 0. Find the limit of the sequence.
[Hint: lim a;yq = lim a,=/¢
n—oo n—oo

3. For what positive values of b does the following sequence converge?
b,0,b%0,b°0,b", -
Hint: When lim b" = 0?].
n—oo

4. Bvaluate lim V2" + 3", |Hint: Show that3 < V2" +37 <3%/2|.

n—oo

5. Give an example of a divergent sequence {a,} such that {|a, |} converges.
[Hint: See Exercise 3.1.1.15].

6. Show, by giving an example, that there exists divergent sequences {a,}

and {b,} such that {a, + b,} converges. .

1
Hint: What about nz, ~——n*?
n

7. Determine whether the sequence defined as follows is convergent or di-
vergent.
a =1 ani1=4-—a, forn=1

What happens if the first term is a; = 22 [Hint: Write the first few ele-
ments of the sequence].
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2.2 Series and Convergence

The purpose of this section is to discuss sums that contain infinitely many
terms. The most familiar examples of such sums occur in the decimal repre-
sentations of real numbers. For example, when we write % in the decimal form
1

3 =0.3333---, we mean

1
3 =0.3+0.03+0.003 +0.0003 +---

which suggests that the decimal representation of % can be viewed as a sum
of infinitely many real numbers.

One important application of infinite sequences is in representing infinite
summations. Informally, if {a,,} is an infinite sequence, then

o0

Y an=ar+az+az+--

n=1
is an infinite series (or simply a series). The numbers a;, ay, as,--- are the
terms of the series. For some series it is convenient to begin the index at n =0
(or some other integer). As a typesetting convention, it is common to repre-
sent an infinite series as simply Y a,. In such cases, the starting value for the
index must be taken from the context of the statement.

To find the sum of an infinite series, consider the following sequence of

partial sums.

81:a1
82:a1+a2
83:a1+ag+a3

Sp=am+ax+az+---+ay

If this sequence of partial sums converges, the series is said to converge and
has the sum indicated in the following definition.

Definition 2.2.1. Definitions of Convergent and Divergent Series
o0

For the infinite series ) _ ay, the nth partial sum is given by
n=1

Sp=am+ax+az+---+ay
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o0

If the sequence of partial sums {S,} converges to S then the series Z a, con-
n=1

verges to S. If {S,;} diverges, then the series diverges.

Example 2.17. Determine whether the following series converges or diverges.
If it converges, find the sum.

o0
Y DM =1-14+1-14+1—1+--

n=1

Solution 2.17. The partial sums are

S =1
S;=1-1=0
S3=1-1+1=1
Sp=1-1+1-1=0

and so forth. Thus, the sequence of partial sums is
1,0,1,0,1,0,:--

Since this is a divergent sequence, the given series diverges and consequently
has no sum.

Telescoping Sums

A telescoping series is a series whose partial sums eventually only have a fixed
number of terms after cancellation. Such a technique is also known as the
method of differences. The next example treats a convergent telescoping se-
ries, where the partial sums are particularly easy to evaluate.

o0
Example 2.18. Determine whether the series )  ——— converges or di-
no1 h(l+n)

verges. If it converges, find the sum.

Solution 2.18. We will begin by rewriting S, in closed form. This can be ac-
complished by using the method of partial fractions to obtain (verify)

1 1 1

nd+n n l+n
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from which we obtain the sum
n [ 1 1

o lk 1+k
[ 1] 1 1] [1 1] 1 1 1 1
=|l-=|+|=—=|+]|=—=|+ -— - =
2 2 3 3 4 n-1 n n l+n
B 1
B 1+n
= 1 . . 1
Thus, )_ = lim S, = lim |1- =1.
=1 n(l+n) n—oo n—oo 1+n

o0
Example 2.19. Determine whether the series Z ln(

) converges or di-
n=1

verges. If it converges, find the sum.

Solution 2.19. We will begin by rewriting S, in closed form by writing
In (L) =ln(n)—-In(n+1)
n+1l
from which we obtain the sum

Sn= Zln(k+1)

=[In(1) = In(2)] + [In(2) = In(3)] + - - + [In(n) —In(n + 1)]

=-In(n+1)
Thus, Z ln( :1_1) = nhm S, = hm [-In(1+ n)] = —oco. Hence, the sum di-
— n —00

verges.

Geometric Series

In many important series, each term is obtained by multiplying the preceding
term by some fixed constant. Thus, if the initial term of the series is a and
each term is obtained by multiplying the preceding term by r, then the series
has the form

atar+ar’+ar’+---=Y ar"

Such series are called geometric series, and the number r is called the ratio
for the series.
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Theorem 2.2.1. Convergence of a Geometric Series
A geometric series with ratio r diverges if |[r| = 1. If0 < |r| < 1 then the series
o0

a
converges to the sum )  ar" = -+

n=0 —-r
o0
Example 2.20. Determine whether the series Z e converges, and if so find
n=0

its sum.

1
Solution 2.20. This is a geometric series with a =5 and r = i Since |r| < 1,

. . a 5 20
the series converges and the sum is = T =
o0 n
Example 2.21. Determine whether the series Z (—) converges, and if so
n=0

find its sum.
Solution 2.21. This is a geometric series with a =1 and r = T Since |r| > 1,

the series diverges.

(e @]

Example 2.22. Determine whether the series Z (22”51_”) converges, and if
n=1

so find its sum.

Solution 2.22. This is a geometric series in concealed form, since we can
rewrite it as
00 4 n
-2°(3)
n=1 5

. 4 . . .
witha=4and r = 5 Since |r| < 1, the series converges and the sum is

4".5
n

5 (s - £ 2
n=1 n=1

a 4 ~20
_ 4
1-r 1—5

Example 2.23. Use a geometric series to write 0.08 as the ratio of two integers.
Solution 2.23. We can write

0.08 = 0.08 +0.0008 + 0.000008 + - - -
8 8 8 S 8

=t —t— 4+ =
100 1002 1003 =1 1007
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8
So the given decimal is the sum of a geometric series with a = 100 and r =

1
——. Thus,
100 .
_ X 8 0 8
0.08=) — =—1%0_-—
A=11007 T 1— 7 99

[o,@] X n

Example 2.24. Find all values of x for which the series Z 3 [— 5] converges,
n=0

and find the sum of the series for those values of x.

x
Solution 2.24. This is a geometric series with a =3 and r = 5 It converges

. X . . . .
if ‘—E‘ < 1, or equivalently, when | x| < 2. When the series converges its sum is

3 6

o0 xn
Fal4l -
b2l T1eE T 24k

The following properties are direct consequences of the corresponding
properties of limits of sequences.

Theorem 2.2.2. Properties of Infinite Series

Let ) a, and ) b, be convergent series, and let A, B and c be real numbers.
IfY a, = A and ) b, = B, then the following series converge to the indicated
sums.

1. Yca,=cA

2. Y(an+by)=A+B

[ 3 2
Example 2.25. Find the sum of the series Z —— - ] .
n=1 4" 5"

(o]

Solution 2.25. The series Z — isa convergent geometric series (a = r=
n=1 4"

),

o0
and the series Y —— is also a convergent geometric series (a=2,r = 3).
= 5h—-1 5
n

e

Thus, from Theo;ems 2.2.2 the given series converges and

3
00 00 00 S
[3_ 211223_2 21: 41_ 21:_§
n=1 4" 5" n=14n n=15n_ 1_1 1_5 2
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The following theorem states that if a series converges, the limit of its term
must be 0.

Theorem 2.2.3. Limit of the nth Term of a Convergent Series
o0

: lim =0.
Ifn;1 a, converges, then lim_ay, 0

The contrapositive of Theorem 2.2.3 provides a useful test for divergence.
This nth-Term Test for Divergence states that if the limit of the term of a series
does not converge to 0, the series must diverge.

Theorem 2.2.4. nth-Term Test for Divergence

o0
If lim a, #0, then ) ay, diverges.
n—oo

n=1

o0
Example 2.26. Determine whether the series Z converges or diverges.
n

=1

Solution 2.26. Since lim
n—ool+n

=1 # 0 then the series diverges.

(e.0)
Example 2.27. Determine whether the series Z 2" converges or diverges.
n=0

Solution 2.27. Since lim 2" = oo # 0 then the series diverges.
n—oo

(0,0)
Example 2.28. Determine whether the series Z — converges or diverges.
n=1

1
Solution 2.28. Since ’}im — =0 then the nth-Term Test for Divergence does

not apply and you can draw no conclusions about convergence or divergence.
(In the next section, you will see that this particular series diverges.)

Example 2.29. A ball is dropped from a height of 6 feet and begins bouncing,
as shown in the figure below. The height of each bounce is three-fourths the
height of the previous bounce. Find the total vertical distance travelled by the
ball.



56 CHAPTER 2. INFINITE SERIES

Solution 2.29. When the ball hits the ground for the first time, it has travelled
a distance of D, = 6 feet. For subsequent bounces, let D; be the distance trav-
elled up and down. For example, D, and D3 are as follows.

3

D, =6|=|+6
=63

o)+

up down

By continuing this process, it can be determined that the total vertical dis-
tance is

3 3

l+12(=

4 4

e8]
=6+12)
n=1

2 3 3
D=6+12 HZ(Z) 4o

3

=6+ 12 x 3 =42 feet.

3
—) =6+12
4

4

Exercise 2.2.

1. Find the sum of the series if it converges.

o0 (_1)n 0] no—n
@ Z n2+7n+12 @ 2 S ® ) 5"
) n; o ) n;lo 6) n;m[gnﬂ]
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10.

. Let a, =

[o.0]
. Determine the values of x for which the series Z

1
. Determine whether the series — + — +

(o) 4I’l+2 00 N 4 4N 0o n
(7) (8) 9)
L7 I 2 ion
o -1 - 1 X cos (nm)
(10) ) tan™'n (11) ) cos|— (12) ) ——
n=1 n=1 n n=0 3
o0 1 (o] 1 n o] nn
(13) ln[—} (14) [1——] (15) —

o n—1 oo
. If the nth partial sum of a series ) a, is S, = Py find a, and ) _ a,.
n

n=1 n=1

el Determine whether the sequence {a,} and the series
n+
) a, are convergent?

A sequence of terms is defined by a,, = (5 - n)a,-; where a; = 1. Find
o0

Y ap.
n=1
VIFT -V

. Show that : Z =1.

n=1 Vn’+n

. Write the repeating decimal number 1.314 as a quotient of integers.

2" x?™ converges.

n=0

. The accompanying figure shows the first five of a sequence of squares.

The outermost square has an area of 4 m?. Each of the other squares is
obtained by joining the midpoints of the sides of the squares before it.
Find the sum of the areas of all the squares.

1

+--- converges?
1.1 111 1.111

R
2o ()

Hint: a,, =

1+9 1+27 1+81
+ +
125 625

Find the sum of the series
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11. Show that for all real values of x,

1 1.5 1 2sinx
sinx — = sin x + ~ sin® x — = sin® x + -
2 4 8

2+smx

12. Find the value of ¢ for which the series equals the indicated sum.

Y A+ "=
n=2

2.3 The Integral Test and p—Series

In this and the following section, you will study several convergence tests that
apply to series with positive terms.

Theorem 2.3.1. The Integral Test
If [ is positive, continuous, and decreasing for x = N and a, = f(n), then

Z an cmdf f(x) dx either both converge or both diverge.

n=

Example 2.30. Apply the Integral Test to the series Z 71
1 n

Solution 2.30. The function f(x) =
To determine whether f is decreasing, find the derivative.

X . .. .
711 is positive and continuous for x = 1.

(FP+1) W -@Cx)  —x2+1

2<0 for x>1
(x2+1) (x2+1)

flx) =
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It follows that f satisfies the conditions for the Integral Test. You can integrate
to obtain

o x 1 [>° 2x
f dx:—f dx
1 x2+1 27 x2+1

b
:llim 2 dx
2 b—ooJ1 x2+1
_1 . 2 b_l . 2 _ _
= zl}ggo[ln(x +1)], = zl}ggo[ln(b +1)-1In(2)] =00

So, the series diverges.

= 1

Example 2.31. Apply the Integral Test to the series
n

— n2+1

Solution 2.31. The function f(x) = —
To determine whether f is decreasing, find the derivative.

is positive and continuous for x = 1.

)
Floo=—=2_<0 for x>1
(x2+ 1)2

It follows that f satisfies the conditions for the Integral Test. You can integrate
to obtain

© 1 . (1 . 1 b
f dx = lim dx = lim [tan™" x|,
1 b—o0

x2+1 b—oold1 x2+1
P A A
= lim [tan"'b-tan '1]== ===
b—o0 2 4 4

So, the series converges.

o0
Example 2.32. Determine whether the series Z

converges or diverges.
hnlnn

Solution 2.32. The function f(x) = is positive and continuous for x = 2.

1
xlnx
To determine whether f is decreasing, first rewrite f as f(x) = (xInx)~! and
then find its derivative.

fl(x) =D (xlnx) A +Inx) = _Lnxz <0 for x>2
x2(Inx)



60 CHAPTER 2. INFINITE SERIES

It follows that f satisfies the conditions for the Integral Test. You can integrate
to obtain

© 1 *©1/x
f dx:f —dx— lim [ln(lnx)]2 = hm In(Inb)—In(n2)] =
2 xlnx 2 Inx b—oo

So, the series diverges.

In the remainder of this section, you will investigate a second type of series
that has a simple arithmetic test for convergence or divergence. A series of the

form
1 1

1
Y —=—+—+—+
s=ynP 1P 2P 3P
is a p—series, where p is a positive constant. For p = 1, the series

X1 1 1
Z——1+ += =+
2 3 4

. . . . o 1

is the harmonic series. A general harmonic series is of the form ) | p— The
an

Integral Test is convenient for establishing the convergence or divergence of

p—series.

Theorem 2.3.2. Convergence of p—Series

x 1 1 1 1
The p—series — =—+—+—+--- converges if p > 1 and diverges if 0 <
p n; =Tt gesif p ges if

p=1

Example 2.33. Determine whether the series Z —~= converges or diverges.
n=1 n

o0 1 o0
Solution 2.33. The series Z Vn

— diverges since it is a p—series with
n=1 n n=1n 3

Exercise 2.3.

1. Determine whether the series converges or diverges.

) Z 2 37" (3) ) ne”
n=1 n=1

SIS

1n+3
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® tan"'n X n+2 &0
()n;l n?+1 (S)Z”"‘l © n;znvlnn
(o] \/_ o0 3
Z’l (8)Ze”+e n (9),,;%
X 2
10
( )n;l"\/ﬁ

#] [Hint: ) =-In2].

o0
2. Find the sum of the series Z In(l-
n=2

bln n

o0
3. Find all positive values of b for which the series ) | converges.

n=1
[ Hint : blnn — (elnb)ln” — (elnn)lnb — nlnb]

2.4 Comparisons of Series

For the convergence tests developed so far, the terms of the series have to be
fairly simple and the series must have special characteristics in order for the
convergence tests to be applied. A slight deviation from these special charac-
teristics can make a test non-applicable. For example, in the following pairs,
the second series cannot be tested by the same convergence test as the first
series even though it is similar to the first.

X1 n
> - is geometric, but Z — isnot.
n=0 2 n= 0
X1
Y —3 Isa p—series, but Z 3108 not.
n=1 n=1
2
5 is easily integrated, but ———— is not.
2 2
(n?+3) (n?+3)

In this section you will study two additional tests for positive-term series.
These two tests greatly expand the variety of series you are able to test for con-
vergence or divergence. They allow you to compare a series having compli-
cated terms with a simpler series whose convergence or divergence is known.
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Theorem 2.4.1. Direct Comparison Test
Let0 < ay, < b, foralln.

o0 o0
1. If Y by, converges, then ) a, converges.

n=1 n=1

2. If Y ay diverges, then )_ b, diverges.

n=1 n=1

Example 2.34. Determine the convergence or divergence of i L
ple 5% 8 & =2+ /n3n

X1

Solution 2.34. This series resembles Z I which is convergent geometric
n=1

series. Term-by-term comparison yields

1 1
an=—"-———=<—=>b, for n=1
"To+ym3n T 3n "
So, by the Direct Comparison Test, the series converges.
X 1
Example 2.35. Determine the convergence or divergence of Z .
n=12+ \/ﬁ
[e.°]
Solution 2.35. This series resembles Z — which is divergent p—series. Term-
n=1nz
by-term comparison yields
1 1 ¢ o1
<— for n=
2+vn  Vn

which does not meet the requirements for divergence. (Remember that if

term-by-term comparison reveals a series that is smaller than a divergent se-

ries, the Direct Comparison Test tells you nothing.) Still expecting the series
(o]

to diverge, you can compare the given series with Z — which is divergent

n=1"7
harmonic series. In this case, term-by-term comparison yields

1
=b
24yn

and, by the Direct Comparison Test, the given series diverges.

a,=—=< for n=4

1
n
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cos’n
Example 2.36. Determine the convergence or divergence of Z UL
n=
1
Solution 2.36. This series resembles Z — which is convergent p—series.
n=1
Term-by-term comparison yields
2
cos"n _ 1 1
an = <—=b, for n=1
(I e e
So, by the Direct Comparison Test, the series converges.
tan~!' n
Example 2.37. Determine the convergence or divergence of Z _—
6 3
n®+5n°+6
. . . < 7/ o :
Solution 2.37. This series resembles ) —- which is convergent p—series.
n=1 1
Term-by-term comparison yields
tan"! n w2 w2
a, = < < =b, for n=1

vnb+5n3+6 Vnb

So, by the Direct Comparison Test, the series converges.
nn
Example 2.38. Does Z e converge?

Solution 2.38. Because Inn grows more slowly than n°¢ for any positive con-
stant ¢, we can compare the series to a convergent p—series by choosing ¢ > 0
such that

3 1

——c>1 = 0<c<=

2 2
To get the p—series, we see that

Inn n'’t 1

< =
n3/2 n3/2 n5/4

an = =b, for n=1

1
Since — is a convergent p—series, then by the Direct Comparison Test, the
n

°° lnn
series Z 5 converges.
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Often a given series closely resembles a series or a geometric series, yet
you cannot establish the term-by-term comparison necessary to apply the Di-
rect Comparison Test. Under these circumstances you may be able to apply a
second comparison test, called the Limit Comparison Test.

Theorem 2.4.2. Limit Comparison Test
a
Suppose that a,, > 0, b, > 0, and lim b—" = ¢ where ¢ is finite and positive.

n—oo
Then the two series )_ a, and )_ b, either both converge or both diverge.

Example 2.39. Show that the following general harmonic series diverges.

1

, a>0, b>0.
sopan+b

[e.°]
Solution 2.39. By comparison with the divergent harmonic series ) - you
n=1
have
1/(an+b) I n 1

im = lim =
n—00 1/n n—ocoan+b a

Because this limit is greater than 0, you can conclude from the Limit Compar-
ison Test that the given series diverges.

The Limit Comparison Test works well for comparing a messy algebraic
series with a p—series. In choosing an appropriate p—series, you must choose
one with an nth term of the same magnitude as the nth term of the given
series. In other words, when choosing a series for comparison, you can disre-
gard all but the highest powers of in both the numerator and the denominator.

< Vn

Example 2.40. Determine the convergence or divergence of .
on?+l

Solution 2.40. Disregarding all but the highest powers of in the numerator
and the denominator, you can compare the series with

X vn & 1 _
Y —==) convergent p—series.

= n2 = nd/2

Because

3/2 2
n\(n n
R T R
n“+1 1 n—oo p= + 1

you can conclude by the Limit Comparison Test that the given series con-
verges.

. ap .
lim — = lim
n—oo n n—o0
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o0 n 211
Example 2.41. Determine the convergence or divergence of Z Sy
n

Solution 2.41. A reasonable comparison would be with the divergent series
o0 n

2
Z — - Note that this series diverges by the nth-Term Test. From the limit

n=1
271 2 3 1
llma——h ( n )(n—):lim n =_

n—oop, n—oo\14+4n3)\2") n-cc4nd3+1 4

you can conclude that the given series diverges.
Exercise 2.4.

1. Determine whether the series converges or diverges.

X 2+sinn

| 142
(DZH” ()Z+” @Y T

X Vn+l-yn -n+2

; (5)2 T ()2(4 +1)3/2
(7) oisin(l) (8) ii 9) Z

n=1 n nzzn! 4\/_ 1

2. Show thatif the series }_ a,, of positive terms converges, then ) In(1+ a;)
converges.

3. The meaning of decimal representation of a number 0.d; d»ds - - - is that

d  d  ds
0.didod3 = —+—+—+
PRI 0 102 T 108
) ) d; 9
Show that this series always converges. | Hint : Toi = < ol

2.5 Alternating Series

So far, most series you have dealt with have had positive terms. In this section
and the following section, you will study series that contain both positive and
negative terms. The simplest such series is an alternating series, whose terms
alternate in sign.
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Theorem 2.5.1. Alternating Series Test

(e.0) o0

Let a, > 0. The alternating series Z (-D"ay, and Z (-1)"*a, converge if the
n=1 n=1

following two conditions are met.

1. lim a, =0
n—oo

2. ap+1 < ay, forall n.

Itis not essential for condition (2) in Theorem 2.5.1 to hold for all terms; an
alternating series will converge if condition (1) is true and condition (2) holds
eventually. If an alternating series violates condition (1) of the alternating se-
ries test, then the series must diverge by the nth-Term Test.

= 1
Example 2.42. Determine the convergence or divergence of )_ (-1) nH

n=1

1
Solution 2.42. Note that lim — = 0. So, the first condition of Theorem 2.5.1

n—oo
is satisfied. Also note that the second condition of Theorem 2.5.1 is satisfied

because

a 1/(n+1 n
n+l _ ( ) = <1 foralln = ay+1<ay
an 1/n n+1

So, applying the Alternating Series Test, you can conclude that the series con-
verges.

o0
n
Example 2.43. Determine the convergence or divergence of Z o
n=1\"

Solution 2.43. To apply the Alternating Series Test, note that, for n > 1,

ant1 _ (n+1/2" n+1
a,  n/2""l!  2pn

< 1 - an+1 < an.
Furthermore, by L'Hopital’s Rule,

n
lim —— = lim 0

n—oo 211 n—oo 21-1In2 -

Therefore, by the Alternating Series Test, the series converges.
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& 2n+1
Example 2.44. Determine the convergence or divergence of Z (—1)n*t 391"
n=1 n

Solution 2.44. The series diverges by the nth-Term Test since

2n+1 2
lim —#£0.
n—o3n—1 3

o0
n
Example 2.45. Determine the convergence or divergence of Z (-1 %
n=1 n

Solution 2.45. In order to show that the terms of the series satisfy the condi-

. . . X .
tion a,+1 < ay, let us consider the function f(x) = % for which a,, = f(n).
X
From the derivative we see that

-1
f’(x)=—x—<0 for x>1

2V/x(x+1)2
and hence, the function f(x) decreases for x > 1. Thus, a,+1 < a, is true for

n 1
n = 1. Moreover, lim L lim = 0. Therefore, by the Alternating
n—ocop+1 n—oo 2\/_

Series Test, the series converges.

cos(mn
Example 2.46. Determine the convergence or divergence of Z #
n=1 n

l)l’l+1

Solution 2.46. Note that Z which is convergent as

n=1

cos (tn) ‘i (-
n :
shown in Example 2.42.

We have convergence tests for series with positive terms and for alternat-
ing series. But what if the signs of the terms switch back and forth irregularly?
Given any series ) a,, we can consider the corresponding series

oo
Y lagl =layl +laz| +las| + -+
n=1

whose terms are the absolute values of the terms of the original series.

Definition 2.5.1. Absolute Convergence
A series ) a, is called absolutely convergent if the series of absolute values
Y layl is convergent.
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oo (_1yn-1
Example 2.47. Determine whether the series ) ——— is absolutely con-
n=1 n

vergent or not.

o0
Solution 2.47. The series is absolutely convergent since Z
n=1

is a convergent p—series.
The next theorem shows that absolute convergence implies convergence.

Theorem 2.5.2. Absolute Convergence Test
If the series }_|ay| converges, then the series ) a, also converges.

The converse of Theorem 2.5.2 is not true. For instance, the alternating

(0 0]
harmonic series Y (-1)"*'
n=1
the harmonic series diverges. This type of convergence is called conditional.

1
— converges by the Alternating Series Test. Yet
n

Definition 2.5.2. Conditional Convergence

Aseries )_ a, is conditionally convergentif ) a, convergesbut}_|a,|diverges.
o0 _1 n

Example 2.48. Determine whether the series )

n=1

is convergent, diver-
gent or conditionally convergent series.

Solution 2.48. The given series can be shown to be convergent by the Alter-
nating Series Test. Moreover, because

e¢) (_l)n 3 o0 1
n;l \/ﬁ _nzl\/ﬁ

is a divergent p—series, the given series is conditionally convergent.
n(n+1)

0 (_

Example 2.49. Determine whether the series Z — is convergent, di-
n=1

vergent or conditionally convergent series.

Solution 2.49. This is not an alternating series. However, because
> >
n=1 3"

n=1
is a convergent geometric series, you can apply Theorem 2.5.2 to conclude
that the given series is absolutely convergent, and therefore convergent.

n(n+1)

1™
3n
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. R nl . .
Example 2.50. Determine whether the series ) (—1)"2—n is convergent, di-
n=1
vergent or conditionally convergent series.

Solution 2.50. By the nth-Term Test for Divergence, you can conclude that
this series diverges.

Exercise 2.5.

1. Determine whether the series is convergent, divergent or conditionally

Convergent
o _1\yn+l n s :;1 n le’s) o n
1) n;( N @ n;[ e] 3) n;( T
n=1 n=1

2. Explain why the following series converges for every positive value of x.

—-2x —-3x

e *sin(x) + e “*sin(2x) + e **sin(3x) +---

o0
Hint: Show that )_ |e™"*sin(nx)| converges.

2.6 The Ratio and Root Tests

The comparison test and the limit comparison test hinge on first making a
guess about convergence and then finding an appropriate series for compar-
ison, both of which can be difficult. In such cases the next tests can often be
used, since it works exclusively with the terms of the given series, it requires
neither an initial guess about convergence nor the discovery of a series for
comparison.

The Ratio Test measures the rate of growth (or decline) of a series by ex-

" this rate is a constant r

n
and the series converges if and only if its ratio is less than 1 in absolute value.
The Ratio Test is a powerful rule extending that result.

En
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Theorem 2.6.1. Ratio Test
Let) a,, be a series with non-zero terms.

an+1
<.

1. Y ay converges absolutely if nlgn

n

an+1

an

an+1
an

>1or lim

2. Y ay diverges if lim
n—oo n—oo

an+1

an

3. The Ratio Test is inconclusive lf’;im =1.

—00

o0 n
Example 2.51. Determine the convergence or divergence of Z -
n=11m
2]’1
Solution 2.51. Because a, = —you can write the following.
n!
2n+1 n

2n+1 on
. = =
(n+1)! 27

n+1)! nl
2.7 X;ﬁr]
(n+ 1)l 27

an+1

an

lim

n—oo

= l1m
n—o0

m
n—o0

n+1

= lim =0<1

= lim
n—o0 n—oo

This series converges.

(o) n22 n+l1
Example 2.52. Determine whether the series )
n=1

gn converges or diverges.

Solution 2.52. This series converges because

2 n
. Ap+1| . 2 2nt 3
nll_I)Igo ap N r}l_r}olo (n+1) (3n+1 n2an+l
. 2(n+1)? 2
=lim ——=-<1
n—oo  3n2 3

n

o0
Example 2.53. Determine whether the series Z — converges or diverges.
= n!

Solution 2.53. This series diverges because

i | @1 (n+ 1)"+1(n1) (n+1)”+1( 1 )
1m = _— = _— —
n—oo| ay n—oo| (n+1)! \n" n—oo n+1 n”"
. (m+1D" n+1]" 11"
= lim = lim =lim |[1+—| =e>1
n—oo nn n—oo n n—oo n
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(e.0)
n
Example 2.54. Determine the convergence or divergence of E (-D" %
n=1 n

Solution 2.54. Here, the Ratio Test is inconclusive because

. an+1 . vn+ll(n+1 n+l(n+1
lim [——| = lim = lim =
n—oo| ap n—oo|| n+2 Vvn n—oo n \n+2

To determine whether the series converges, you need to try a different test. In
this case, you can apply the Alternating Series Test to show that this series is
convergent. See Example 2.45.

The next test for convergence or divergence of series works especially well
for series involving nth powers.

Theorem 2.6.2. Root Test
Let) a, be a series.

1. Y a, converges absolutely ifnlirn Vlanl < 1.
—00
2. Y ay diverges ifnlim Vlayl>1or nlim Vvlay| = oo.
—00 — 00
3. The Root Test is inconclusive if lim \/|a,|=1.
n—oo

Note 2.1. The Root Test is always inconclusive for any p—series.

oo ,2n
Example 2.55. Determine the convergence or divergence of Z —.
n=1 1
Solution 2.55. The series converges, since
; en 62
lim V/|a,|=lim {/—=lim — =0<1
n—oo n—oo n" n—oo n
o0 n
. ) 4n—-5
Example 2.56. Determine the convergence or divergence of Z 1
n=1 n
Solution 2.56. The series diverges, since
4n-5]1" 4n->5
lim {la,l = lim { = lim =2>1
A, Vian| = lim, 2n+1 n—co2n + 1
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Exercise 2.6.

1. Determine whether the series is convergent or divergent.

n

oY |1 @Y L izn'
o1 lIn(1+n) /1 =1
00 3 n-1 00 n (- 1)n+1
4 - 5 2vn+1
P O LRV © )
x nt > 11" X Inn
™ 2 — (8) 1- —]
;1 4" 112::1 n
[e.¢] n
2. For what positive values of a does the series ) pr converge?
n=1

3. The terms of a series are defined recursively by the equation a,.; =
Sn+1

dn+3

a, where a; = 2. Determine whether }_ a,, converges or diverges?

2.7 Strategies for Testing Series

You have now studied 10 tests for determining the convergence or divergence
of an infinite series, (see the summary in the next page). Skill in choosing and
applying the various tests will come only with practice. In some instances,
more than one test is applicable. However, your objective should be to learn
to choose the most efficient test. Below is a set of guidelines for choosing an
appropriate test.

Note 2.2. Guidelines for Testing a Series for Convergence or Divergence
1. Does the nth term approach 0? If not, the series diverges.

2. Is the series one of the special types: geometric, p—series, telescoping,
or alternating?

3. Can the Integral Test, the Root Test, or the Ratio Test be applied?

4. Can the series be compared favorably to one of the special types?
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SUMMARY OF TESTS FOR SERIES

Test Series Condition(s) Condition(s) Comment
of Convergence of Divergence
nth-Term N a, lima #0 This test cannot be used
=1 n—ee " to show convergence.
Geometric Series Y art [ <1 HIER! Sun: § = g = >
=0 e
Telescoping Series | > (b, — b)) | lim b, =L Sum: S =h, — L
) noco
-Series = =1 O<p=1l
P nzl = P p
= 0<a =a Remainder:
; ; e 1 n
Alternating Series nzl (—1)"la, and }1{{_10 4, =0 IRy| = ayy,
Integral - .
- . £ o Remainder:
(fis continuous, ;::1 a,, £(x) dx converges J' Tl e s
positive, and _ . L 1 0<Ry< | flx)dx
decreasing) a, = fln) 2 N
a5 — Test is inconclusive if
- / . i
Root ,121 ak Jim g la,| <1 Jim o \a | > 1or lim /|| = 1.
= note
=0
o a - Test is inconclusive if
Ratio Y a, lim [ <1 lim [ > 1or [
b n=ce | a, noee | a, lim =1
note
=
i . o 0<a,=bh, 0<bh, =a,
Direct Comparison 2 a, = o
(@, b, > 0) n=l and ' b, converges | and ' b, diverges
n=1 n=1
. a,
L . = llm—*L>0 lim *=L>0
Limit Comparison a, no b, n= b,
- =
(@, b, > 0) ! and 2 b, converges | and Y b, diverges
=1 =1

Exercise 2.7. Determine the convergence or divergence of each series.

X[ n+l 1"

o S o

n=1

()Z

X n+1

W23

@) Y ne ™
n=1

[e.°] !

©6) n:
n:OlOn

2+cosn

(o] n 3
® % o DL T
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2.8 Power Series

Now that we can test many infinite series of numbers for convergence, we can
study sums that look like infinite polynomials. We call these sums power se-
ries because they are defined as infinite series of powers of some variable, in
our case x. Like polynomials, power series can be added, subtracted, multi-
plied, differentiated, and integrated to give new power series.

We begin with the formal definition, which specifies the notation and terms
used for power series.

Definition 2.8.1. Definition of Power Series
If x is a variable, then an infinite series of the form

oo
Y apx"=ao+aix+ax*+azx>+--
n=0
is called a power series. More generally, an infinite series of the form
o0
Z ap(x—c)"=ap+a;(x—c)+ax(x— 0)? + 6l3()C-C)3 +e

n=0

is called a power series centered at c, where c is a constant.

Radius and Interval of Convergence

A power series in can be viewed as a function of x as
o0
n
f) =) aplx-c
n=0

where the domain of f is the set of all x for which the power series converges.
Determination of the domain of a power series is the primary concern in this
section. Of course, every power series converges at its center because

(o]
n=0

So, ¢ always lies in the domain of f. The following important theorem states
that the domain of a power series can take three basic forms: a single point,
an interval centered at ¢, or the entire real line.
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Theorem 2.8.1. Convergence of a Power Series
For a power series centered at c, precisely one of the following is true.

1. The series converges only at c.

2. There exists a real number R > 0 such that the series converges absolutely
for |x —c| < R, and diverges for |x — c| > R. The series may or may not
converge at either of the endpoints x = c £ R.

3. The series converges absolutely for all x.

The number R is the radius of convergence of the power series. If the series
converges only at c, the radius of convergence is R = 0, and if the series converges
for all x, the radius of convergence is R = co. The set of all values of x for which
the power series converges is the interval of convergence of the power series.

Note that for a power series whose radius of convergence is a finite num-
ber R, Theorem 2.8.1 says nothing about the convergence at the endpoints
of the interval of convergence. Each endpoint must be tested separately for
convergence or divergence. As a result, the interval of convergence of a power
series can take any one of the six forms shown in the figure below.

Radius: 0 Radius: co
® X - X
¢ ¢
Radius: R
R R R R
c ¢ c "
(c—R,etR) (c—R,c+R] [c—R,c+R) [c—R, c+R]

The usual procedure for finding the radius and interval of convergence of
a power series is to apply the Ratio (or Root) Test for absolute convergence.
The following examples illustrates how this works.

Example 2.57. Find the interval and radius of convergence of the power series
o0

Y nlx".

n=0
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o0
Solution 2.57. For x =0, you obtain f(0) = Z n!0" = 1. For any fixed value of

n=0
x,let a, = n!x". Then
+1
. |ann . |(m+Dx" .
lim =lim|———|=|x|lim (n+1) =
n—oo| ay, n—o0o nlxn n—o0

Therefore, by the Ratio Test, the series diverges for x # 0, and converges only
at its center, 0. So, the radius of convergence is R = 0.

Example 2.58. Find the interval and radius of convergence of the power series

x2n+1

,,;0(_ )" en+1!

2n+1
Solution 2.58. Let a, = — —. Then
2n+1)!
.| ann X3 2n+ D! x?
lim = im
n—oo| a, n—oo x2n+1 | n—oo 2n+3)2n + 2)

For any fixed value of x, this limit is 0. So, by the Ratio Test, the series con-
verges for all x. Therefore, the radius of convergence is R = oo and the interval
of convergence is (—00,00).

Example 2.59. Find the interval and radius of convergence of the power series

-D"(x+ D"
Z—

(x +1)”

Solution 2.59. Letting a, = produces
, nel o x+ 1)"+1 2n x+1| |x+1
li = lim X = lim |—|=|——
n—oo| ap n—oo| 20+l (x+1"| n—oo 2

By the Ratio Test, the series converges if

x+1
— <1lor|x+1|<2. So, the ra-

dius of convergence is R = 2. Because the series is centered at x = —1, it will
converge in the interval (-3, 1). Furthermore, at the endpoints you have

1 2 n o8]
when x = -3 = Z L Z Diverges.

n=0

whenx=1 = Z o

n=0

(e.0)
=) (-1D)"  Diverges.
n=0

both of which diverge. So, the interval of convergence is (—3,1)
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Example 2.60. Find the interval and radius of convergence of the power series

i (x-5)"
n=1 n?
. : (x—5)"
Solution 2.60. Letting a;, = p produces
a x—5)"+1 n? n 12
lim |22 = i |20 =lx-5| lim [——|"=|x-5|
n—oo| a, n—oo| (n+1) (x—5)" n—oolpn+1

By the Ratio Test, the series converges if |[x —5| < 1. So, the radius of conver-
gence is R = 1. Because the series is centered at x = 5, it will converge in the
interval (4,6). Furthermore, at the endpoints you have

o0 (_ 1) n
whenx=4 = ) — Converges.
n=1 I

o0
1
whenx=6 = )_ = Converges.
n=

both of which converge. So, the interval of convergence is [4, 6]

Example 2.61. Find the interval and radius of convergence of the power series
n

o0
n n
Z 2—nx .
n=1
nn
Solution 2.61. Letting a, = — x"* produces
21’1

1
l- n | | l- nn n "
m +/\|ayl= 1m |—X

n—oo n n—oo| 27

.n
=|x|im —=oc0 for x#0
n—oo 2

So, the series only converges only it x = 0, and the radius of converges is R = 0.

Differentiation and Integration of Power Series

Power series representation of functions has played an important role in the
development of calculus. In fact, much of Newton’s work with differentia-
tion and integration was done in the context of power series, especially his
work with complicated algebraic functions and transcendental functions. Eu-
ler, Lagrange, Leibniz, and the Bernoulli all used power series extensively in
calculus.
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Once you have defined a function with a power series, it is natural to won-
der how you can determine the characteristics of the function. Is it continu-
ous? Differentiable? Theorem 2.8.2 answers these questions.

Theorem 2.8.2. Properties of Functions Defined by Power Series
If the function f given by

f)=) anx-o"
n=0
= a0+a1(x—c)+ag(x—c)z+a3(x—c)3+a4(x—c)4+---

has a radius of convergence of R > 0, then, on the interval (c— R,c+R), f
is differentiable (and therefore continuous). Moreover, the derivative and an-
tiderivative of f are as follows.

1 fl(x)= Z na,(x—c)" '=a +2a,(x—c)+3az(x—c)> +---.
n=1

B [e) (x_C)n+1

2. ff(x)dx-C+nZZ‘ban?

(x—c)?
=CH+aglx—c)+a +

The radius of convergence of the series obtained by differentiating or integrating
a power series is the same as that of the original power series. The interval of
convergence, however, may differ as a result of the behaviour at the endpoints.

Example 2.62. Consider the function given by

0 4N x2 x3 x4
X) = — =X+ —+—+—+---
J@ ,;1 n 2 3 4

Find the interval of convergence for each of the following.
1) ff(x) dx ) fx) 3) f'(x)
Solution 2.62. By Theorem 2.8.2, you have

o0
fo=Y " T=1+x+x*+x°+--
n=1

and n+l1 2 3 4
S X X X
fx)dx=C+)_ —C+— + 24
= nn+1) 1-2 23 3
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By the Ratio Test, you can show that each series has a radius of convergence
of R = 1. Considering the interval (-1,1), you have the following.

xn+1
(1) For f f(x)dx, the series ) oD converges for x = +1, and its inter-

val of convergence is [-1, 1].

(0,0 n
(2) For f(x), the series Z — converges for x = —1 and diverges for x = 1.
n=1 n

So, its interval of convergence is [-1, 1).

o0
(3) For f’(x), the series Z X1 diverges for x = +1, and its interval of con-
n=1
vergence is (-1, 1).

Exercise 2.8.

1. Find the radius and interval of convergence of the series.

(x-2)"

> x"
;_' ()ZO n2+1

o ) o0 n n
n=1 n=1

(o] 2 n
2. Find all values of x € [0, 27] for which Z —| sin” x converges.
n=1 Vﬁ§
. . T 2m 4m 5n
Hint : The answer is [0, —) Ul—,—|ul—,27
3 3 3 3

3. Give an example of a power series that converges for x € [2,6).
[ Hint : For example i (x— 4" ]
| P nan

n=1

[e.°]

4. Let f(x) = Z —. Find the interval of convergence of : f, f’, and f”.
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2.9 Representation of Functions by Power Series

In this section we learn how to represent certain types of functions as sums
of power series by manipulating geometric series or by differentiating or inte-
grating such a series. You might wonder why we would ever want to express
a known function as a sum of infinitely many terms. We will see later that
this strategy is useful for integrating functions that don’t have elementary an-
tiderivatives, for solving differential equations, and for approximating func-
tions by polynomials.
We start with the geometric power series (a=1,r = x)

o0

1
x":1+x+x2+x3+---:1— for |x|<1 (2.9.1)
=0 -

n

Example 2.63. Find a power series for f(x) = n centered at 0.

+x%

Solution 2.63. Replacing x by —x? in Equation 2.9.1, we have

8

1+ x2 1- (—xz) n=0 n=0

Because this is a geometric series, it converges when |—x2| <1, thatis, x2 <1,
or |x| < 1. Therefore the interval of convergence is (-1, 1).

4
Example 2.64. Find a power series for f(x) = P centered at 0.
X

Solution 2.64. In order to put this function in the form of the left side of Equa-
tion 2.9.1, we first factor a 2 from the denominator:

4 4 2 > & n
2+x 2[1_,_%] - 1— [_g] :’;02[_g]n:’;0(_1)ﬂ2i_1

X
This power series converges when ‘—5‘ < 1 which implies that the interval of

convergence is (—2,2).

1
Example 2.65. Find a power series for f(x) = —, centered at 1.
X
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Solution 2.65. In order to put this function in the form of the left side of Equa-
tion 2.9.1, we first add and subtract 1 from the denominator:

1

1_ _ R = S 1y 1yn
pal i sl s M SR N

n=0 n=0

This power series converges when |x—1| < 1 which implies that the interval of
convergence is (0, 2).

3
, centered at 0.
X

Example 2.66. Find a power series for f(x) =

Solution 2.66. Since this function is just x* times the function in Example
2.64, all we have to do is to multiply that series by x>:

4x3 5 4 00 % n+3

3 n
—— =X"xX——=Xx"x -1
2+x ,;0( )

2+Xx

o0
Z (-1 )"
As in Example 2.64, the interval of convergence is (-2, 2).

The versatility of geometric power series will be shown later in this section,
following a discussion of power series operations. These operations, used
with differentiation and integration, provide a means of developing power se-
ries for a variety of elementary functions. For simplicity, the following prop-
erties are stated for a series centered at 0.

Theorem 2.9.1. Operations with Power Series
o0 o0

Let f(x) = Z anx" and g(x) = Z b, x".
n=0

n=0

1. fimx)=)_ a,m"x".
n=0

2. f(x™) =) apx™"
n=0

3. fX)£g(x)= ) (an+by)x".
n=0

The operations described above can change the interval of convergence
for the resulting series. For example, in the following addition, the interval of
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convergence for the sum is the intersection of the intervals of convergence of
the two original series.

00 X x\n 00 1
Y X"+ ) (—) =) (1+—n)x”
n=0 n=0 2 n=0 2
—— N—— ——
(-LD (-2,2) (-L,DNn(-2,2)=(-1,1)
. . 3x-1
Example 2.67. Find a power series, centered at 0, for f(x) = — T
x f—
. . . . . 2 1
Solution 2.67. Using partial fractions, you can write as f(x) = 1 + =1
X x—

By adding the two geometric power series

2 2 s non
= :22(—1) x" where |x|<1
_1 o0
and ——=——=-) x" where |x|<1
x—1 1-—x

n=0

[e,0]
=) [2(-1)"-1] x", where the interval of
x% =1 n=0

convergence for this power series is (-1, 1).

you obtain the power series

Example 2.68. Find a power series for f(x) =Inx, centered at 1.
1

Solution 2.68. Since f —dx =Inx+C, and from Example 2.65, you know that
X

é: Y (-D)™"(x-1)", then

n=0
1
lnx:C+f;dx:C+f

(x_ 1)n+1

n+1

Y (-D™Mx-1D"|dx

n=0

=C+ ) (-D"
n=0

By letting x = 1, you can conclude that C = 0. Therefore,

(x_ 1)n+l

(0,0
Inx = -n"
nx Z( ) n+1

n=0

Example 2.69. Find a power series for g(x) = tan™! x, centered at 0.
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. d 1
Solution 2.69. Because e [tan"'x] = and from Example 2.63 you
x

+x2’
1 - n . 2n b
know that = -1)" x~", you obtain
1+ x2 ,;0( ) y
1 o0
tan_lx:C+f dx:C+f Y (-D"x*"| dx
1+ x2 =5
[es) 2n+1
=C+ "
,;’0( ) 2n+1

By letting x = 0, you can conclude that C = 0. Therefore,

. [’} 2n+1
tan ' x = -n"
,,;0( ) 2n+1

Exercise 2.9.

1. Find a power series for the function, centered at ¢, and determine the
interval of convergence.

1 . 1 d( 1
a) f(x):mat6=0. [Hlnt:mza(m) .
b) f(x)=In(1+x)atc=0. [Hint:ln(1+x):f;dx _
1+x
o flx)= atc=1. Hint: —— = 1/2 ]
3-x 32 1-(5])
. 4x 1 3
d) f(x):matc:o. [Hlnt:x2+2x—3:x_1+x+3 .
2 . 2 az (1
O = aten? [Hlm’(1+x)3:dx2(1+x)'

f) f(x)=In(1-x?)atc=0. [Hint: In(1-x*)=In(1-x) +In(1+x)].

X
g) f(X)—matC—O.

h) f(x)= (ﬁ)3 atc=0.

2. Suppose that the series ) a,x" has radius of convergence 2, and the se-
ries ) b, x" has radius of convergence 3. What is the radius of conver-
gence of the series ) (a, + b;,) x"* ?



84 CHAPTER 2. INFINITE SERIES

3. Suppose that the radius of convergence of the power series )" a, x" is R.

What is the radius of convergence of the power series }_ anx*"?
4. Evaluate ) —. | Hint: Show that —— =}~ nx 1.
n=1 2" (1-x) n=1

2.10 Taylor and Maclaurin Series

We saw in the previous section that functions such as f(x) = tan™! x can be
represented as power series. These power series give us a certain tangible in-
sight into the function represented and they allow us to approximate the val-
ues of f(x) to any desired degree of accuracy. Thus, it is desirable to develop
general methods for finding power series representations.

Theorem 2.10.1. The Form of a Convergent Power Series
o0

If f is represented by a power series f(x) = Z an(x—c)" for all x in an open
n=0
(n) oo £(n)
interval I containingc, then a, = ! '(C) and f(x) = Z f_'(c)
n. n=0 .

(x-—0o)".

Definition 2.10.1. Definition of Taylor and Maclaurin Series
If a function f has derivatives of all orders at x = ¢, then the series f(x) =

> [P
2,

n!

(x —¢)" is called the Taylor series for f(x) at c. Moreover, if ¢ = 0,
n=0
then the series is the Maclaurin series for f.

If you know the pattern for the coefficients of the Taylor polynomials for a
function, you can extend the pattern easily to form the corresponding Taylor
series.

Example 2.70. Find the Maclaurin series for f(x) = e*.

Solution 2.70. The nth derivative f(x) is £ (x) = e* for all n and thus
fo=fo=f'0=-=e=1.

(n) 0 1
Therefore, the coefficients of the Maclaurin series are a,, = ! '( ) =— and
n! n!

o0 xn
the Maclaurin series is f(x) = Z —
n=0 "
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Example 2.71. Find the Maclaurin series for f(x) = sin x.
Solution 2.71. For f(x) = sinx, we have
M (x)=(-1)"sinx and f@""V(x)=(-1)"cosx

Therefore, f?™(0) = 0 and f@"**V(0) = (-1)". Hence, the coefficients of the

. . (-n" . .
Maclaurin series are ay,;,+1 = m and the Maclaurin series is
n !

R =D s
f(x)_z(2n+1)! '

n=0

Since a Taylor series is a power series, we may differentiate and integrate
a Taylor series term by term within its interval of convergence. We may also
multiply two Taylor series or substitute one Taylor series into another. This
leads to shortcuts for generating new Taylor series from known ones. The fol-
lowing list provides the Maclaurin series for several elementary functions with
the corresponding intervals of convergence.

Function f(x) Maclaurin Series Converges to f(x) for
00 .n \42 X3 \,4
X — — — . ¢
e Zm_1+x+2!+3!+4!+ All x
n=0
00 2n+1 3 ) 7
. (=1)"x X b X
sin.x —_— =X =+ = =+ All x
Q2n+ 1! 3! 5! 7!
n=0
00 .2n =2 4 .6
(-1)*x X % X
e ST N O N B T All x
oS 2 2n)! I T :
n=0
| 2 %) 3 4
A=l e A L X e x| <1
Tz > +x+x2+ 27 +xt 4 5] =
n=0
1 = 2 3, 4
=D"x"=1—-x4+x"—x"+x"—--. x| <1
I +x ,;) ) x|
00 —iliedi 2 23 4
D" 'x % X %
In(1 4+ x —_— =X — 4+ = — — 4 x land x =1
(1+x) ”; - oy it x| <
00 n,2n+1 -3 5 7
4 (—1)"% . W X b )
tan” ' X —_— ==+ = — =+ ] =il
Z 2n+1 3 2 5 74 & Il =

n=0
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X

Example 2.72. Find the Maclaurin series for f(x) = x%e

Solution 2.72. We obtain the Maclaurin series of f(x) by multiplying the known
Maclaurin series for e* by x2:

(e8] xn

n= Z(n 2)'

Example 2.73. Find the Maclaurin series for f(x) = cos/x.

o0 _1 n
Solution 2.73. Using the power series cosx = Z o x*" you can replace
= 2n)!
(— 1)” . .
x by v/x to obtain the series cosy/x = Z on )' . This series converges for
n=0

x=0.

Example 2.74. Find the Maclaurin series for f(x) = sin® x.

Solution 2.74. Write sin? x as

. 9 1 1
sin“x =—— —cos(2x)
2 2

and then, use the Maclaurin series for cos x as follows.

=17 )"

Example 2.75. Find Taylor series for f(x) =lnxatc=1.

Solution 2.75. We begin by letting ¢ = x — 1 that transforms f to In(z + 1), and
now looking for the Maclaurin series at ¢ = 0. So,

n
f=Inx=In(+1) = Z( 1)”1 Z( Nk l(x 2

Example 2.76. Evaluate f e~ dx as an infinite series.
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Solution 2.76. the Maclaurin series for e is OXO: (-D" xTZ'n Now we integrate
to obtain "0 .
fe_xzdx:C+f e 1)” ) ax=c+ Z( i
n=0 2n+1)n!

Example 2.77. If f(x) = sin(x®), find £1%(0).

Solution 2.77. It would be far too much to compute 15 derivatives of f. The
key idea is to remember that f"(0) occurs in the coefficient of x” in the
Maclaurin series of f. Since

6n+3

[o.0]
: 3 n X 3 X X
O=sin(xN=Y " B3+ __..
J(0 =sin(’) n;o(  enT TR
150 1
then the coefficient of x!° is ! 15'( ) = , and hence
F£9(0) = = = 10897286400

n

o0
3
Example 2.78. Find the sum of the series Z (—1)”_1?.
n=1 n

o0 xn
Solution 2.78. Remember thatIn(1 + x) = Z (-1t - So

=P )l

_ 3 8
—:ln(1+—) :ln(—)
=1 =1 n 5 5

Exercise 2.10.

1. Find Maclaurin series for the given function.

(1) sinxcosx 2) (3) cos? x
1+5x
1+x 5 _3
4) In T« (5) x°e 3%
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. . 1
. Use Maclaurin series to evaluate lim
x—»

o0
. Find the sum of the series Z (-D"

CHAPTER 2. INFINITE SERIES

. Find Taylor series for the given function at the indicated value of c.

(1) L, (c=4) (2)sinx, (c=m/2) B)In1+x), (c=2)
1+x

@e", (c=1) 5) Vx, (c=1)

. Find £19(0) for f(x) = x*sin (x?).

. Does f(x) = cotx possess a Maclaurin series representation ?

+x—e*
01-cosx
2n

=" 367(2n)!

o0
. Find the interval of convergence of Z n°x™ and find its sum.

n=1

. Find the sum of the series

1 1 1 1 1 1 1
l+—+—+—-F—F=—+—+—+---
2 3 4 6 8 9 12
where the terms are reciprocals of the positive integers whose only prime

factors are 2’s and 3’s.



APPENDIX A

Indeterminate Forms and
L"Hospital's Rule

John Bernoulli discovered a rule for calculating limits of fractions whose nu-
merators and denominators both approach zero or +co. The rule is known
today as 'Hospital’s Rule, after Guillaume de I’'Hospital. He was a French no-
bleman who wrote the first introductory differential calculus text, where the
rule first appeared in print.

A.1 Indeterminate Form 0/0,00/00

If the functions f(x) and g(x) are both zero or both +oco at x = a then

lim M
x—a g(x)

cannot be found by substituting x = a. The substitution produces 0/0 or
oo/oo, a meaningless expressions (indeterminate forms), that we cannot eval-
uate. Sometimes, but not always, limits that lead to indeterminate forms may
be found by cancelation, rearrangement of terms, or other algebraic manip-
ulations. L'Hospital’s Rule enables us to draw on our success with derivatives
to evaluate limits that otherwise lead to indeterminate forms.

89
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Theorem A.1.1. Suppose f and g are differentiable and g'(x) # 0 on an open
interval I that contains a (except possibly at a). Suppose that

. @_0 +00

im =
r—agx) O too
(In other words, we have an indeterminate form of type 0/0 or oo/oco.) Then

/
lim @ = lim f)
x—a g(x) x—a g’(x)

if the limit on the right side exists or +oo.

L'Hospital’s Rule says that the limit of a quotient of functions is equal to the
limit of the quotient of their derivatives, provided that the given conditions are
satisfied. It is especially important to verify the conditions regarding the limits
of and before using L'Hospital’s Rule.

L'Hospital’s Rule is also valid for one-sided limits and for limits at infinity
or negative infinity.

Example A.1. Find

Solution A.1. Since lim,_.;Inx =0 and lim,_.; (x — 1) = 0, then we can apply
L'Hospital’s Rule:

d
Inx —~(nx) 1/x 1
lim —— :limgx— =lim—=Ilim—=1
x—1x—1 x—»l%(x_l) x—1 1 x—1Xx

Example A.2. Calculate
X
L

2

Solution A.2. We have lim,_, e* = co and lim,_, X = oo, so LHospital’s

Rule gives:
d
. er ﬁ(ex)_ e
lim = lim ﬁ— lim 2—
X—00 x—oo a_ X—00
* dx (x ) X

Since e* — oo and 2x — oo as x — oo, the limit on the right side is also indeter-
minate, but a second application of LHospital’s Rule gives
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Example A.3. Calculate

|
lim ax

X—00 \/_

Solution A.3. Since limy_o,Inx = oo andlimy_., ¢/ X = coas x — oo, LHOspital’s
Rule applies:

I Inx lim 1/x

im — = lim ——

X—00 x—oo 1 ,+-2/3
Vx 3X

Notice that the limit on the right side is now indeterminate of type %. But in-
stead of applying L'Hospital’s Rule a second time as we did in the previous

example, we simplify the expression and see that a second application is un-

necessary:

1/x 3
hm - hml—m—hm—:o
X—00 X—00 - X—00

X 3X vx

Example A.4. Find
. tanx-—x
lim ——
x—0 x3
Solution A.4. Noting that both tanx - x — 0 and x3 > 0as x — 0, we use
L'Hospital’s Rule:
tanx—x .. sec’x—1

lim = lim
x—0 x3 x—0 3x2

Since the limit on the right side is still indeterminate of type %, we apply LHospital’s
Rule again:

2

tanx—x . oseccx—1
lim——— = lim 5
x—0 x3 x—0 3x
.2 sec? xtan x
= lim———
x—0 6x
2 . 2 . tanx
= —xlimsec”x x lim
6 x—0 x—0 X

= —x1x1=-

A.2 Indeterminate Products Q- +oco

If lim,_, f(x) = 0 and lim,_, g(x) = oo, then it is not clear what the value
of limy_, [ f(x)g(x)], if any, will be. There is a struggle between f and g. If f
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wins, the answer will be 0; if g wins, the answer will be +oo. Or there may be a
compromise where the answer is a finite nonzero number. This kind of limit
is called an indeterminate form of type 0-oco. We can deal with it by writing
the product as a quotient:

__J - &
fg_l/g or  fg 177

This converts the given limit into an indeterminate form of type (0—) or oo/o0 s0
that we can use L'Hospital’s Rule.

Example A.5. Evaluate

lim xIlnx
x—0*

Solution A.5. The given limit is indeterminate because, as x — 0%, the first
factor x approaches 0 while the second factor In x approaches —co. Writing x
as ﬁ we have 1/x — oo as x — 0%, so LHospital’s Rule gives:

. . Inx . 1/x .
lim xInx = lim — = lim = lim (-x)=0
x—0%t =0t 1/x  x—0t —1/x%2 x=0*

A.3 Indeterminate Differences co — oo

Iflimy_, f(x) = oo and limy_., g(x) = 0o, then the limit
lim [f(x) - g(x)]

is called an indeterminate form of type co — co. Again there is a contest be-
tween f and g. Will the answer be oo (f wins) or will it be co (g wins) or
will they compromise on a finite number? To find out, we try to convert the
difference into a quotient (for instance, by using a common denominator, or
rationalization, or factoring out a common factor) so that we have an indeter-
minate form of type g or oo/ oo.

Example A.6. Evaluate

lim (secx—tanx)
x—(m/2)~
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Solution A.6. First notice that secx — oo and tanx — oo as x — (;w/2) 7, so the
limit is indeterminate. Here we use a common denominator:

. 1 sin x
lim (secx—tanx) = im -
x—(/2)" x—(@/2)-\cosx cosx
. 1-sinx
= lim ——
x—(m/2)~ COSX
. —COSX
= lim =0

x—@/2)~ —sinx

A.4 Indeterminate Powers 0°,00°, 1°

These several indeterminate forms arise from the limit
lim §x
lim [ £ ()]

Each of these three cases can be treated by writing the function as an expo-
nential:
(0] = estoin o

and then
lim [ ()] = elime-ag@n )
X—a

where the indeterminate product g(x)In f(x) is of type 0 - oco.

Example A.7. Calculate

lim (1 +sin 4x)cotx

x—0

Solution A.7. First notice thatas x — 0%, we have 1+sin4x — 1 and cotx — oo,
so the given limit is indeterminate. Let

(1 + sin4x)COt¥ = geotxIn(l+sin4x)

Then
lim (1 +sin4x)®°** = limy o+ cotxIn(l+sin4x)
x—0*
Since
i . . In(1+sin4x)
lim cotxIn(1+sin4x) = lim ———
=0 x—0* tanx
4cos4x
= lim 1+sin4x —4

x—0* sec?x
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then

cotx _ 4

lim+ (1+sin4x) e

x—0
Example A.8. Find
lim x*
x—07*
Solution A.8. Notice that this limit is indeterminate since 0* = 0 for any x >
0 but x° = 1 for any x # 0. We could proceed by writing the function as an
exponential

X = exlnx

and then
lim x* = elimx_,0+ xlnx _ eO -1
x—0*



Lines

Slope of the line through P; = (x1, y1) and Py = (x2, y2):

-
m 2271
X2 — X

Slope-intercept equation of line with slope m and y-intercept b:

y=mx+b

ALGEB

Point-slope equation of line through P = (x1, y1) with slope m:

y—yr=mx—xy)

Point-point equation of line through P| = (x1, y1) and Py = (x3, y2):

y—y1 =m(x —x1) wherem =

y2 =V
2 =X

Lines of slope m{ and my are parallel if and only if m{ = m».

Lines of slope m1 and m are perpendicular if and only if m; = —

2
Y n—k k. n—1 n
Circles =+ +(k>x Yo+t nxy +y
Equation of the circle with center (a, b) and radius r: n nn—1---m—k+1)
5 ) ) where =
x—a)+Gy-b*=r k .23k
Distance and Midpoint Formulas Quadratic Formula
Distance between P = (x1, y1) and Py = (x2, 2): Hax? + bx 4 ¢ = O, then x = —b+ \/2b2 - 4ac‘
a
d= \/(xz —x?+ (o — y)?
Midpoint of P; Py: (% yl—;yz) Inequalities and Absolute Value
Ifa <band b < ¢, thena < c.
Laws of Exponents Ifa <b,thena+c<b+c.
mon mn xn m—n mn mn Ifa < band ¢ > 0, then ca < cb.
e x_”_x @) * Ifa < band ¢ < 0, then ca > cbh.
—n 1 \" X" .
X — (xy)”:x”y” e _ |x|_x ifx>0
xn y i .
[x] =—=x ifx <0
n — afx UE = Ux oy e .
X X X x 1y < " > < | >
y Yy —-a 0 a c—a ¢ c+a
xmin — nm — ((’/})m |x| < a means |x — ¢| < a means
—a<x<d. c—a<x<c+ad.
GEOMETRY
Formulas for area A, circumference C, and volume V
Cone with
Triangle Circle Sector of Circle Sphere Cylinder Cone arbitrary base
A:%bh A:ﬂ'rz A:%rze V:%TUB V:TEI’ZI’L V:%ﬂ'}’2h V:%A/’l
= %ab sin 6 C =2nr s=r0 A = 4mr? A=nrVr2+h? where A is the
(6 in radians) area of the base
/\ .
L S K\ = 7 Jh "
b i r

1
my°

RA

Special Factorizations

=y =@+ —y)
By =+ a2 —xy+y?)

B == - +xy+y?)

Binomial Theorem

(x + )% = x2 4+ 2xy + y2
x—y?=xr—2xy+)?
(x +y)3 =x3 —|—3x2y+3xy2 —i—y3
(x —y)3 =3 —3x2y+3xy2 —y3

1

x4+ Y'=x"+nx""y+

nn—1
( )xn—2y2

Pythagorean Theorem: For a right triangle with hypotenuse of length ¢ and legs of lengths a and b, ¢? = a® + b?.



TRIGONOMETRY

Angle Measurement

7 radians = 180°

T
lozmrad

s =r6 (6 in radians)

1rad =

180° /N
T

Right Triangle Definitions

hyp
di
sin @ = @ cos O = ﬂ opp
yp hyp 6
adj

tanG:Sinezﬂ Ctezc?seza_dj

cos®  adj sin@  opp

1 h; 1 h

sec O = :LP cscG:.—:Lp

cos®  adj sin@®  opp

Trigonometric Functions

sin6=X csc@:l

r y

X r
cos 6 = — secH = —

r X

) X
tan(—):Z cotf = —

X y
. sin@ 1 —rcos6
lim — =1 li =
0—-0 0 0—0 6

Fundamental Identities
sin2 6 + cos? 0 = 1 sin(—@) = —sin O
1 + tan? 6 = sec? 0 cos(—60) =cos O

1+ cot2 6 = csc2 6 tan(—60) = —tan O

sin (g — 6) =cos O sin(6 + 2m) = sin O

cos (g — 9) =sin 6 cos(0 + 2m) = cos O

tan(6 + m) = tan O

tan (g - 6) =cotf

The Law of Sines

sin A sin B sin C

a b ¢
The Law of Cosines
a2 = b2+ ¢2 —2bccos A A

Addition and Subtraction Formulas

sin(x 4 y) = sinx cos y + cosx sin y
sin(x —y) =sinx cosy —cosx siny
cos(x + y) = cosx cosy — sinx siny

cos(x — y) = cosx cosy + sinxsiny

tanx +tany
tan(x +y) = ———
’ 1 —tanxtany
tanx —tany
tan(x —y) =

1 +tanxtany

Double-Angle Formulas

sin2x = 2sin x cos x

cos2x = cos? x —sin?x = 2cos?x — 1 =1 —2sin? x
2tanx
tan2x=72
1 — tan“ x
) 1 —cos2x 2 1 + cos2x
sin“ x = — Ccos“ x = —

Graphs of Trigonometric Functions

y ¥
y=sinx

y=cosx

1+ 1,
AN

y y

| -

7\/” W N
ht
14 14
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AN Y



Power Functions f(x) = x*

f(x) = x", n apositive integer

LD

ELEMENTARY FUNCTIONS

neven

Asymptotic behavior of an even polynomial function

y

Inverse Trigonometric Functions

arcsinx =sin"'x = 6

& sin@=x, —

SIS
IA
D
IA

ST

6 =sin"'x

=

2f v=x
—
\)’ =3
H (0
T : X
- 1
(-1,-1) it
_2__
n odd

Asymptotic behavior of an odd polynomial function

arccosx = cos 1l x = 0 arctanx = tan" ' x = 6
T
& cosO=x, 0<6O<nm & tanB = x, —5595
o )
T+
7| 6 =tan"lx
2
6 =cos!x . .
T T
-1 1
| _Zl
T T X
- i 2

YRS



Exponential and Logarithmic Functions

log, x=y & a’=x Inx=y <& &' =ux
log, (a*) = x a2 = x In(e¥) =x " =x
log,1 =0 log,a =1 Inl1 =0 Ine=1

y

y=ex
44
y=x
31
24

T T T T X
-1 1 2 3 4
_1_./
Iim a* =00, a>1 Iim a*=0, a>1
X—> 00 X—>—00
lim a* =0, 0<a<1 Iim a* =00, 0<a<1
X—00 X—>—00
Hyperbolic Functions
X _ ,—X 1
sinhx = ¢ ¢ cschx = — Y
2 sinh x
b e +e* b 1 3T
coshx = 7 sechx = - y = cosh x )L
sinh sh
tanhx = Sn Y cothx = C?b a
cosh x sinh x f } } } X
-2 -1 1 2
—1+
y=sinh x o4l
_3__

sinh(x + y) = sinh x cosh y 4 cosh x sinh y
cosh(x 4 y) = coshx cosh y + sinh x sinh y

Inverse Hyperbolic Functions

y = sinh™'x &
y = cosh™'x &

y = tanh~'x &

sinhy = x

coshy=x and y >0

tanhy = x

loga (xy) = loga X+ loga y

loga (g) = loga X = loga y

log,(x") =rlog, x

y
y=log,x
2T y=Ilogx
| y=logsx
y=logjyx
—t——+ X
1 2 3 4 5
lim log, x = —o0
x—0F a
lim log, x = o0
X—> 00 ga
y
y=cothx
1
y = tanh x
t t
=2 2

sinh 2x = 2 sinh x cosh x

cosh 2x = cosh? x + sinh? x




Differentiation Rules

d
1. — () =0
T (c)

2. —x =1
dx

d )
3. d—(x”) =nx""1  (Power Rule)
X

d
4. d—[cf(x)] =cf'(x)
X

1
5. d‘—lf(x) el =) +¢' )
X

DIFFERENTIATION

21 d(tan_l )
. — X) =
dx

1+ x2
22. %(csc_lx) = —x\/%
23. %(sec_1 x) = x\/%
24. %(cot_l X) = —1 —i—1x2

Exponential and Logarithmic Functions

d
25. — () =¢*

dx
d , ,
6. E[f(x)g(x)] = f(x)g'(x) + gx)f'(x) (Product Rule) 26, i(ax) _
dx
df]_ @) f'(x)— fx)g' (x) ) )
7. I [g(x)] = e (Quotient Rule) 27, " In x| = -

d , , .
8. ——/f(g) = f'(gx)g'(x)  (Chain Rule)
9. %f(x)” =nf(x)" ' #'(x) (General Power Rule)

10. if(kx +b) = kf'(kx 4+ b)
dx

11. g'(x) = m where g(x) is the inverse £~ !(x)
d NEALC))
12 i f) =

Trigonometric Functions

d
13. — sinx = cosx
dx

14. — cosx = —sinx
dx

d
15. — tanx = sec? x

dx
d
16. — cscx = —cscxcotx
dx
d
17. — secx = secx tanx
dx
_ -
18. — cotx = —csc“ x
dx

Inverse Trigonometric Functions
1

V1—x2

1 1

X)z_\/l—xz

d
19. a(sin_l X) =

d
20. — -
I (cos

d
28. —(l =
dx (logg ) (Ina)x

Hyperbolic Functions
d .
29. —(sinhx) = coshx
dx
d .
30. —(coshx) = sinhx
dx
d 2
31. —(tanhx) = sech“x
dx
d
32. —(cschx) = —cschx cothx
dx
d
33. — (sechx) = —sech x tanh x
dx

d
34. —(cothx) = — csch? x
dx

Inverse Hyperbolic Functions
1

d
35. —(sinh~lx) =
dx

V14x2
d 1
36. —(cosh_lx) =
dx X2 — 1
d 1 1
37. —(tanh™ "'x) = ——
dx (tan %) 1 —x2
d 1 1
38. —(csch™ ' x) = ————
dx lx[vx2 +1
d 1 1
39. —(sech™ " x) = ————
dx xv/1—x2
d 1 1
40. — (coth™ =
dx (co %) 1—x2



INTEGRATION

Substitution Integration by Parts Formula

If an integrand has the form f(u(x))u’(x), then rewrite the entire
integral in terms of « and its differential du = u’(x) dx:

/f(u(x))u/(x)dx:ff(u)du

/u(x)v/(x) dx = u(x)v(x) —/u/(x)v(x)dx

TABLE OF INTEGRALS

H n+1
Basic Forms 2. /u" Mudu = ———[(n+ Dinu— 1]+ C
n+1 n+1)
1 " dy = c, —1 1
f” i 23./1—du:1n|1nu|+C
du uinu
2. [ — =Injul+C .
u Hyperbolic Forms
3. /e”du*e”JrC
24, /sinhudu:coshquC
u
4. [a"du=—+C
/u o + 25. /coshudu:sinhu+C

5. inudu =— C
/smu “ cosu + 26. /tanhudu:lncoshquC

6. /Cosudu:smu-‘rc 27. /cothudu:ln\sinhu\+c

2
7. = 1.
/sec udu =tanu +C 28. /sechudu:tan 1|smhu|+C

o]

. fcsczudu:—cotquC

1
29. /cschudu = In |tanh Eu +C

sech? u du = tanhu + C

9. /secutanudu =secu+ C
30.

10. /cscucotudu =—cscu +C

11. /tanudu:lnlseculJrC

32. sechutanhu du = —sechu + C

31. /csch2 udu =—cothu + C

12 /cotudu = Infsinul +C 33. /cschucothudu:—cschu+c

13. /secudu = In|secu + tanu| + C . .
Trigonometric Forms

14. /cscudu:lnlcscu—cotul-i-c 5 1 1
34. /sm udu:Eu—Zsin2u+C

d
15-/_ L —sinliic 2 L .
[a2 — 42 a 35. /cos udu = §u+zsm2u+c
1 du 1 _qu c
6. a2+u2_;tan E+ 36./tan2udu:tanu—u+c
Exponential and Logarithmic Forms 3. /cot wdu = —cotu —u+C
au l au
17. | ue™ du = a—z(au—l)e +C 38. /sm udu:——(2+s1n u)cosu + C
nau 1 nau n n—1 _au 1
18. u" e du = ;M € 3 u e du 39. /cos udu*§(2+cos u)sinu + C
e(ALl 1
19. | e**sinbudu = ——— (asinbu — b cosbu) + C 40. [ tan? udu = = tan® u +In|cos u| + C
a? 4 b2 2
au 1
20. | e cosbudu = ——— (acosbu + bsinbu) + C 41. [ coP udu = —= cot?u —In|sinul + C
aZ + b2 2
1
21. /lnudu:ulnu—quC 42. /sec udu = —secutanqu lnlsecu+tanu|+C



43. | csdudu = —%cscucolu-ﬁ- %lnlcscu —cotu|+C Forms |nV0|Ving «/az - u2, a>0

1 n—1 2
sin” u du = sin" !y cosu + Tfsin”_zudu 67. /\/a2_u2du :% a2 —u2 + %sin*l e
a
1 _ . n—1 _ 4
cos" udu = Ecos” lusmu—&—T/cos” Zudu 68. /uz\/az—uzdu:%(hz—az) a2—u2+%sin_lg+c

1

n—1 n—2 Va2 —u?
— tan u—/tan udu 69./ U =V i —aln
u

44.

45.

tan” u du =

46.

-1
47. [ cot” udu = cot" 1y —/cot" 2udu [2_ .2
- 1
n—1 70./7“ o du= Va2 -2 —sin Ly
1 5 n—2 ) u u a
48. | sec’ udu = tanu sec” " u + /sec" udu 2y 2
n—1 n—1 LA T I N B NN P R
1 ) n—2 ) [a2 — u2 2 2 a
49. | cesc"udu = cotucsc"Cu + /csc"— udu
n-—= n—1 72/ 11 a++va?—u? +C
in(@—b in(@+ b O B e Al B
50. [ sinausinbudy = SM@ =D _sin@rbu wa —u2
2(a — b) 2(a +b) 1 > i
in(a — b i b 73./7:—f\/u —u-+C
51. [ cosau cosbudu = sin(a — bju + sin(@ + bju +C u2va?2 —u? a’u
2a—b) | 2a+b 3t
s(a—b s(a+ b : 2232, Y2 s2 /o 5,04 L —1U
52. | sinawu cosbu du = _cosla—bju _ cos(a+ byu +C 74 /(a u“)’'“du 8(2u 5a*)Wa? —u? + g ST - +C
2(a — b) 2(a +b) du ;
75. = +C
53. [ usinudu =sinu —ucosu + C (@ —u232 2 /22
54. | ucosudu = cosu+usinu+ C Forms Involving vu2 —a2,a > 0

55.

2
u" sinu du :—u”cosu+n/u’1_l cosudu 76. /quz_uzdu — 21/,42_“2_ a—ln|u+~/u2—u2|+C
2 2
u" cosudu = u" sinu—n/u”*lsinu du 77. /Lﬂ\/uz_azdu
4
sin” u cos™ u du = %(2142 —aHVu? —a? - %l“ lu+Vu?—a?|+C

56.

57.

— e S S S S S S S S S S e e

si"lycos” -1
=- + sin" =2 u cos™ u du Ju2 =42
n+m n+m/ 78./udu: 2 —a2—acos™' L 4 C
sintlucos™y  m—1 2 \/u— N !
= + sin” ucos" " ud 2_ 2 2_ 2
n+m n+m/ " wau 79./‘udu:—untln‘qu\/uz—az‘JrC
u
. . Tu
Inverse Trigonometric Forms 80./\/% m]u+¢ —a \+c
us—a

58. [ sinludu=usintu+vV1—u2+C 2q 2
f udu =u u u 81, | 4% :g\/uz—aer%1n)u+\/u2—a2|+c

2 2
u?—a
59. fcos_ludu:Ltcos_llt—\/l—112+C I g
82. = +C
1 i 2/u2 — 42 a’u
60. ftan_luduzutan_lu—Eln(l-i—uz)-i—c uvur—a
u
2 JI— a2 83'/(2 M2 a3 > +C
2u” — 1 - us—asy a’*\u? —a
61./usin_1udu: u4 sin‘lu+%+c

i 2 2 0
w2 — 1 =2 Forms Involving va2 + u?,a >
62 /ucos_ludu: u4 os™l % )
84./\/a2+u2du:%\/m+%ln(u+ a2 +u?)+C
85. /uzx/aeruzdu
64, [ u"sin wdu — —1 |+ gin! Wt du | ; o
SRl R AN ] = M@ 2 Wl = il Va1 ) + €

241
63./utan_1udu:uzJr tan_lu—ngC

1 w1 dy
n -1 _ n+1 -1 _ 2 2 2 2
65'/” € “‘”“ml[“ st | rmal ! 86./7Va 0 =V —am | YT ¢
u u
n+1
noo—1 _ 1, —1 u" du /a2 + u2 /2 & 2
66. /u tan uduin-i—l |:u’ tan u—/H—’ﬂ:|, n#—1 87. yarTu” :u duzfia tu +ln(u+ 02+M2)+C
u u



=In(u+ Va2 +u?)+C

88. / _du
vV a? +u?

2 du u a?
89./u—:—vu2+u2——lnu+ a2 +u?)+C
vaz +u? 2 2 ( )

du 1 a’?+u?+a
90. /7:f—ln ——|+C
uva? + u? a u
Va2 4+ u?

91 - +C

du
’ -/‘142\/5124-142 a a?u

u

du
92. f = +C
(@ +u?)3/2 a?y/a? +u?

Forms Involving a + bu

! 1
93./ L (a+bu—alnla+bul)+C

a+ bu - b2
2
d 1
94, /a”+ b”M = ﬁ[(aeru)z74a(a+bu)+2a21n la +bul] + C

95. fd—” L
u(a + bu) a

%. [ttt
u?(a + bu) au

b
a—+ bu Lc

a+ bu
b
aZ

d ] 1
97. = ¢ S nla+bul+C
(a + bu) b“(a+bu)y b
du 1 1 a+ bu
98. = ——=1In +C
/u(a+bu)2 a(a+bu) a2
2 2
d 1
9. [ L atbu— —L— —2alnja+bul)+C
(a+bu)?2 b3 a+ bu

2
100. / uNa+ budu = m(3bu —2a)(a +bu)¥*+ C

101. fu”«/a + budu
|:L1”(a + bu)3% — na/ W Va ¥ bu du:|

T b@n+3)
udu 2
102. = —(bu —2a)va+bu+C
Ja+ bu 3b2 ( )
103 udu  2u"a+bu 2na u" 1 du
: fatbu  bQ2n+1) b2n+1)) Ja+bu
d 1 WV bu —
104. /7M:—ln Vatbu=val o iraso
uva+bu Ja |Va+bu+a

2 b
- an! 4T e ifa<0
A/ —da —d

/’ du - va+ bu b(2n — 3) du
“Joundatbu . an—Durt 2a(n—1) ) w=1a+ bu
IV b 1
106./Mdu:2\/a+bu+a/ <
u

us/a+ bu
/«/a-i—lmd «/a+bu+b/ du
u=— - | —
u? u 2 ) ua+bu

105

107.

Forms Involving v/2au — u?,a > 0
_ 2 _
108. /\/25”4 —2du = % Qau — u? + %Cos_l (a ”) e
a
109. /u\/Zau —u?du

2u? — au — 3d? a’ a—u
S — 2au—u2+7005_1( y )+C

d _
110. /714:003_1(“ ”>+c
V2au — u? a
7\/2au—uz iC

du
111. / =
uv2au — u? au

ESSENTIAL THEOREMS

Intermediate Value Theorem

If f(x) is continuous on a closed interval [a, b], then for every value
M between f(a) and f(b), there exists at least one value ¢ € |a, b]
such that f(c) = M.

Mean Value Theorem

If f(x) is continuous on a closed interval [a, b] and differentiable on
(a, b), then there exists at least one value ¢ € (a, b) such that
. S() — f(a)
fllo)y=———
—a

Extreme Values on a Closed Interval

If f(x) is continuous on a closed interval [a, b], then f(x) attains
both a minimum and a maximum value on |a, b]. Furthermore, if

c € la, bl and f(c) is an extreme value (min or max), then c is either
a critical point or one of the endpoints a or b.

The Fundamental Theorem of Calculus, Part |

Assume that f(x) is continuous on [a, b] and let F(x) be an
antiderivative of f(x) on |a, b]. Then

b
/ f(x)dx = F(b) — F(a)

Fundamental Theorem of Calculus, Part Il

Assume that f(x) is a continuous function on [a, b]. Then the area

X
function A(x) = / f(t)dt is an antiderivative of f(x), that is,
a

X
A'(x) = f(x) orequivalently ;—xf SWydt = f(x)
a

Furthermore, A (x) satisfies the initial condition A(a) = 0.



