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CHAPTER1

Techniques of Integration

In Calculus 1, you studied several basic techniques for evaluating simple inte-
grals. In this chapter, you will study other integration techniques, such as in-
tegration by parts, that are used to evaluate more complicated integrals. You
will also learn how to evaluate improper integrals.

1.1 Basic Integration Rules

In this chapter, you will study several integration techniques that greatly ex-
pand the set of integrals to which the basic integration rules can be applied.
A major step in solving any integration problem is recognizing which basic
integration rule to use. As shown in Example 1.1, slight differences in the in-
tegrand can lead to very different solution techniques.

Example 1.1. Evaluate each integral

a)
∫

1

x2 +1
d x b)

∫
x

x2 +1
d x c)

∫
x2

x2 +1
d x

Solution 1.1. a)
∫

1

x2 +1
d x = tan−1 x +C .

b)
∫

x

x2 +1
d x = 1

2

∫
2x

x2 +1
d x = 1

2
ln

(
1+x2)+C .

c)
∫

x2

x2 +1
d x =

∫ (
1− 1

x2 +1

)
d x = x − tan−1 x +C .

5



6 CHAPTER 1. TECHNIQUES OF INTEGRATION

Some times you need to use two basic rules to solve a single integral as
shown in Example 1.2.

Example 1.2. Evaluate
∫ 1

0

x +3p
4−x2

d x.

Solution 1.2. Begin by writing the integral as the sum of two integrals. Then
apply the Power (Substitution) Rule and the Arcsine Rule, as follows.

∫ 1

0

x +3p
4−x2

d x =
∫ 1

0

xp
4−x2

d x +
∫ 1

0

3p
4−x2

d x

=−1

2

∫ 1

0

2xp
4−x2

d x +3
∫ 1

0

1p
22 −x2

d x

=
[
−

√
4−x2 +3sin−1 x

2

]1

0

= 2−p
3+ π

2

Often you need your intelligence in the appropriate substitution to solve
the integration. Consider the following three examples.

Example 1.3. Evaluate
∫

1p
x − 3

p
x

d x.

Solution 1.3. Because two different radicals appear in the problem, the sub-
stitution x = u6, [6 = Least Common Multiple of 2 and 3] will eliminate both,
and you have

∫
1p

x − 3
p

x
d x =

∫
6u5

u3 −u2
du = 6

∫
u3

u −1
du

= 6
∫ [

u2 +u +1+ 1

u −1

]
du

= 2u3 +4u2 +6u +6ln |u −1|+C

= 2
p

x +4 3
p

x +6 6
p

x +6ln
∣∣ 6
p

x −1
∣∣+C

Example 1.4. Find
∫

x2

16+x6
d x.
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Solution 1.4. Because the denominator can be written in the form 16+ x6 =
42 + (

x3
)2

you can try the substitution u = x3. Then du = 3x2d x and you have∫
x2

16+x6
d x = 1

3

∫
3x2

42 + (
x3

)2 d x = 1

3

∫
1

42 +u2
du

= 1

12
tan−1 u

4
+C = 1

12
tan−1 x3

4
+C

Example 1.5. Evaluate
∫

3ex +5

2ex +7
d x.

Solution 1.5. One of the methods to solve this integral is by writing the inte-
gral as the sum of two integrals as in Example 1.2. To do this, we find constants
α and β such that

3ex +5 =α(
2ex +7

)+β d

d x

(
2ex +7

)= 2(α+β)ex +7α

Comparing the coefficients in both sides of the above equation yields to solve

the two equations 2(α+β) = 3 and 7α = 5 which gives us α = 5

7
and β = 11

14
.

So, ∫
3ex +5

2ex +7
d x = 5

7

∫
����2ex +7

����2ex +7
d x + 11

14

∫
2ex

2ex +7
d x

= 5

7
x + 11

14
ln

(
2ex +7

)+C

Surprisingly, two of the most commonly overlooked integration rules are
the Log Rule and the Power (Substitution) Rule. Notice in the next two exam-
ples how these two integration rules can be disguised.

Example 1.6. Find
∫

1

1+ex
d x.

Solution 1.6. The integral does not appear to fit any of the basic rules. How-
ever, multiply both the numerator and the denominator by e−x and then the
quotient form suggests the Log Rule as follows.∫

1

1+ex
d x =

∫
1

1+ex
× e−x

e−x
d x =−

∫ −e−x

e−x +1
= ln

(
e−x +1

)+C

Example 1.7. Evaluate
∫

(cot x) [ln(sin x)] d x.
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Solution 1.7. Again, the integral does not appear to fit any of the basic rules.
However, considering the two primary choices for u [u = cot x and u = ln(sin x)]
you can see that the second choice is the appropriate one because

du = cos x

sin x
d x = cot x d x

So, ∫
(cot x) [ln(sin x)] d x =

∫
u du = 1

2
u2 +C = 1

2
[ln(sin x)]2 +C

Trigonometric identities can often be used to fit integrals to one of the ba-
sic integration rules.

Example 1.8. Find
∫

tan2(2x)d x.

Solution 1.8. Note that tan2 t is not in the list of basic integration rules. How-
ever, sec2 t is in the list. This suggests the trigonometric identity tan2 t = sec2 t−
1. ∫

tan2(2x)d x =
∫ [

sec2(2x)−1
]

d x = 1

2
tan(2x)−x +C

Completing the square helps when quadratic functions are involved in the
integrand. For example, the quadratic ax2 +bx + c can be written as the dif-
ference of two squares by adding and subtracting (b/2)2. If the leading coeffi-
cient is not 1, it helps to factor before completing the square.

Example 1.9. Find
∫

1

x2 −4x +7
d x.

Solution 1.9. You can write the denominator as the sum of two squares, as
follows.

x2 −4x +7 = (
x2 −4x +4

)−4+7 = (x −2)2 +3

Now, in this completed square form, we have∫
1

x2 −4x +7
d x =

∫
1

(x −2)2 +3
d x = 1p

3
tan−1 x −2p

3
+C
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Exercise 1.1. Evaluate each of the following integrals.

1.
∫

1

(5x −3)4
d x.

2.
∫

1p
x

(
1−2

p
x
) d x. Hint: Let u = 1−2

p
x

3.
∫

ln
(
x2

)
x

d x. Hint: Let u = ln
(
x2

)= 2ln x

4.
∫

6p
10x −x2

d x. Hint: Complete the square of 10x −x2

5.
∫ p

ex −1d x. Hint: Let u2 = ex −1

6.
∫ 6

0

2x +5p
2x +4

d x

7.
∫

xe−1 +ex−1

xe +ex
d x

8.
∫

e2x −1

e2x +1
.

9.
∫

1

x10 +x
d x. Hint: Multiply by

x−10

x−10

10.
∫

1p
x +1−p

x
d x. Hint: Multiply by

p
x +1+p

xp
x +1+p

x

11.
∫ [

x

(x −1)2 +1

]2

d x. Hint: Note that x2 = [(x −1)+1]2

12.
∫ 4

2

p
ln(9−x)p

ln(9−x)+p
ln(x +3)

d x.

Hint: As x goes from 2 to 4, 9− x and x + 3 go from 7 to 5, and from
5 to 7, respectively. This symmetry suggests the substitution x = 6− y
reversing the interval [2,4].
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1.2 Integration by Parts

In this section you will study an important integration technique called inte-
gration by parts. This technique can be applied to a wide variety of functions
and is particularly useful for integrands involving products of algebraic and
transcendental functions. For instance, integration by parts works well with
integrals such as∫

xn ln x d x,
∫

xn sin−1 x d x,
∫

xneax d x, and
∫

eax sin(bx)d x

Integration by parts is based on the formula for the derivative of a product of
two functions f (x) and g (x).

Theorem 1.2.1. If u and v are functions of x and have continuous derivatives,
then ∫

u d v = u v −
∫

v du.

This formula expresses the original integral in terms of another integral.
Depending on the choices of u and v it may be easier to evaluate the sec-
ond integral than the original one. However, some authors suggest a way for
selecting the first and second function. If we denote Logarithmic, Inverse
trigonometric, Algebraic, Trigonometric, and Exponential functions by their
first alphabet respectively, then the first function u is selected according to the
letters of the group LIATE.

Example 1.10. Evaluate
∫

xex d x.

Solution 1.10. The LIATE suggests u = x as the first option and d v = exd x.
So,

u = x → du = d x and d v = exd x → v = ex

Now, integration by parts produces∫
xex d x = xex −

∫
ex d x = xex −ex +C

Example 1.11. Find
∫

2x2 ln
p

x d x.
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Solution 1.11. First notice that∫
2x2 ln

p
x d x =

∫
2x2 ln

(
x

1
2

)
d x =

∫
x2 ln x d x

In this case, we let

u = ln x → du = 1

x
d x and d v = x2d x → v = x3

3

Integration by parts produces∫
2x2 ln

p
x d x =

∫
x2 ln x d x

= 1

3
x3 ln x −

∫ (
x3

3

)(
1

x

)
d x

= 1

3
x3 ln x − 1

3

∫
x2 d x = 1

3
x3 ln x − 1

9
x3 +C

Example 1.12. Evaluate
∫ 1

0
sin−1 x d x.

Solution 1.12. Let u = sin−1 x → du = 1p
1−x2

d x and d v = d x → v = x. Inte-

gration by parts now produces∫
sin−1 x d x = x sin−1 x −

∫
xp

1−x2
d x

= x sin−1 x + 1

2

∫
2xp

1−x2
d x

= x sin−1 x +
√

1−x2 +C

Using this anti-derivative, you can evaluate the definite integral as follows.∫ 1

0
sin−1 x d x =

[
x sin−1 x +

√
1−x2

]1

0
= π

2
−1

Some integrals require starting by substitution method then integrate by
parts, may repeatedly.

Example 1.13. Find
∫

1

3
sin 3

p
x d x.



12 CHAPTER 1. TECHNIQUES OF INTEGRATION

Solution 1.13. First we use the substitution x = y3 → d x = 3y2d y to solve this
integral, and we obtain ∫

1

3
sin 3

p
x d x =

∫
y2 sin y d y

Let u = y2 → du = 2yd y and d v = sin yd y → v =−cos y . Integration by parts
now produces ∫

y2 sin y d y =−y2 cos y +
∫

2y cos y d y

This first use of integration by parts has succeeded in simplifying the original
integral, but the integral on the right still doesn’t fit a basic integration rule. To
evaluate that integral, you can apply integration by parts again. This time, let
u = 2y → du = 2d y and d v = cos yd y → v = sin y . Now, integration by parts
produces∫

2y cos y d y = 2y sin y −
∫

2sin yd y = 2y sin y +2cos y +C

Combining these two results, you can write∫
1

3
sin 3

p
x d x =

∫
y2 sin y d y

=−y2 cos y +2y sin y +2cos y +C

=− 3
√

x2 cos 3
p

x +2 3
p

x sin 3
p

x +2cos 3
p

x +C

The following example will require a technique that deserves special at-
tention.

Example 1.14. Evaluate
∫

ex cos x d x.

Solution 1.14. Let u = cos x → du =−sin xd x and d v = exd x → v = ex . Thus,∫
ex cos x d x = ex cos x +

∫
ex sin x d x

Since the integral
∫

ex sin x d x is similar in form to the original integral
∫

ex cos x d x

, it seems that nothing has been accomplished. However, let us integrate this
new integral by parts. We let u = sin x → du = cos xd x and d v = exd x → v =
ex . Thus, ∫

ex sin x d x = ex sin x −
∫

ex cos x d x
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Combining these two results, you can write∫
ex cos x d x = ex cos x +ex sin x −

∫
ex cos x d x

which is an equation we can solve for the unknown integral. We obtain

2
∫

ex cos x d x = ex cos x +ex sin x

and hence ∫
ex cos x d x = 1

2
ex cos x + 1

2
ex sin x +C

Example 1.15. Find
∫

sec3 x d x.

Solution 1.15. The most complicated portion of the integrand that can be
easily integrated is sec2 x so you should let u = sec x → du = sec x tan xd x and
d v = sec2 xd x → v = tan x. Integration by parts produces∫

sec3 x d x = sec x tan x −
∫

sec x tan2 x d x

= sec x tan x −
∫

sec x
(
sec2 x −1

)
d x

= sec x tan x −
∫

sec3 x d x +
∫

sec x d x

2
∫

sec3 x d x = sec x tan x +
∫

sec x d x

2
∫

sec3 x d x = sec x tan x + ln |sec x + tan x|+C∫
sec3 x d x = 1

2
sec x tan x + 1

2
ln |sec x + tan x|+C

In each of the following problems, the integration by parts is a bit more
challenging.

Example 1.16. Evaluate
∫ (

sin−1 x
)2

d x.
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Solution 1.16. Let θ = sin−1 x. So, x = sinθ and d x = cosθdθ. Thus,∫ (
sin−1 x

)2
d x =

∫
θ2 cosθdθ (let u = θ2 and d v = cosθdθ)

= θ2 sinθ−
∫

2θ sinθdθ (let u = 2θ and d v = sinθdθ)

= θ2 sinθ+2θcosθ−2
∫

cosθdθ

= θ2 sinθ+2θcosθ−2sinθ+C

= x
(
sin−1 x

)2 +2
√

1−x2 sin−1 x −2x +C

p
1−x2

x1

θ

Example 1.17. Evaluate
∫

x2ex

(x +2)2
d x.

Solution 1.17. let u = x2ex and d v = 1

(x +2)2
d x

∫
x2ex

(x +2)2
d x =−x2ex

x +2
+

∫
����(x +2)xex

���x +2
d x

=−x2ex

x +2
+

∫
xex d x

=−x2ex

x +2
+xex −ex +C

Exercise 1.2. Evaluate each of the following integrals.

1.
∫ (

x2 −x +1
)

ex d x. Hint: by parts, let u = x2 −x +1

2.
∫

x
p

x −5d x. Hint: by substitution, let y = x −5

3.
∫ π/8

0
x sec2 x d x. Hint: by parts, let u = x
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4.
∫

cos(ln x) d x. Hint: Start by substituting y = ln x

5.
∫

xex sin x d x. Hint: by parts, let u = x

6.
∫

ln
(
x +

√
x2 +1

)
d x. Hint: by parts, let u = ln

(
x +

p
x2 +1

)
7.

∫
x

1+ sin x
d x. Hint: Multiply by

1− sin x

1− sin x

8.
∫

ln x −1

(ln x)2 d x.

9.
∫

x (1+ ln x)2 d x. Hint: by parts, let u = (1+ ln x)2

10.
∫

(ln2x) (ln x) d x. Hint: ln(ab) = ln a + lnb

11.
∫

ln

(
x +1

x −1

)
d x. Hint: ln

(a
b

)= ln a − lnb

12.
∫ p

x tan−1px d x.

1.3 Trigonometric Integrals

In this section you will study techniques for evaluating integrals of the form∫
sinm x cosn x d x and

∫
secm tann d x

where either m or n is a positive integer. To find anti-derivatives for these
forms, try to break them into combinations of trigonometric integrals to which
you can apply the Power Rule. To break up

∫
sinm x cosn x d x into forms to

which you can apply the Power Rule, use the following identities.

sin2θ+cos2θ = 1

sin2θ = 1−cos(2θ)

2

cos2θ = 1+cos(2θ)

2
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Algorithm 1.1. Guidelines for Evaluating Integrals Involving Powers of Sine
and Cosine

1. If the power of the sine is odd and positive, save one sine factor and
convert the remaining factors to cosines. Then, expand and integrate.

∫
sin

Odd︷︸︸︷
2k +1 x cosn x d x =

∫ Convert to cos︷ ︸︸ ︷(
sin2 x

)k
cosn x

Save for du︷ ︸︸ ︷
sin x d x

=
∫ (

1−cos2 x
)k

cosn x sin x d x

2. If the power of the cosine is odd and positive, save one cosine factor and
convert the remaining factors to sines. Then, expand and integrate.

∫
sinm x cos

Odd︷︸︸︷
2k +1 x d x =

∫
sinm x

Convert to sin︷ ︸︸ ︷(
cos2 x

)k
Save for du︷ ︸︸ ︷
cos x d x

=
∫

sinm x
(
1− sin2 x

)k
cos x d x

3. If the powers of both the sine and cosine are even and non-negative,
make repeated use of the identities

sin2 x = 1−cos(2x)

2
and cos2 x = 1+cos(2x)

2

to convert the integrand to odd powers of the cosine. Then proceed as
in guideline 2.

Example 1.18. Evaluate
∫

sin3 x cos4 x d x.

Solution 1.18. Because you expect to use the Power Rule with u = cos x, save
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one sine factor to form du and convert the remaining sine factors to cosines.

∫
sin3 x cos4 x d x =

∫
sin2 x cos4 x sin x d x

=
∫ (

1−cos2 x
)

cos4 x sin x d x

=
∫ (

cos4 x −cos6 x
)

sin x d x Let u = cos x

=
∫ (

u6 −u4) du

= 1

7
u7 − 1

5
u5 +C

= 1

7
cos7 x − 1

5
cos5 x +C

In the next example the power of the cosine is 3, but the power of the sine
is −1

2 .

Example 1.19. Find
∫ π/2

π/6

cos3 xp
sin x

d x.

Solution 1.19. Because you expect to use the Power Rule with u = sin x, save
one cosine factor to form du and convert the remaining cosine factors to
sines.

∫ π/2

π/6

cos3 xp
sin x

d x =
∫ π/2

π/6

cos2 x cos xp
sin x

d x

=
∫ π/2

π/6

(
1− sin2 x

)
cos xp

sin x
d x Let u = sin x

=
∫ 1

1/2
u− 1

2
(
1−u2) du

=
∫ 1

1/2

(
u− 1

2 −u
3
2

)
du =

[
2u

1
2 − 2

5
u

5
2

]1

1/2
= 32−19

p
2

20

Example 1.20. Evaluate
∫

cos4 x d x.
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Solution 1.20. Because m and n are both even and non-negative (m = 0) you

can replace cos4 x by
[

1+cos(2x)
2

]2
.

∫
cos4 x d x =

∫ [
1+cos(2x)

2

]2

d x

=
∫ [

1

4
+ cos(2x)

2
+ cos2(2x)

4

]
d x

=
∫ [

1

4
+ cos(2x)

2
+ 1+cos(4x)

8

]
d x

= 3

8

∫
d x + 1

2

∫
cos(2x)d x + 1

8

∫
cos(4x)d x

= 3

8
x + 1

4
sin(2x)+ 1

32
sin(4x)+C

Theorem 1.3.1. WALLIS’S FORMULAS

1. If n is odd (n ≥ 3), then∫ π/2

0
cosn x d x =

(
2

3

)(
4

5

)(
6

7

)
· · ·

(
n −1

n

)
.

2. If n is even (n ≥ 2), then∫ π/2

0
cosn x d x =

(
1

2

)(
3

4

)(
5

6

)
· · ·

(
n −1

n

)(π
2

)
.

These formulas are also valid if cosn x is replaced by sinn x.

Example 1.21. Evaluate
∫ π/2

0

(
8cos4 x −3sin5 x

)
d x.

Solution 1.21. By using Wallis’s Formulas, we have∫ π/2

0

(
8cos4 x −3sin5 x

)
d x = 8

∫ π/2

0
cos4 x d x −3

∫ π/2

0
sin5 x d x

= 8

(
1

2

)(
3

4

)(π
2

)
−3

(
2

3

)(
4

5

)
= 15π−16

10
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The following guidelines can help you evaluate integrals of the form
∫

secm x tann x d x.

Algorithm 1.2. Guidelines for Evaluating Integrals Involving Powers of Se-
cant and Tangant

1. If the power of the secant is even and positive, save a secant-squared
factor and convert the remaining factors to tangents. Then expand and
integrate.

∫
sec

Even︷︸︸︷
2k x tann x d x =

∫ Convert to tan︷ ︸︸ ︷(
sec2 x

)k−1
tann x

Save for du︷ ︸︸ ︷
sec2 x d x

=
∫ (

1+ tan2 x
)k−1

tann x sec2 x d x

2. If the power of the tangent is odd and positive, save a secant-tangent
factor and convert the remaining factors to secants. Then expand and
integrate.

∫
secm x tan

Odd︷︸︸︷
2k +1 x d x =

∫
secm−1 x

Convert to sec︷ ︸︸ ︷(
tan2 x

)k
Save for du︷ ︸︸ ︷

sec x tan x d x

=
∫

secm−1 x
(
sec2 x −1

)k
sec x tan x d x

3. If there are no secant factors and the power of the tangent is even and
positive, convert a tangent-squared factor to a secant-squared factor,
then expand and repeat if necessary.

∫
tann x d x =

∫
tann−2 x

Convert to sec︷ ︸︸ ︷(
tan2 x

)
d x

=
∫

tann−2 x
(
sec2 x −1

)
d x

4. If the integral is of the form
∫

secm x d x where m is odd and positive,
use integration by parts, as illustrated in Example 1.15 in the preceding
section.

5. If none of the above applies, try converting to sines and cosines.
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Example 1.22. Evaluate
∫

tan3 xp
sec x

d x.

Solution 1.22. Because you expect to use the Power Rule with u = sec x, save
a factor of sec x tan x to form du and convert the remaining tangent factors to
secants.∫

tan3 xp
sec x

d x =
∫

(sec x)−
1
2 tan3 x d x

=
∫

(sec x)−
3
2 tan2 x sec x tan x d x

=
∫

(sec x)−
3
2
(
sec2 x −1

)
sec x tan x d x Let u = sec x

=
∫

u− 3
2
(
u2 −1

)
du =

∫ (
u

1
2 −u− 3

2

)
du

= 2

3
u

3
2 +2u− 1

2 +C

= 2

3
sec

3
2 x +2sec−

1
2 x +C

Example 1.23. Find
∫

sec4(3x) tan3(3x)d x.

Solution 1.23. Let u = tan(3x) then du = 3sec2(3x)d x and you can write∫
sec4(3x) tan3(3x)d x =

∫
sec2(3x) tan3(3x)sec2(3x)d x

=
∫ (

1+ tan2(3x)
)

tan3(3x)sec2(3x)d x

= 1

3

∫ (
1+u2)u3 du = 1

3

∫ (
u3 +u5) du

= 1

12
u4 + 1

18
u6 +C

= 1

12
tan4(3x)+ 1

18
tan6(3x)+C

Example 1.24. Evaluate
∫ π/4

0
tan4 x d x.
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Solution 1.24. Because there are no secant factors, you can begin by convert-
ing a tangent-squared factor to a secant-squared factor.∫

tan4 x d x =
∫

tan2 x tan2 x d x =
∫

tan2 x
(
sec2 x −1

)
d x

=
∫

tan2 x sec2 x d x −
∫

tan2 x d x

=
∫

tan2 x sec2 x d x −
∫ (

sec2 x −1
)

d x

= 1

3
tan3 x − tan x +x +C

You can evaluate the definite integral as follows.∫ π/4

0
tan4 x d x =

[
1

3
tan3 x − tan x +x

]π/4

0
= π

4
− 2

3

For integrals involving powers of cotangents and cosecants, you can fol-
low a strategy similar to that used for powers of tangents and secants. Also,
when integrating trigonometric functions, remember that it sometimes helps
to convert the entire integrand to powers of sines and cosines.

Example 1.25. Find
∫

sec x

tan2 x
d x.

Solution 1.25. Because the guidelines do not apply, try converting the inte-
grand to sines and cosines. In this case, you are able to integrate the resulting
powers of sine and cosine as follows.∫

sec x

tan2 x
d x =

∫ (
1

cos x

)(
cos2 x

sin2 x

)
d x

=
∫

cos x

sin2 x
d x Let u = sin x → du = cos xd x

=
∫

1

u2
du =− 1

u
+C

=− 1

sin x
+C =−csc x +C

Integrals involving the products of sines and cosines of two different an-
gles occur in many applications. In such instances you can use the following
product-to-sum identities.
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sin(mx)sin(nx) = 1

2
{cos[(m −n)x]−cos[(m +n)x]}

sin(mx)cos(nx) = 1

2
{sin[(m −n)x]+ sin[(m +n)x]}

cos(mx)cos(nx) = 1

2
{cos[(m −n)x]+cos[(m +n)x]}

Example 1.26. Find
∫

sin(5x)cos(4x)d x.

Solution 1.26. Considering the second product-to-sum identity above, you
can write ∫

sin(5x)cos(4x)d x = 1

2

∫
(sin x + sin(9x))d x

=−1

2
cos x − 1

18
cos(9x)+C

Exercise 1.3. Evaluate the following integrals.

1.
∫

sin5 x d x

2.
∫

sin5 x cos x d x

3.
∫

sin x tan2 x d x

4.
∫

x sin2 x d x

5.
∫ (

tan4 x − sec4 x
)

d x

6.
∫

cos(2x)

cos x
d x

7.
∫ π/2

0
sin12 x d x

8.
∫

sin(−4x)sin(3x)d x
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1.4 Trigonometric Substitutions

Now that you can evaluate integrals involving powers of trigonometric func-
tions, you can use trigonometric substitution to evaluate integrals involving
the radicals

p
a2 −x2,

p
a2 +x2 and

p
x2 −a2. The objective with trigonomet-

ric substitution is to eliminate the radical in the integrand. You do this by
using the Pythagorean identities

cos2θ = 1− sin2θ, sec2θ = 1+ tan2θ, tan2θ = sec2θ−1

Note 1.1. TRIGONOMETRIC SUBSTITUTION

1. For integrals involving
p

a2 −x2, let x = a sinθ. Then√
a2 −x2 = a cosθ where −π/2 ≤ θ ≤π/2

p
a2 −x2

xa

θ

2. For integrals involving
p

a2 +x2, let x = a tanθ. Then√
a2 +x2 = a secθ where −π/2 < θ <π/2

a

x
p

a2 +x2

θ

3. For integrals involving
p

x2 −a2, let x = a secθ. Then

√
x2 −a2 =

{
a tanθ if x > a where 0 ≤ θ <π/2

−a tanθ if x <−a where π/2 < θ ≤π
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a

p
x2 −a2x

θ

The restrictions on θ ensure that the function that defines the substitution
is one-to-one. In fact, these are the same intervals over which the arcsine,
arctangent, and arcsecant are defined.

Example 1.27. Find
∫

1

x2
p

9−x2
d x.

Solution 1.27. First, note that none of the basic integration rules applies. To
use trigonometric substitution, you should observe that

p
9−x2 is of the formp

a2 −x2. So, you can use the substitution x = a sinθ = 3sinθ. Using differen-
tiation and the triangle shown below, you obtain

d x = 3cosθdθ,
√

9−x2 = 3cosθ, x2 = 9sin2θ

So, trigonometric substitution yields∫
1

x2
p

9−x2
d x =

∫
3cosθ(

9sin2θ
)

(3cosθ)
dθ

= 1

9

∫
1

sin2θ
dθ = 1

9

∫
csc2θdθ =−1

9
cotθ+C

=−
p

9−x2

9x
+C

p
9−x2

x3

θ

Example 1.28. Find
∫

1p
4x2 +1

d x.
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Solution 1.28. Let 2x = tanθ then d x = 1

2
sec2θd x and

p
4x2 +1 = secθ. Trigono-

metric substitution produces∫
1p

4x2 +1
d x = 1

2

∫
sec2θ

secθ
dθ = 1

2

∫
secθdθ

= 1

2
ln |secθ+ tanθ|+C

= 1

2
ln

∣∣∣√4x2 +1+2x
∣∣∣+C

1

2x
p

1+4x2

θ

Example 1.29. Evaluate
∫

1(
x2 +1

)3/2
d x.

Solution 1.29. Begin by writing
(
x2 +1

)3/2
as

(p
x2 +1

)3
. Then, let x = tanθ.

Using d x = sec2θdθ and
p

x2 +1 = secθ you can apply trigonometric substi-
tution, as follows.∫

1(
x2 +1

)3/2
d x =

∫
1(p

x2 +1
)3 d x =

∫
sec2θ

sec3θ
dθ

=
∫

1

secθ
dθ =

∫
cosθdθ = sinθ+C

= xp
x2 +1

+C

1

x
p

x2 +1

θ

For definite integrals, it is often convenient to determine the integration
limits for θ that avoid converting back to x.
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Example 1.30. Evaluate
∫ 2

p
3

p
x2 −3

x
d x.

Solution 1.30. Because
p

x2 −3 has the form
p

x2 −a2, you can consider x =p
3secθ. Then d x = p

3secθ tanθdθ and
p

x2 −3 = p
3tanθ. To determine

the upper and lower limits of integration, use the substitution x =p
3secθ as

follows.

when x =p
3 → secθ = 1 → θ = 0

when x = 2 → secθ = 2p
3
→ θ = π

6

So, you have ∫ 2

p
3

p
x2 −3

x
d x =

∫ π/6

0

(p
3tanθ

)(p
3secθ tanθ

)
p

3secθ
dθ

=
∫ π/6

0

p
3tan2θdθ

=p
3
∫ π/6

0

(
sec2θ−1

)
dθ

=p
3[tanθ−θ]π/6

0 = 1−
p

3π

6

Exercise 1.4. Evaluate the following integrals.

1.
∫

x
√

1+x2 d x

2.
∫

1p
49−x2

d x

3.
∫

(x +1)
√

x2 +2x +2d x

4.
∫ 3/5

0

√
9−25x2 d x

5.
∫

1

4+4x2 +x4
d x

6.
∫ √

1−x

x
d x
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7.
∫ √

1−e2x d x

8.
∫

cos x
√

4sin2 x +9d x

9.
∫ √

x −1

x +1
d x. Hint: Multiply by

√
x −1

x −1

1.5 Partial Fractions

This section examines a procedure for decomposing a rational function into
simpler rational functions to which you can apply the basic integration for-
mulas. This procedure is called the method of partial fractions. Its use de-
pends on the ability to factor the denominator, and to find the partial frac-
tions.

Recall from algebra that every polynomial with real coefficients can be fac-
tored into linear and irreducible quadratic factors. For instance, the polyno-
mial x5 +x4 −x −1 can be written as

x5 +x4 −x −1 = (x −1)(x +1)2 (
x2 +1

)
where (x −1) is a linear factor, (x +1)2 is a repeated linear factor, and

(
x2 +1

)
is an irreducible quadratic factor. Using this factorization, you can write the
partial fraction decomposition of the rational expression as follows

P (x)

x5 +x4 −x −1
= A

x −1
+ B

x +1
+ C

(x +1)2
+ Dx +E

x2 +1

where P (x) is a polynomial of degree less than 5, and A,B ,C ,D,E are con-
stants.

Note 1.2. Decomposition of
N(x)

D(x)
Into Partial Fractions

1. Divide if improper: If N (x)/D(x) is an improper fraction (that is, if the
degree of the numerator is greater than or equal to the degree of the
denominator), divide the denominator into the numerator to obtain

N (x)

D(x)
= (a polynomial)+ N∗(x)

D(x)

where the degree of N∗(x) is less than the degree of D(x). Then apply

Steps 2, 3, and 4 to the proper rational expression
N∗(x)

D(x)
.
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2. Factor denominator: Completely factor the denominator into factors of
the form (αx+β)m and

(
ax2 +bx + c

)n
where ax2+bx+c is irreducible.

3. Linear factors: For each factor of the form (αx+β)m the partial fraction
decomposition must include the following sum of m fractions.

A1

(αx +β)
+ A2

(αx +β)2
· · ·+ Am

(αx +β)m

4. Quadratic factors: For each factor of the form
(
ax2 +bx + c

)n
the partial

fraction decomposition must include the following sum of n fractions.

B1x +C1(
ax2 +bx + c

) + B2x +C2(
ax2 +bx + c

)2 +·· ·+ Bn x +Cn(
ax2 +bx + c

)n

Example 1.31. Find
∫

1

x2 −5x +6
d x.

Solution 1.31. Because x2−5x+6 = (x−3)(x−2) you should include one par-
tial fraction for each factor and write

1

x2 −5x +6
= A

x −3
+ B

x −2

where A and B are to be determined. Multiplying this equation by the least
common denominator (x −3)(x −2) yields the basic equation

1 = A(x −2)+B(x −3)

Because this equation is to be true for all x, you can substitute any convenient
values for x to obtain equations in A and B . The most convenient values are
the ones that make particular factors equal to 0. To solve for A, let x = 3 to
obtain A = 1. To solve for B , let x = 2 to obtain B =−1. So,∫

1

x2 −5x +6
d x =

∫ [
1

x −3
− 1

x −2

]
d x

= ln |x −3|− ln |x −2|+C = ln

∣∣∣∣x −3

x −2

∣∣∣∣+C

Example 1.32. Evaluate
∫

5x2 +20x +6

x3 +2x2 +x
d x.
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Solution 1.32. Because x3+2x2+x = x(x+1)2 you should include one fraction
for each power of x and x +1 and write

5x2 +20x +6

x3 +2x2 +x
= A

x
+ B

(x +1)
+ C

(x +1)2

Multiplying by the least common denominator x(x+1)2 yields the basic equa-
tion

5x2 +20x +6 = A(x +1)2 +B x(x +1)+C x

To solve for A let x = 0. This eliminates the B and C terms and yields A = 6.
To solve for C let x =−1. This eliminates the A and B terms and yields C = 9.
The most convenient choices for x have been used, so to find the value of B ,
you can use any other value of x along with the calculated values of A and C .
Using x = 1, A = 6, and C = 9 produces B =−1. So, it follows that∫

5x2 +20x +6

x3 +2x2 +x
d x =

∫ [
6

x
− 1

(x +1)
+ 9

(x +1)2

]
d x

= 6ln |x|− ln |x +1|+9
(x +1)−1

−1
+C

= ln

∣∣∣∣ x6

x +1

∣∣∣∣− 9

x +1
+C

When using the method of partial fractions with linear factors, a conve-
nient choice of x immediately yields a value for one of the coefficients. With
quadratic factors, a system of linear equations usually has to be solved, re-
gardless of the choice of x.

Example 1.33. Find
∫

2x3 −4x −8(
x2 −x

)(
x2 +4

) d x.

Solution 1.33. Because
(
x2 −x

)(
x2 +4

)= x (x −1)
(
x2 +4

)
you should include

one partial fraction for each factor and write

2x3 −4x −8(
x2 −x

)(
x2 +4

) = A

x
+ B

x −1
+ C x +D

x2 +4

Multiplying by the least common denominator x (x −1)
(
x2 +4

)
yields the ba-

sic equation

2x3 −4x −8 = A(x −1)
(
x2 +4

)+B x
(
x2 +4

)+ (C x +D)x(x −1)
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To solve for A, let x = 0 and obtain A = 2. To solve for B , let x = 1 and obtain
B = −2. At this point, C and D are yet to be determined. You can find these
remaining constants by choosing two other values for x and solving the re-
sulting system of linear equations. If x =−1, then, using A = 2 and B =−2 you
can obtain −C +D = 2. If x = 2, you have 2C +D = 8. Solving these two linear
equations yields C = 2 and consequently D = 4. It follows that∫

2x3 −4x −8(
x2 −x

)(
x2 +4

) d x =
∫ [

2

x
− 2

x −1
+ 2x

x2 +4
+ 4

x2 +4

]
d x

= 2ln |x|−2ln |x −1|+ ln
(
x2 +4

)+2tan−1
(x

2

)
+C

An improper rational function can be integrated by performing a long di-
vision and expressing the function as the quotient plus the remainder over the
divisor. The remainder over the divisor will be a proper rational function.

Example 1.34. Find
∫

x3 +x2 −1

x2 +1
d x.

Solution 1.34. The integrand is an improper rational function since the nu-
merator has degree 3 and the denominator has degree 2. Thus, we first per-
form the long division.

x +1

x2 +1
)

x3 +x2 −1
−x3 −x

x2 −x −1
−x2 −1

−x −2

It follows that the integrand can be expressed as

x3 +x2 −1

x2 +1
= x +1− x +2

x2 +1

and hence∫
x3 +x2 −1

x2 +1
d x =

∫ [
x +1− x +2

x2 +1

]
d x

=
∫

x d x +
∫

1d x − 1

2

∫
2x

x2 +1
d x −2

∫
1

x2 +1
d x

= 1

2
x2 +x − 1

2
ln

(
x2 +1

)−2tan−1 x +C
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Some times it is not necessary to use the partial fractions technique on all
rational functions like in the previous example. Also, if the integrand is not
in reduced form, reducing it may eliminate the need for partial fractions, as
shown in the following example.

Example 1.35. Evaluate
∫

x2 −x −2

x3 −2x −4
d x.

Solution 1.35.∫
x2 −x −2

x3 −2x −4
d x =

∫
(x +1)����(x −2)

����(x −2)
(
x2 +2x +2

) d x

= 1

2

∫
2(x +1)(

x2 +2x +2
) d x = 1

2
ln

(
x2 +2x +2

)+C

Finally, partial fractions can be used with some quotients involving tran-
scendental functions.

Example 1.36. Find
∫

cos x

sin x(sin x −1)
d x.

Solution 1.36. Let u = sin x → du = cos xd x. So,∫
cos x

sin x(sin x −1)
d x =

∫
1

u(u −1)
du

=
∫ [

1

u −1
− 1

u

]
du ← By Partial Fractions

= ln |u −1|− ln |u|+C = ln

∣∣∣∣u −1

u

∣∣∣∣+C

= ln

∣∣∣∣sin x −1

sin x

∣∣∣∣+C = ln |1−csc x|+C

The previous example involves a rational expression of sin x and cos x.
If you are unable to find an appropriate method to solve an integral of this
forms, try using the following special substitution to convert the trigonomet-
ric expression to a standard rational expression.

Note 1.3. Substitution for Rational Functions of Sine and Cosine For inte-
grals involving rational functions of sine and cosine, the substitution

u = sin x

1+cos x
= tan

(x

2

)
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yields

cos x = 1−u2

1+u2
, sin x = 2u

1+u2
, and d x = 2

1+u2
du

Example 1.37. Find
∫

1

1− sin x +cos x
d x.

Solution 1.37. The integrand is a rational function of sin x and cos x that does
not match any appropriate we have learned before, so we make the substitu-
tion u = tan(x/2). Thus, from Note 1.3 we obtain∫

1

1− sin x +cos x
d x =

∫
1

1− 2u
1+u2 + 1−u2

1+u2

2

1+u2
du

=
∫

2(
1+u2

)−2u + (
1+u2

) du

=
∫

1

1−u
du =− ln |1−u|+C =− ln |1− tan(x/2)|+C

Exercise 1.5. Evaluate the following integrals.

1.
∫

x3 −x +3

x2 +x −2
d x

2.
∫

2x3 −4x2 −15x +5

x2 −2x −8
d x

3.
∫

2x −1

(x +1)3
d x. Hint: 2x −1 = 2(x +1)−3.

4.
∫

sin x

sin x + tan x
d x.

5.
∫ p

1−x2

x3
d x.

6.
∫

1
p

x
(
1+ 3

p
x
)2 d x

7.
∫

cos x

sin2 x +3sin x +2
d x

8.
∫

e2x

(ex +1)3 d x



1.6. IMPROPER INTEGRALS 33

9.
∫

x5

(x −1)10(x +1)10
d x

10.
∫ 1

0

x4(1−x)4

1+x2
d x

1.6 Improper Integrals

The definition of a definite integral
∫ b

a
f (x)d x requires that the interval [a,b]

be finite. Furthermore, the Fundamental Theorem of Calculus, by which you
have been evaluating definite integrals, requires that f be continuous on [a,b].

In this section you will study a procedure for evaluating integrals that do
not satisfy these requirements, usually because either one or both of the limits
of integration are infinite, or f has a finite number of infinite discontinuities
in the interval [a,b]. Integrals that possess either property are improper inte-
grals.

Definition 1.6.1. A function f is said to have an infinite discontinuity at c if,
from the right or left,

lim
x→c

f (x) =∞ or lim
x→c

f (x) =−∞

Definition 1.6.2. Improper Integrals with Infinite Integration Limits

1. If f is continuous on the interval [a,∞), then∫ ∞

a
f (x)d x = lim

b→∞

∫ b

a
f (x)d x

2. If f is continuous on the interval (−∞,b], then∫ b

−∞
f (x)d x = lim

a→−∞

∫ b

a
f (x)d x

3. If f is continuous on the interval (−∞,∞), then∫ ∞

−∞
f (x)d x =

∫ c

−∞
f (x)d x +

∫ ∞

c
f (x)d x where c any real number.
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In the first two cases, the improper integral converges if the limit exists, other-
wise, the improper integral diverges. In the third case, the improper integral
on the left diverges if either of the improper integrals on the right diverges.

Example 1.38. Evaluate
∫ ∞

1

1

x
d x.

Solution 1.38.∫ ∞

1

1

x
d x = lim

b→∞

∫ b

1

1

x
d x = lim

b→∞
[ln x]b

1 = lim
b→∞

(lnb −0) =∞

Example 1.39. Evaluate
∫ ∞

0
e−x d x.

Solution 1.39.∫ ∞

0
e−x d x = lim

b→∞

∫ b

0
e−x d x = lim

b→∞
[−e−x]b

0 = lim
b→∞

(
−e−b −1

)
= 1

Example 1.40. Evaluate
∫ ∞

0

1

x2 +1
d x.

Solution 1.40.∫ ∞

0

1

x2 +1
d x = lim

b→∞

∫ b

0

1

x2 +1
d x = lim

b→∞
[
tan−1 x

]b
0 = lim

b→∞
(
tan−1 b −0

)= π

2

Example 1.41. Evaluate
∫ ∞

1
(1−x)e−x d x.

Solution 1.41. Use integration by parts, with u = 1−x and d v = e−xd x.∫
(1−x)e−x d x =−e−x(1−x)−

∫
e−x d x

=���−e−x +xe−x +��e−x +C = xe−x +C

Now, apply the definition of an improper integral.∫ ∞

1
(1−x)e−x d x = lim

b→∞

∫ b

1
(1−x)e−x d x

= lim
b→∞

[
xe−x]b

1

=
(

lim
b→∞

b

eb

)
− 1

e
=−1

e
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Example 1.42. Evaluate
∫ ∞

−∞
ex

1+e2x
d x.

Solution 1.42. Note that the integrand is continuous on (−∞,∞). To evaluate
the integral, you can break it into two parts, choosing c = 0 as a convenient
value, and using the substitution u = ex .∫ ∞

−∞
ex

1+e2x
d x =

∫ 0

−∞
ex

1+e2x
d x +

∫ ∞

0

ex

1+e2x
d x

= lim
b→−∞

[
tan−1 (

ex)]0
b + lim

b→∞
[
tan−1 (

ex)]b
0

= lim
b→−∞

[π
4
− tan−1

(
eb

)]
+ lim

b→∞

[
tan−1

(
eb

)
− π

4

]b

0

= π

4
−0+ π

2
− π

4

= π

2

The second basic type of improper integral is one that has an infinite dis-
continuity at or between the limits of integration.

Definition 1.6.3. Improper Integrals with Infinite Discontinuities

1. If f is continuous on the interval [a,b), and has an infinite discontinuity
at b, then ∫ b

a
f (x)d x = lim

c→b−

∫ c

a
f (x)d x

2. If f is continuous on the interval (a,b], and has an infinite discontinuity
at a, then ∫ b

a
f (x)d x = lim

c→a+

∫ b

c
f (x)d x

3. If f is continuous on the interval [a,b], except for some c ∈ (a,b) at
which f has an infinite discontinuity, then∫ b

a
f (x)d x =

∫ c

a
f (x)d x +

∫ b

c
f (x)d x

In the first two cases, the improper integral converges if the limit exists, other-
wise, the improper integral diverges. In the third case, the improper integral
on the left diverges if either of the improper integrals on the right diverges.
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Example 1.43. Evaluate
∫ 1

0

1
3
p

x
d x.

Solution 1.43. The integrand has an infinite discontinuity at x = 0. You can
evaluate this integral as shown below.

∫ 1

0

1
3
p

x
d x = lim

b→0+

∫ 1

b

1
3
p

x
d x = lim

b→0+

[
x2/3

2/3

]1

b
= lim

b→0+
3

2

[
1− 3

√
b2

]
= 3

2

Example 1.44. Evaluate
∫ 2

0

1

x3
d x.

Solution 1.44. Because the integrand has an infinite discontinuity at x = 0,
you can write

∫ 2

0

1

x3
d x = lim

b→0+

∫ 2

b

1

x3
d x = lim

b→0+

[
− 1

2x2

]2

b
= lim

b→0+

[
−1

8
+ 1

2b2

]
=∞

Example 1.45. Evaluate
∫ 2

−1

1

x3
d x.

Solution 1.45. This integral is improper because the integrand has an infinite
discontinuity at the interior point x = 0. So, you can write

∫ 2

−1

1

x3
d x =

∫ 0

−1

1

x3
d x +

∫ 2

0

1

x3
d x

From Example 1.44 you know that the second integral diverges. So, the origi-
nal improper integral also diverges.

The integral in the next example is improper for two reasons. One limit of
integration is infinite, and the integrand has an infinite discontinuity at the
outer limit of integration.

Example 1.46. Evaluate
∫ ∞

0

1p
x(x +1)

d x.
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Solution 1.46. To evaluate this integral, split it at a convenient point (say, x =
1) and write∫ ∞

0

1p
x(x +1)

d x =
∫ 1

0

1p
x(x +1)

d x +
∫ ∞

1

1p
x(x +1)

d x

= lim
b→0+

∫ 1

b

1p
x(x +1)

d x + lim
c→∞

∫ c

1

1p
x(x +1)

d x

= lim
b→0+

[
2tan−1px

]1
b + lim

c→∞
[
2tan−1px

]c
1

= 2
(π

4

)
−0+2

(π
2

)
−2

(π
4

)
=π

This section concludes with a useful theorem describing the convergence
or divergence of a common type of improper integral.

Theorem 1.6.1. A Special Type of Improper Integral

∫ ∞

1

1

xp
d x =


1

p −1
if p > 1

diverges if p ≤ 1

Exercise 1.6. Evaluate the following integrals.

(1)
∫ π/4

0
csc x d x (2)

∫ 1

0

1

3x −5
d x (3)

∫ 1

0
x ln x d x (4)

∫ ∞

5

1

x
p

x2 −25
d x

1.7 Strategy for Integration

As we have seen, integration is more challenging than differentiation. In find-
ing the derivative of a function it is obvious which differentiation formula we
should apply. But it may not be obvious which technique we should use to
integrate a given function.

Until now individual techniques have been applied in each section. For
instance, we usually used substitution, integration by parts, and partial frac-
tions. But in this section we present a collection of miscellaneous integrals in
random order and the main challenge is to recognize which technique or for-
mula to use. No hard and fast rules can be given as to which method applies
in a given situation, but we give some advice on strategy that you may find
useful.
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A prerequisite for applying a strategy is a knowledge of the basic integra-
tion formulas. In the following table we have collected the integrals from our
previous list together with several additional formulas that we have learned in
this chapter. Most of them should be memorized. It is useful to know them
all, but the ones marked with an asterisk need not be memorized since they
are easily derived. Formula 19 can be avoided by using partial fractions, and
trigonometric substitutions can be used in place of Formula 20.

Once you are armed with these basic integration formulas, if you don’t im-
mediately see how to attack a given integral, you might try the following four-
step strategy.

1. Simplify the Integrand if Possible. Sometimes the use of algebraic ma-
nipulation or trigonometric identities will simplify the integrand and
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make the method of integration obvious. For example,∫ p
x

(
1+p

x
)

d x =
∫ (p

x +x
)

d x

and
∫

(sin x +cos x)2 d x =
∫ (

sin2 x +2cos x sin x +cos2 x
)

d x

=
∫

[1+ sin(2x)] d x

2. Look for an Obvious Substitution. Try to find some function u = g (x)
in the integrand whose differential du = g ′(x)d x also occurs, apart from
a constant factor. For instance, in the integral∫

x

x2 −1
d x

we notice that if u = x2 −1, then du = 2xd x. Therefore we use the sub-
stitution u = x2 −1 instead of the method of partial fractions.

3. Classify the Integrand According to Its Form. If Steps 1 and 2 have not
led to the solution, then we take a look at the form of the integrand f (x).

a) Trigonometric functions. If is a product of powers of sin x and
cos x, of tan x and sec x, or of cot x and csc x, then we use the sub-
stitutions recommended in Section 1.3.

b) Rational functions. If f is a rational function, we use the proce-
dure of Section 1.5 involving partial fractions.

c) Integration by parts. If f (x) is a product of a power of x (or a poly-
nomial) and a transcendental function (such as a trigonometric,
exponential, or logarithmic function), then we try integration by
parts, choosing u and d v according to the advice given in Section
1.2.

d) Radicals. Particular kinds of substitutions are recommended when
certain radicals appear.

i. If
p
±x2 ±a2 occurs, we use a trigonometric substitution ac-

cording to the table in Section 1.4.

ii. If npax +b occurs, we use the rationalizing substitution u =
npax +b. More generally, this sometimes works for n

√
g (x).
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4. Try Again. If the first three steps have not produced the answer, remem-
ber that there are basically only two methods of integration: substitu-
tion and parts.

a) Try substitution. Even if no substitution is obvious (Step 2), some
inspiration or ingenuity (or even desperation) may suggest an ap-
propriate substitution.

b) Try parts. Although integration by parts is used most of the time
on products of the form described in Step 3(c), it is sometimes ef-
fective on single functions. Looking at Section 1.2, we see that it
works on sin−1 x.

c) Manipulate the integrand. Algebraic manipulations (perhaps ra-
tionalizing the denominator or using trigonometric identities) may
be useful in transforming the integral into an easier form. These
manipulations may be more substantial than in Step 1 and may
involve some ingenuity.

d) Relate the problem to previous problems. When you have built up
some experience in integration, you may be able to use a method
on a given integral that is similar to a method you have already
used on a previous integral. Or you may even be able to express
the given integral in terms of a previous one.

e) Use several methods. Sometimes two or three methods are re-
quired to evaluate an integral. The evaluation could involve several
successive substitutions of different types, or it might combine in-
tegration by parts with one or more substitutions.

Exercise 1.7. Evaluate the following integrals.

(1)
∫ [

tan x

cos x

]3

d x (2)
∫

e
p

x d x (3)
∫

x5 +1

x3 −3x2 +10
d x

(4)
∫

1

x
p

ln x
d x (5)

∫ √
1+x

1−x
d x



CHAPTER2

In�nite Series

Infinite series are sums of infinitely many terms. One of our aims in this chap-
ter is to define exactly what is meant by an infinite sum. Their importance in
calculus stems from Newton’s idea of representing functions as sums of in-
finite series. For instance, in finding areas he often integrated a function by
first expressing it as a series and then integrating each term of the series. We
will pursue his idea in order to integrate such functions as e−x2

, recall that
we have previously been unable to do this. Many of the functions that arise
in mathematical physics and chemistry, such as Bessel functions, are defined
as sums of series, so it is important to be familiar with the basic concepts of
convergence of infinite sequences and series.

Physicists also use series in another way. In studying fields as diverse as
optics, special relativity, and electromagnetism, they analyze phenomena by
replacing a function with the first few terms in the series that represents it.

2.1 Sequences

In mathematics, the word sequence is used in much the same way as in or-
dinary English. To say that a collection of objects or events is in sequence
usually means that the collection is ordered so that it has an identified first
member, second member, third member, and so on.

Mathematically, a sequence is defined as a function whose domain is the
set of positive integers. Although a sequence is a function, it is common to
represent sequences by subscript notation rather than by the standard func-

41
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tion notation. For example,

a1, a2, a3, · · · , an , · · ·

The numbers a1, a2, a3, · · · are the terms of the sequence. The number an is
the nth term of the sequence, and the entire sequence is denoted by {an} or
{an}∞n=1.

Example 2.1. Listing the first few terms of the given sequences.

a) an = 3+ (−1)n b)

{
n2

2n −1

}
Solution 2.1.

a) The terms of the sequence an = 3+ (−1)n are

n = 1 , n = 2 , n = 3 , n = 4 , · · ·
↓ ↓ ↓ ↓
2 , 4 , 2 , 4 , · · ·

b) The terms of the sequence

{
n2

2n −1

}
are

n = 1 , n = 2 , n = 3 , n = 4 , · · ·
↓ ↓ ↓ ↓
1 , 4

3 , 9
7 , 16

15 , · · ·

There are sequences that don’t have a simple defining equation like the
one in the next example.

Example 2.2. Find the terms of the recursively defined Fibonacci sequence
fn where f1 = 1, f2 = 1, and fn = fn−1 + fn−2 for n ≥ 3.

Solution 2.2. The terms of the sequence fn are

1, 1,︸ ︷︷ ︸
Initial Terms

2, 3, 5, 8, 13, · · ·
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Example 2.3. Find a formula for the general term an of the sequence{
3

5
,− 4

25
,

5

125
,− 6

625
,

7

3125
, · · ·

}
assuming that the pattern of the first few terms continues.

Solution 2.3. Notice that the numerators of these fractions start with 3 and
increase by 1 whenever we go to the next term. The second term has numer-
ator 4, the third term has numerator 5; in general, the nth term will have nu-
merator n +1. The denominators are the powers of 5, so an has denominator
5n . The signs of the terms are alternately positive and negative, so we need to
multiply by a power of (−1)n . Here we want to start with a positive term and
so we use (−1)n−1 or (−1)n+1. Therefore,

an = (−1)n−1 n +2

5n

Definition 2.1.1. Definition of the Limit of a Sequence
A sequence {an} has the limit ℓ and we write lim

n→∞an = ℓ or an → ℓ as n →∞ if

we can make the terms an as close to ℓ as we like by taking n sufficiently large.
If lim

n→∞an exists, we say the sequence converges (or is convergent). Otherwise,

we say the sequence diverges (or is divergent).

Theorem 2.1.1. Let ℓ be a real number. Let f (x) be a function of a real vari-
able such that lim

x→∞ f (x) = ℓ. If {an} is a sequence such that f (n) = an for every

positive integer n then lim
n→∞an = ℓ.

Example 2.4. Find the limit of the sequence whose nth term is an =
(
1+ 1

n

)n

.

Solution 2.4. Previously, in Calculus 1, you learned that lim
x→∞

(
1+ α

x

)βx
= eαβ.

So, you can apply Theorem 2.1.1 to conclude that

lim
n→∞an = lim

n→∞

(
1+ 1

n

)n

= e

Example 2.5. Find the limit of the sequence 0,
1

2
,

2

3
,

3

4
, · · ·
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Solution 2.5. This is the sequence with general term an = n −1

n
= 1− 1

n
. Then

by Theorem 2.1.1, lim
n→∞

[
1− 1

n

]
= 1.

Example 2.6. Determine whether the sequence

{
n + lnn

n2

}
converges or di-

verges.

Solution 2.6. Apply Theorem 2.1.1 directly on an = n + lnn

n2
to obtain using

L’Hospital’s Rule

lim
n→∞

n + lnn

n2
= lim

n→∞
1+ 1

n

2n
= 0 (Converges)

Example 2.7. Determine whether the sequence

{
n2(4n +1)(5n +3)

6n3 +2

}
converges

or diverges.

Solution 2.7. By Theorem 2.1.1, we obtain

lim
n→∞

n2(4n + �A1)(5n + �A3)

6n3 + �A2
= lim

n→∞
n2(4n)(5n)

6n3

= lim
n→∞

20��n
4

6��n
3

= lim
n→∞

20n

6
=∞ (Diverges)

The following properties of limits of sequences parallel those given for lim-
its of functions of a real variable in Calculus I.

Theorem 2.1.2. Properties of Limits of Sequences
Let lim

n→∞an = A and lim
n→∞bn = B. Then

(1) lim
n→∞ [an ±bn] = A±B (2) lim

n→∞ [c an] = c A

(3) lim
n→∞ [an bn] = A B (4) lim

n→∞

[
an

bn

]
= A

B
if bn ,B ̸= 0

Example 2.8. Determine whether the sequence

{
2−3e−n

6+4e−n

}
converges or di-

verges.



2.1. SEQUENCES 45

Solution 2.8. Observe that lim
n→∞

[
2−3e−n] = 2 and lim

n→∞
[
6+4e−n] = 6. Ac-

cording to Theorem 2.1.2, we have

lim
n→∞

2−3e−n

6+4e−n
= 2

6
= 1

3
(Converges)

Theorem 2.1.3. Sequences of the Forms r n and
1

nr
.

1. Suppose r is a nonzero constant. The sequence
{
r n

}
converges to 0 if |r | <

1 and diverges if |r | > 1.

2. The sequence
1

nr
converges to 0 for r any positive rational number.

Example 2.9. Determine the convergence or divergence of the sequence with
the given nth term.

(1) an = e−n (2) an =
(

3

2

)n

(3) an = 4p
n5

Solution 2.9. By Theorem 2.1.3,

1. since an = e−n =
(

1

e

)n

and |r | = 1

e
< 1, then an = e−n converges to 0.

2. since |r | = 3

2
> 1, then the sequence an =

(
3

2

)n

diverges.

3. the sequence an = 4p
n5

= 4

n
5
2

converges to 0 since r = 5

2
is positive ra-

tional number.

Theorem 2.1.4. Squeeze Theorem for Sequences
If

lim
n→∞an = ℓ= lim

n→∞bn

and there exists an integer N such that an ≤ cn ≤ bn for all n ≥ N , then

lim
n→∞cn = ℓ

Example 2.10. Show that the sequence
{cosn

n2

}
converges.
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Solution 2.10. We have,

− 1

n2
≤ cosn

n2
≤ 1

n2

Since both

{
− 1

n2

}
and

{
1

n2

}
tend to 0, then by Theorem 2.1.4,

{cosn

n2

}
con-

verges to 0.

Example 2.11. Determine whether the sequence

{
2n

n!

}
converges or diverges.

Solution 2.11. Even though lim
n→∞

(
2n

n!

)
= ∞

∞ we can not use L’Hospital’s Rule

since we have studied no function f (x) = x!. We can use Theorem 2.1.4 as
follows.

0 ≤ 2n

n!
=

n factors of 2︷ ︸︸ ︷
2 ·2 ·2 · · ·2 ·2 ·2

1 ·2 ·3 · · · (n −2) · (n −1) ·n︸ ︷︷ ︸
n factors

=

n fractions︷ ︸︸ ︷
2

1
· 2

2
· 2

3
· · · 2

n −2
· 2

n −1
· 2

n

≤ 2 ·1 · 2

3
· 2

3
· · · 2

3
· 2

3︸ ︷︷ ︸
n −2 fractions

= 2

(
2

3

)n−2

= 9

2

(
2

3

)n

Since lim
n→∞

[
9

2

(
2

3

)n]
= 0 by Theorem 2.1.3, then by Theorem 2.1.4 the sequence{

2n

n!

}
converges to 0.

Theorem 2.1.5. Absolute Value Theorem
For the sequence {an}, if lim

n→∞ |an | = 0 then lim
n→∞an = 0.

Example 2.12. Determine whether the sequence

{
(−1)n

p
n

}
converges or di-

verges.

Solution 2.12. Since lim
n→∞

∣∣∣∣ (−1)n

p
n

∣∣∣∣ = lim
n→∞

[
1p
n

]
= 0, then by Theorem 2.1.5,

the sequence

{
(−1)n

p
n

}
converges to 0.

Example 2.13. Determine whether the sequence an = (−1)n converges or di-
verges.
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Solution 2.13. If we write out the terms of the sequence, we obtain

{−1,1,−1,1, · · · }

Since the terms oscillate between 1 and −1 infinitely often, an does not ap-
proach any number. Thus lim

n→∞
[
(−1)n]

does not exist; that is, the sequence

an = (−1)n is divergent.

Theorem 2.1.6. If f (x) is continuous and the limit lim
n→∞an = ℓ exists, then

lim
n→∞ f (an) = f

(
lim

n→∞an

)
= f (ℓ).

Example 2.14. Find lim
n→∞sin

(π
n

)
.

Solution 2.14. Because the sine function is continuous at 0, Theorem 2.1.6
enables us to write

lim
n→∞sin

(π
n

)
= sin

(
lim

n→∞
π

n

)
= sin0 = 0.

Example 2.15. Show that the sequence
{

(1+n)
1
n

}
converges.

Solution 2.15. By Theorem 2.1.1 and Theorem 2.1.6,

lim
n→∞(1+n)

1
n = lim

n→∞e
ln

[
(1+n)

1
n

]

= e
lim

n→∞ ln
[

(1+n)
1
n

]
= e

lim
n→∞

ln(1+n)

n

= e
lim

n→∞
1

1+n = e0 = 1

Theorem 2.1.7. If {an} converges to ℓ, then lim
n→∞an+1 = lim

n→∞an = ℓ.

Example 2.16. Assuming that the sequence defined by the recurrence relation

a1 = 2, an+1 = 6+an

2
, for n = 1,2,3, · · ·

converges, show that the limit is 6.
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Solution 2.16. Since the sequence {an} converges, then lim
n→∞an = ℓ exists.

Theorem 2.1.7 does not tell us what the value of the limit is. But we can use
the given recurrence relation to write

ℓ= lim
n→∞an+1 = lim

n→∞

[
6+an

2

]
= 6+ℓ

2
=⇒ ℓ= 6

The next theorem gives some limits that arise frequently.

Theorem 2.1.8. The following sequences converge to the limits listed below:

(1) lim
n→∞

lnn

n
= 0 (2) lim

n→∞
n
p

n = 1

(3) lim
n→∞xn = 0 (|x| < 1) (4) lim

n→∞x
1
n = 1, (x > 0)

(5) lim
n→∞

(
1+ x

n

)n
= ex (any x) (6) lim

n→∞
xn

n!
= 0 (any x)

Exercise 2.1.

1. Determine whether the sequence converges or diverges.

(1)
11−2en

3en
(2) cos(nπ) (3)

2n

3n +1

(4) n2/(n+1) (5) sin(nπ) (6)

(
−1

3

)n

(7) n3e−n (8)
sin2 n

4n
(9) sin

(nπ

2

)
(10) ln

(
4n +1

3n −1

)
(11) n sin

(
6

n

)
(12)

n!

nn

(13)
en −e−n

en +e−n
(14)

(−1)n

n2 +1
(15) (−1)n 2n3

n3 +1

(16)

(
n +3

n +1

)n

(17)

(
1− 2

n

)n

(18)
p

n +1−p
n

(19)
1+ (−1)n

n
(20)

(n −2)!

n!
(21)

(
1+ 1

n2

)n
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(22)

(
2+ 4

n2

) 1
3

(23)
n

n + n
p

n
(24)

en +3n

5n

(25)
3−4n

2+7 ·3n
(26) tan−1

(
n2

n +1

)
(27) tan

(
2nπ

1+8n

)

(28)

√
n +1

9n +1
(29)

(
3

n

) 1
n

(30)

[
2− 1

3n

][
3+ 1

2n

]

(31)
1

n

∫ n

1

1

x
d x (32)

1

3
,
−1

9
,

1

27
,
−1

81
, · · · (33) 2ln(3n)− ln

(
1+n2

)

2. The recursively defined sequence an+1 = 1

2

[
an + 5

an

]
is know to con-

verge to a given initial value a1 > 0. Find the limit of the sequence.[
Hint: lim

n→∞an+1 = lim
n→∞an = ℓ

]
3. For what positive values of b does the following sequence converge?

b, 0, b2, 0, b3, 0, b4, · · ·[
Hint: When lim

n→∞bn = 0?
]

.

4. Evaluate lim
n→∞

np
2n +3n .

[
Hint: Show that 3 ≤ np

2n +3n ≤ 3
np

2
]

.

5. Give an example of a divergent sequence {an} such that {|an |} converges.
[Hint: See Exercise 3.1.1.15].

6. Show, by giving an example, that there exists divergent sequences {an}

and {bn} such that {an +bn} converges.

[
Hint: What about n2,

1

n
−n2?

]
.

7. Determine whether the sequence defined as follows is convergent or di-
vergent.

a1 = 1 an+1 = 4−an for n ≥ 1

What happens if the first term is a1 = 2? [ Hint: Write the first few ele-
ments of the sequence].
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2.2 Series and Convergence

The purpose of this section is to discuss sums that contain infinitely many
terms. The most familiar examples of such sums occur in the decimal repre-
sentations of real numbers. For example, when we write 1

3 in the decimal form
1
3 = 0.3333 · · · , we mean

1

3
= 0.3+0.03+0.003+0.0003+·· ·

which suggests that the decimal representation of 1
3 can be viewed as a sum

of infinitely many real numbers.
One important application of infinite sequences is in representing infinite

summations. Informally, if {an} is an infinite sequence, then

∞∑
n=1

an = a1 +a2 +a3 +·· ·

is an infinite series (or simply a series). The numbers a1, a2, a3, · · · are the
terms of the series. For some series it is convenient to begin the index at n = 0
(or some other integer). As a typesetting convention, it is common to repre-
sent an infinite series as simply

∑
an . In such cases, the starting value for the

index must be taken from the context of the statement.
To find the sum of an infinite series, consider the following sequence of

partial sums.

S1 = a1

S2 = a1 +a2

S3 = a1 +a2 +a3

...

Sn = a1 +a2 +a3 +·· ·+an

If this sequence of partial sums converges, the series is said to converge and
has the sum indicated in the following definition.

Definition 2.2.1. Definitions of Convergent and Divergent Series

For the infinite series
∞∑

n=1
an , the nth partial sum is given by

Sn = a1 +a2 +a3 +·· ·+an
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If the sequence of partial sums {Sn} converges to S then the series
∞∑

n=1
an con-

verges to S. If {Sn} diverges, then the series diverges.

Example 2.17. Determine whether the following series converges or diverges.
If it converges, find the sum.

∞∑
n=1

(−1)n+1 = 1−1+1−1+1−1+·· ·

Solution 2.17. The partial sums are

S1 = 1

S2 = 1−1 = 0

S3 = 1−1+1 = 1

Sn = 1−1+1−1 = 0

and so forth. Thus, the sequence of partial sums is

1,0,1,0,1,0, · · ·

Since this is a divergent sequence, the given series diverges and consequently
has no sum.

Telescoping Sums

A telescoping series is a series whose partial sums eventually only have a fixed
number of terms after cancellation. Such a technique is also known as the
method of differences. The next example treats a convergent telescoping se-
ries, where the partial sums are particularly easy to evaluate.

Example 2.18. Determine whether the series
∞∑

n=1

1

n(1+n)
converges or di-

verges. If it converges, find the sum.

Solution 2.18. We will begin by rewriting Sn in closed form. This can be ac-
complished by using the method of partial fractions to obtain (verify)

1

n(1+n)
= 1

n
− 1

1+n
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from which we obtain the sum

Sn =
n∑

k=1

[
1

k
− 1

1+k

]
=

[
1− 1

2

]
+

[
1

2
− 1

3

]
+

[
1

3
− 1

4

]
+·· ·+

[
1

n −1
− 1

n

]
+

[
1

n
− 1

1+n

]
= 1− 1

1+n

Thus,
∞∑

n=1

1

n(1+n)
= lim

n→∞Sn = lim
n→∞

[
1− 1

1+n

]
= 1.

Example 2.19. Determine whether the series
∞∑

n=1
ln

( n

n +1

)
converges or di-

verges. If it converges, find the sum.

Solution 2.19. We will begin by rewriting Sn in closed form by writing

ln
( n

n +1

)
= ln(n)− ln(n +1)

from which we obtain the sum

Sn =
n∑

k=1
ln

(
k

k +1

)
= [ln(1)− ln(2)]+ [ln(2)− ln(3)]+·· ·+ [ln(n)− ln(n +1)]

=− ln(n +1)

Thus,
∞∑

n=1
ln

( n

n +1

)
= lim

n→∞Sn = lim
n→∞ [− ln(1+n)] = −∞. Hence, the sum di-

verges.

Geometric Series

In many important series, each term is obtained by multiplying the preceding
term by some fixed constant. Thus, if the initial term of the series is a and
each term is obtained by multiplying the preceding term by r , then the series
has the form

a +ar +ar 2 +ar 3 +·· · =
∞∑

n=0
ar n

Such series are called geometric series, and the number r is called the ratio
for the series.
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Theorem 2.2.1. Convergence of a Geometric Series
A geometric series with ratio r diverges if |r | ≥ 1. If 0 < |r | < 1 then the series

converges to the sum
∞∑

n=0
ar n = a

1− r
.

Example 2.20. Determine whether the series
∞∑

n=0

5

4n
converges, and if so find

its sum.

Solution 2.20. This is a geometric series with a = 5 and r = 1

4
. Since |r | < 1,

the series converges and the sum is
a

1− r
= 5

1− 1
4

= 20

3
.

Example 2.21. Determine whether the series
∞∑

n=0

(
5

4

)n

converges, and if so

find its sum.

Solution 2.21. This is a geometric series with a = 1 and r = 5

4
. Since |r | > 1,

the series diverges.

Example 2.22. Determine whether the series
∞∑

n=1

(
22n51−n)

converges, and if

so find its sum.

Solution 2.22. This is a geometric series in concealed form, since we can
rewrite it as ∞∑

n=1

(
22n51−n)= ∞∑

n=1

4n ·5

5n
=

∞∑
n=1

5

(
4

5

)n

with a = 4 and r = 4

5
. Since |r | < 1, the series converges and the sum is

a

1− r
= 4

1− 4
5

= 20

Example 2.23. Use a geometric series to write 0.08 as the ratio of two integers.

Solution 2.23. We can write

0.08 = 0.08+0.0008+0.000008+·· ·

= 8

100
+ 8

1002
+ 8

1003
+·· · =

∞∑
n=1

8

100n
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So the given decimal is the sum of a geometric series with a = 8

100
and r =

1

100
. Thus,

0.08 =
∞∑

n=1

8

100n
=

8
100

1− 1
100

= 8

99

Example 2.24. Find all values of x for which the series
∞∑

n=0
3
[
−x

2

]n
converges,

and find the sum of the series for those values of x.

Solution 2.24. This is a geometric series with a = 3 and r =−x

2
. It converges

if
∣∣∣−x

2

∣∣∣< 1, or equivalently, when |x| < 2. When the series converges its sum is

∞∑
n=0

3
[
−x

2

]n
= 3

1+ x
2

= 6

2+x

The following properties are direct consequences of the corresponding
properties of limits of sequences.

Theorem 2.2.2. Properties of Infinite Series
Let

∑
an and

∑
bn be convergent series, and let A, B and c be real numbers.

If
∑

an = A and
∑

bn = B, then the following series converge to the indicated
sums.

1.
∑

can = c A

2.
∑

(an ±bn) = A±B

Example 2.25. Find the sum of the series
∞∑

n=1

[
3

4n
− 2

5n−1

]
.

Solution 2.25. The series
∞∑

n=1

3

4n
is a convergent geometric series

(
a = 3

4 ,r = 1
4

)
,

and the series
∞∑

n=1

2

5n−1
is also a convergent geometric series

(
a = 2,r = 1

5

)
.

Thus, from Theorems 2.2.2 the given series converges and

∞∑
n=1

[
3

4n
− 2

5n−1

]
=

∞∑
n=1

3

4n
−

∞∑
n=1

2

5n−1
=

3
4

1− 1
4

− 2

1− 1
5

=−3

2
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The following theorem states that if a series converges, the limit of its term
must be 0.

Theorem 2.2.3. Limit of the nth Term of a Convergent Series

If
∞∑

n=1
an converges, then lim

n→∞an = 0.

The contrapositive of Theorem 2.2.3 provides a useful test for divergence.
This nth-Term Test for Divergence states that if the limit of the term of a series
does not converge to 0, the series must diverge.

Theorem 2.2.4. nth-Term Test for Divergence

If lim
n→∞an ̸= 0, then

∞∑
n=1

an diverges .

Example 2.26. Determine whether the series
∞∑

n=1

n

1+n
converges or diverges.

Solution 2.26. Since lim
n→∞

n

1+n
= 1 ̸= 0 then the series diverges.

Example 2.27. Determine whether the series
∞∑

n=0
2n converges or diverges.

Solution 2.27. Since lim
n→∞2n =∞ ̸= 0 then the series diverges.

Example 2.28. Determine whether the series
∞∑

n=1

1

n
converges or diverges.

Solution 2.28. Since lim
n→∞

1

n
= 0 then the nth-Term Test for Divergence does

not apply and you can draw no conclusions about convergence or divergence.
(In the next section, you will see that this particular series diverges.)

Example 2.29. A ball is dropped from a height of 6 feet and begins bouncing,
as shown in the figure below. The height of each bounce is three-fourths the
height of the previous bounce. Find the total vertical distance travelled by the
ball.
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Solution 2.29. When the ball hits the ground for the first time, it has travelled
a distance of D1 = 6 feet. For subsequent bounces, let Di be the distance trav-
elled up and down. For example, D2 and D3 are as follows.

D2 = 6

(
3

4

)
︸ ︷︷ ︸

up

+6

(
3

4

)
︸ ︷︷ ︸
down

= 12

(
3

4

)

D3 = 6

(
3

4

)(
3

4

)
︸ ︷︷ ︸

up

+6

(
3

4

)(
3

4

)
︸ ︷︷ ︸

down

= 12

(
3

4

)2

By continuing this process, it can be determined that the total vertical dis-
tance is

D = 6+12

(
3

4

)
+12

(
3

4

)2

+12

(
3

4

)3

+·· ·

= 6+12
∞∑

n=1

(
3

4

)n

= 6+12

[
3
4

1− 3
4

]
= 6+12×3 = 42 feet.

Exercise 2.2.

1. Find the sum of the series if it converges.

(1)
∞∑

n=1

1

n2 +7n +12
(2)

∞∑
n=1

(−1)n

2n−1
(3)

∞∑
n=0

5n4−n

(4)
∞∑

n=1

2n −1

4n
(5)

∞∑
n=1

10 (6)
∞∑

n=1
ln

[ n

3n +1

]
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(7)
∞∑

n=1

4n+2

7n−1
(8)

∞∑
n=1

2n +4n

3n +4n
(9)

∞∑
n=1

np
1+n2

(10)
∞∑

n=1
tan−1 n (11)

∞∑
n=1

cos

[
1

n

]
(12)

∞∑
n=0

cos(nπ)

5n

(13)
∞∑

n=1
ln

[
1

3n

]
(14)

∞∑
n=1

[
1− 1

n

]n

(15)
∞∑

n=1

nn

n!

2. If the nth partial sum of a series
∞∑

n=1
an is Sn = n −1

n +1
, find an and

∞∑
n=1

an .

3. Let an = 2n

3n +1
. Determine whether the sequence {an} and the series∑

an are convergent?

4. A sequence of terms is defined by an = (5−n)an−1 where a1 = 1. Find
∞∑

n=1
an .

5. Show that :
∞∑

n=1

p
n +1−p

np
n2 +n

= 1.

6. Write the repeating decimal number 1.314 as a quotient of integers.

7. Determine the values of x for which the series
∞∑

n=0
2n x2n converges.

8. The accompanying figure shows the first five of a sequence of squares.
The outermost square has an area of 4 m2. Each of the other squares is
obtained by joining the midpoints of the sides of the squares before it.
Find the sum of the areas of all the squares.

9. Determine whether the series
1

1.1
+ 1

1.11
+ 1

1.111
+·· · converges?Hint: an = 1∑n

k=0

(
1

10k

)


10. Find the sum of the series
1+9

25
+ 1+27

125
+ 1+81

625
· · · .
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11. Show that for all real values of x,

sin x − 1

2
sin2 x + 1

4
sin3 x − 1

8
sin4 x +·· · = 2sin x

2+ sin x

12. Find the value of c for which the series equals the indicated sum.

∞∑
n=2

(1+ c)−n = 2

2.3 The Integral Test and p−Series

In this and the following section, you will study several convergence tests that
apply to series with positive terms.

Theorem 2.3.1. The Integral Test
If f is positive, continuous, and decreasing for x ≥ N and an = f (n), then
∞∑

n=N
an and

∫ ∞

N
f (x)d x either both converge or both diverge.

Example 2.30. Apply the Integral Test to the series
∞∑

n=1

n

n2 +1
.

Solution 2.30. The function f (x) = x

x2 +1
is positive and continuous for x ≥ 1.

To determine whether f is decreasing, find the derivative.

f ′(x) =
(
x2 +1

)
(1)− (x)(2x)(

x2 +1
)2 = −x2 +1(

x2 +1
)2 < 0 for x > 1
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It follows that f satisfies the conditions for the Integral Test. You can integrate
to obtain∫ ∞

1

x

x2 +1
d x = 1

2

∫ ∞

1

2x

x2 +1
d x

= 1

2
lim

b→∞

∫ b

1

2x

x2 +1
d x

= 1

2
lim

b→∞
[
ln

(
x2 +1

)]b
1 = 1

2
lim

b→∞
[
ln

(
b2 +1

)− ln(2)
]=∞

So, the series diverges.

Example 2.31. Apply the Integral Test to the series
∞∑

n=1

1

n2 +1
.

Solution 2.31. The function f (x) = 1

x2 +1
is positive and continuous for x ≥ 1.

To determine whether f is decreasing, find the derivative.

f ′(x) = −2x(
x2 +1

)2 < 0 for x > 1

It follows that f satisfies the conditions for the Integral Test. You can integrate
to obtain ∫ ∞

1

1

x2 +1
d x = lim

b→∞

∫ b

1

1

x2 +1
d x = lim

b→∞
[
tan−1 x

]b
1

= lim
b→∞

[
tan−1 b − tan−1 1

]= π

2
− π

4
= π

4

So, the series converges.

Example 2.32. Determine whether the series
∞∑

n=2

1

n lnn
converges or diverges.

Solution 2.32. The function f (x) = 1

x ln x
is positive and continuous for x ≥ 2.

To determine whether f is decreasing, first rewrite f as f (x) = (x ln x)−1 and
then find its derivative.

f ′(x) = (−1)(x ln x)−2 (1+ ln x) =− 1+ ln x

x2 (ln x)2 < 0 for x > 2
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It follows that f satisfies the conditions for the Integral Test. You can integrate
to obtain∫ ∞

2

1

x ln x
d x =

∫ ∞

2

1/x

ln x
d x = lim

b→∞
[ln(ln x)]b

2 = lim
b→∞

[ln(lnb)− ln(ln2)] =∞

So, the series diverges.

In the remainder of this section, you will investigate a second type of series
that has a simple arithmetic test for convergence or divergence. A series of the
form ∞∑

n=1

1

np
= 1

1p
+ 1

2p
+ 1

3p
+·· ·

is a p−series, where p is a positive constant. For p = 1, the series

∞∑
n=1

1

n
= 1+ 1

2
+ 1

3
+ 1

4
+·· ·

is the harmonic series. A general harmonic series is of the form
∑ 1

an +b
. The

Integral Test is convenient for establishing the convergence or divergence of
p−series.

Theorem 2.3.2. Convergence of p−Series

The p−series
∞∑

n=1

1

np
= 1

1p
+ 1

2p
+ 1

3p
+·· · converges if p > 1 and diverges if 0 <

p ≤ 1.

Example 2.33. Determine whether the series
∞∑

n=1

1
3
p

n
converges or diverges.

Solution 2.33. The series
∞∑

n=1

1
3
p

n
=

∞∑
n=1

1

n
1
3

diverges since it is a p−series with

p = 1
3 < 1.

Exercise 2.3.

1. Determine whether the series converges or diverges.

(1)
∞∑

n=1

1

n +3
(2)

∞∑
n=1

3−n (3)
∞∑

n=1
ne− n

2
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(4)
∞∑

n=1

tan−1 n

n2 +1
(5)

∞∑
n=1

n +2

n +1
(6)

∞∑
n=2

1

n
p

lnn

(7)
∞∑

n=2

p
n

lnn
(8)

∞∑
n=1

2

en +e−n
(9)

∞∑
n=1

3
3p

n5

(10)
∞∑

n=1

2

n
p

n

2. Find the sum of the series
∞∑

n=2
ln

[
1− 1

n2

]
.
[

Hint :
∑=− ln2

]
.

3. Find all positive values of b for which the series
∞∑

n=1
blnn converges.[

Hint : blnn = (
e lnb

)lnn = (
e lnn

)lnb = nlnb
]

2.4 Comparisons of Series

For the convergence tests developed so far, the terms of the series have to be
fairly simple and the series must have special characteristics in order for the
convergence tests to be applied. A slight deviation from these special charac-
teristics can make a test non-applicable. For example, in the following pairs,
the second series cannot be tested by the same convergence test as the first
series even though it is similar to the first.

∞∑
n=0

1

2n
is geometric, but

∞∑
n=0

n

2n
is not.

∞∑
n=1

1

n3
is a p−series, but

∞∑
n=1

1

n3 +1
is not.

n(
n2 +3

)2 is easily integrated, but
n2(

n2 +3
)2 is not.

In this section you will study two additional tests for positive-term series.
These two tests greatly expand the variety of series you are able to test for con-
vergence or divergence. They allow you to compare a series having compli-
cated terms with a simpler series whose convergence or divergence is known.



62 CHAPTER 2. INFINITE SERIES

Theorem 2.4.1. Direct Comparison Test
Let 0 < an ≤ bn for all n.

1. If
∞∑

n=1
bn converges, then

∞∑
n=1

an converges.

2. If
∞∑

n=1
an diverges, then

∞∑
n=1

bn diverges.

Example 2.34. Determine the convergence or divergence of
∞∑

n=1

1

2+p
n 3n

.

Solution 2.34. This series resembles
∞∑

n=1

1

3n
which is convergent geometric

series. Term-by-term comparison yields

an = 1

2+p
n 3n

≤ 1

3n
= bn for n ≥ 1

So, by the Direct Comparison Test, the series converges.

Example 2.35. Determine the convergence or divergence of
∞∑

n=1

1

2+p
n

.

Solution 2.35. This series resembles
∞∑

n=1

1

n
1
2

which is divergent p−series. Term-

by-term comparison yields

1

2+p
n
≤ 1p

n
for n ≥ 1

which does not meet the requirements for divergence. (Remember that if
term-by-term comparison reveals a series that is smaller than a divergent se-
ries, the Direct Comparison Test tells you nothing.) Still expecting the series

to diverge, you can compare the given series with
∞∑

n=1

1

n
which is divergent

harmonic series. In this case, term-by-term comparison yields

an = 1

n
≤ 1

2+p
n
= bn for n ≥ 4

and, by the Direct Comparison Test, the given series diverges.
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Example 2.36. Determine the convergence or divergence of
∞∑

n=1

cos2 n

n2 +1
.

Solution 2.36. This series resembles
∞∑

n=1

1

n2
which is convergent p−series.

Term-by-term comparison yields

an = cos2 n

n2 +1
≤ 1

n2 +1
≤ 1

n2
= bn for n ≥ 1

So, by the Direct Comparison Test, the series converges.

Example 2.37. Determine the convergence or divergence of
∞∑

n=1

tan−1 np
n6 +5n3 +6

.

Solution 2.37. This series resembles
∞∑

n=1

π/2

n3
which is convergent p−series.

Term-by-term comparison yields

an = tan−1 np
n6 +5n3 +6

≤ π/2p
n6

≤ π/2

n3
= bn for n ≥ 1

So, by the Direct Comparison Test, the series converges.

Example 2.38. Does
∞∑

n=1

lnn

n3/2
converge?

Solution 2.38. Because lnn grows more slowly than nc for any positive con-
stant c, we can compare the series to a convergent p−series by choosing c > 0
such that

3

2
− c > 1 =⇒ 0 < c < 1

2

To get the p−series, we see that

an = lnn

n3/2
≤ n1/4

n3/2
= 1

n5/4
= bn for n ≥ 1

Since
1

n5/4
is a convergent p−series, then by the Direct Comparison Test, the

series
∞∑

n=1

lnn

n3/2
converges.
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Often a given series closely resembles a series or a geometric series, yet
you cannot establish the term-by-term comparison necessary to apply the Di-
rect Comparison Test. Under these circumstances you may be able to apply a
second comparison test, called the Limit Comparison Test.

Theorem 2.4.2. Limit Comparison Test

Suppose that an > 0, bn > 0, and lim
n→∞

an

bn
= ℓ where ℓ is finite and positive.

Then the two series
∑

an and
∑

bn either both converge or both diverge.

Example 2.39. Show that the following general harmonic series diverges.

∞∑
n=1

1

an +b
, a > 0, b > 0.

Solution 2.39. By comparison with the divergent harmonic series
∞∑

n=1

1

n
you

have

lim
n→∞

1/(an +b)

1/n
= lim

n→∞
n

an +b
= 1

a
Because this limit is greater than 0, you can conclude from the Limit Compar-
ison Test that the given series diverges.

The Limit Comparison Test works well for comparing a messy algebraic
series with a p−series. In choosing an appropriate p−series, you must choose
one with an nth term of the same magnitude as the nth term of the given
series. In other words, when choosing a series for comparison, you can disre-
gard all but the highest powers of in both the numerator and the denominator.

Example 2.40. Determine the convergence or divergence of
∞∑

n=1

p
n

n2 +1
.

Solution 2.40. Disregarding all but the highest powers of in the numerator
and the denominator, you can compare the series with

∞∑
n=1

p
n

n2
=

∞∑
n=1

1

n3/2
convergent p−series.

Because

lim
n→∞

an

bn
= lim

n→∞

( p
n

n2 +1

)(
n3/2

1

)
= lim

n→∞
n2

n2 +1
= 1

you can conclude by the Limit Comparison Test that the given series con-
verges.
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Example 2.41. Determine the convergence or divergence of
∞∑

n=1

n 2n

1+4n3
.

Solution 2.41. A reasonable comparison would be with the divergent series
∞∑

n=1

2n

n2
. Note that this series diverges by the nth-Term Test. From the limit

lim
n→∞

an

bn
= lim

n→∞

(
n 2n

1+4n3

)(
n2

2n

)
= lim

n→∞
n3

4n3 +1
= 1

4

you can conclude that the given series diverges.

Exercise 2.4.

1. Determine whether the series converges or diverges.

(1)
∞∑

n=3

lnn

n5
(2)

∞∑
n=2

1+2n

n lnn
(3)

∞∑
n=1

2+ sinn
3p

n4 +1

(4)
∞∑

n=1

p
n +1−p

n

n
(5)

∞∑
n=1

n2 −n +2

3n5 +n2
(6)

∞∑
n=2

n

(4n +1)3/2

(7)
∞∑

n=1
sin

(
1

n

)
(8)

∞∑
n=2

1

n!
(9)

∞∑
n=1

1

4 3
p

n −1

2. Show that if the series
∑

an of positive terms converges, then
∑

ln(1+an)
converges.

3. The meaning of decimal representation of a number 0.d1d2d3 · · · is that

0.d1d2d3 · · · = d1

101
+ d2

102
+ d3

103
+·· ·

Show that this series always converges.

[
Hint :

di

10i
≤ 9

10i

]
.

2.5 Alternating Series

So far, most series you have dealt with have had positive terms. In this section
and the following section, you will study series that contain both positive and
negative terms. The simplest such series is an alternating series, whose terms
alternate in sign.
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Theorem 2.5.1. Alternating Series Test

Let an > 0. The alternating series
∞∑

n=1
(−1)n an and

∞∑
n=1

(−1)n+1an converge if the

following two conditions are met.

1. lim
n→∞an = 0

2. an+1 ≤ an for all n.

It is not essential for condition (2) in Theorem 2.5.1 to hold for all terms; an
alternating series will converge if condition (1) is true and condition (2) holds
eventually. If an alternating series violates condition (1) of the alternating se-
ries test, then the series must diverge by the nth-Term Test.

Example 2.42. Determine the convergence or divergence of
∞∑

n=1
(−1)n+1 1

n
.

Solution 2.42. Note that lim
n→∞

1

n
= 0. So, the first condition of Theorem 2.5.1

is satisfied. Also note that the second condition of Theorem 2.5.1 is satisfied
because

an+1

an
= 1/(n +1)

1/n
= n

n +1
≤ 1 for all n =⇒ an+1 ≤ an

So, applying the Alternating Series Test, you can conclude that the series con-
verges.

Example 2.43. Determine the convergence or divergence of
∞∑

n=1

n

(−2)n−1
.

Solution 2.43. To apply the Alternating Series Test, note that, for n ≥ 1,

an+1

an
= (n +1)/2n

n/2n−1
= n +1

2n
≤ 1 =⇒ an+1 ≤ an .

Furthermore, by L’Hopital’s Rule,

lim
n→∞

n

2n−1
= lim

n→∞
1

2n−1 ln2
= 0

Therefore, by the Alternating Series Test, the series converges.
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Example 2.44. Determine the convergence or divergence of
∞∑

n=1
(−1)n+1 2n +1

3n −1
.

Solution 2.44. The series diverges by the nth-Term Test since

lim
n→∞

2n +1

3n −1
= 2

3
̸= 0.

Example 2.45. Determine the convergence or divergence of
∞∑

n=1
(−1)n+1

p
n

n +1
.

Solution 2.45. In order to show that the terms of the series satisfy the condi-

tion an+1 ≤ an , let us consider the function f (x) =
p

x

x +1
for which an = f (n).

From the derivative we see that

f ′(x) =− x −1

2
p

x(x +1)2
< 0 for x > 1

and hence, the function f (x) decreases for x > 1. Thus, an+1 ≤ an is true for

n ≥ 1. Moreover, lim
n→∞

p
n

n +1
= lim

n→∞
1

2
p

n
= 0. Therefore, by the Alternating

Series Test, the series converges.

Example 2.46. Determine the convergence or divergence of
∞∑

n=1

cos(πn)

n
.

Solution 2.46. Note that
∞∑

n=1

cos(πn)

n
=

∞∑
n=1

(−1)n+1

n
which is convergent as

shown in Example 2.42.

We have convergence tests for series with positive terms and for alternat-
ing series. But what if the signs of the terms switch back and forth irregularly?
Given any series

∑
an , we can consider the corresponding series

∞∑
n=1

|an | = |a1|+ |a2|+ |a3|+ · · ·

whose terms are the absolute values of the terms of the original series.

Definition 2.5.1. Absolute Convergence
A series

∑
an is called absolutely convergent if the series of absolute values∑ |an | is convergent.
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Example 2.47. Determine whether the series
∞∑

n=1

(−1)n−1

n2
is absolutely con-

vergent or not.

Solution 2.47. The series is absolutely convergent since
∞∑

n=1

∣∣∣∣ (−1)n−1

n2

∣∣∣∣= ∞∑
n=1

1

n2

is a convergent p−series.

The next theorem shows that absolute convergence implies convergence.

Theorem 2.5.2. Absolute Convergence Test
If the series

∑ |an | converges, then the series
∑

an also converges.

The converse of Theorem 2.5.2 is not true. For instance, the alternating

harmonic series
∞∑

n=1
(−1)n+1 1

n
converges by the Alternating Series Test. Yet

the harmonic series diverges. This type of convergence is called conditional.

Definition 2.5.2. Conditional Convergence
A series

∑
an is conditionally convergent if

∑
an converges but

∑ |an |diverges.

Example 2.48. Determine whether the series
∞∑

n=1

(−1)n

p
n

is convergent, diver-

gent or conditionally convergent series.

Solution 2.48. The given series can be shown to be convergent by the Alter-
nating Series Test. Moreover, because

∞∑
n=1

∣∣∣∣ (−1)n

p
n

∣∣∣∣= ∞∑
n=1

1p
n

is a divergent p−series, the given series is conditionally convergent.

Example 2.49. Determine whether the series
∞∑

n=1

(−1)
n(n+1)

2

3n
is convergent, di-

vergent or conditionally convergent series.

Solution 2.49. This is not an alternating series. However, because

∞∑
n=1

∣∣∣∣∣ (−1)
n(n+1)

2

3n

∣∣∣∣∣= ∞∑
n=1

1

3n

is a convergent geometric series, you can apply Theorem 2.5.2 to conclude
that the given series is absolutely convergent, and therefore convergent.
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Example 2.50. Determine whether the series
∞∑

n=1
(−1)n n!

2n
is convergent, di-

vergent or conditionally convergent series.

Solution 2.50. By the nth-Term Test for Divergence, you can conclude that
this series diverges.

Exercise 2.5.

1. Determine whether the series is convergent, divergent or conditionally
convergent.

(1)
∞∑

n=1
(−1)n+1 n

3n +1
(2)

∞∑
n=1

[−1

e

]n

(3)
∞∑

n=1
(−1)n n

ln(1+n)

(4)
∞∑

n=1
(−1)n+1 1+p

n

n +1
(5)

∞∑
n=1

(−1)n tan−1 n

n2
(6)

∞∑
n=1

1

n
sin

[
(2n −1)π

2

]

2. Explain why the following series converges for every positive value of x.

e−x sin(x)+e−2x sin(2x)+e−3x sin(3x)+·· ·[
Hint : Show that

∞∑
n=1

∣∣e−nx sin(nx)
∣∣ converges.

]

2.6 The Ratio and Root Tests

The comparison test and the limit comparison test hinge on first making a
guess about convergence and then finding an appropriate series for compar-
ison, both of which can be difficult. In such cases the next tests can often be
used, since it works exclusively with the terms of the given series, it requires
neither an initial guess about convergence nor the discovery of a series for
comparison.

The Ratio Test measures the rate of growth (or decline) of a series by ex-

amining the ratio
an+1

an
. For a geometric series

∑
ar n , this rate is a constant r

and the series converges if and only if its ratio is less than 1 in absolute value.
The Ratio Test is a powerful rule extending that result.
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Theorem 2.6.1. Ratio Test
Let

∑
an be a series with non-zero terms.

1.
∑

an converges absolutely if lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣< 1.

2.
∑

an diverges if lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣> 1 or lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣=∞.

3. The Ratio Test is inconclusive if lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣= 1.

Example 2.51. Determine the convergence or divergence of
∞∑

n=1

2n

n!
.

Solution 2.51. Because an = 2n

n!
, you can write the following.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣= lim
n→∞

[
2n+1

(n +1)!
÷ 2n

n!

]
= lim

n→∞

[
2n+1

(n +1)!
× n!

2n

]
= lim

n→∞

[
2 ·��2n

(n +1)��n!
×��n!

��2n

]
= lim

n→∞

[
2

n +1

]
= 0 < 1

∴ This series converges.

Example 2.52. Determine whether the series
∞∑

n=1

n22n+1

3n
converges or diverges.

Solution 2.52. This series converges because

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣= lim
n→∞

[
(n +1)2

(
2n+2

3n+1

)(
3n

n22n+1

)]
= lim

n→∞
2(n +1)2

3n2
= 2

3
< 1

Example 2.53. Determine whether the series
∞∑

n=1

nn

n!
converges or diverges.

Solution 2.53. This series diverges because

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣= lim
n→∞

[
(n +1)n+1

(n +1)!

(
n!

nn

)]
= lim

n→∞

[
(n +1)n+1

n +1

(
1

nn

)]
= lim

n→∞
(n +1)n

nn
= lim

n→∞

[
n +1

n

]n

= lim
n→∞

[
1+ 1

n

]n

= e > 1
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Example 2.54. Determine the convergence or divergence of
∞∑

n=1
(−1)n

p
n

n +1
.

Solution 2.54. Here, the Ratio Test is inconclusive because

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣= lim
n→∞

[(p
n +1

n +2

)(
n +1p

n

)]
= lim

n→∞

[√
n +1

n

(
n +1

n +2

)]
= 1

To determine whether the series converges, you need to try a different test. In
this case, you can apply the Alternating Series Test to show that this series is
convergent. See Example 2.45.

The next test for convergence or divergence of series works especially well
for series involving nth powers.

Theorem 2.6.2. Root Test
Let

∑
an be a series.

1.
∑

an converges absolutely if lim
n→∞

n
√

|an | < 1.

2.
∑

an diverges if lim
n→∞

n
√
|an | > 1 or lim

n→∞
n
√
|an | =∞.

3. The Root Test is inconclusive if lim
n→∞

n
√
|an | = 1.

Note 2.1. The Root Test is always inconclusive for any p−series.

Example 2.55. Determine the convergence or divergence of
∞∑

n=1

e2n

nn
.

Solution 2.55. The series converges, since

lim
n→∞

n
√

|an | = lim
n→∞

n

√
e2n

nn
= lim

n→∞
e2

n
= 0 < 1

Example 2.56. Determine the convergence or divergence of
∞∑

n=1

[
4n −5

2n +1

]n

.

Solution 2.56. The series diverges, since

lim
n→∞

n
√
|an | = lim

n→∞
n

√[
4n −5

2n +1

]n

= lim
n→∞

4n −5

2n +1
= 2 > 1
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Exercise 2.6.

1. Determine whether the series is convergent or divergent.

(1)
∞∑

n=1

[
1

ln(1+n)

]n

(2)
∞∑

n=1

1

n!
(3)

∞∑
n=1

(2n)!

n5

(4)
∞∑

n=1
n

[
3

4

]n−1

(5)
∞∑

n=1

[
2 n
p

n +1
]n

(6)
∞∑

n=0

(−1)n+1

(n +1)2n

(7)
∞∑

n=1

n4

4n
(8)

∞∑
n=1

[
1− 1

n

]n2

(9)
∞∑

n=1

lnn

en

2. For what positive values of α does the series
∞∑

n=1

αn

nα
converge?

3. The terms of a series are defined recursively by the equation an+1 =
5n +1

4n +3
an where a1 = 2. Determine whether

∑
an converges or diverges?

2.7 Strategies for Testing Series

You have now studied 10 tests for determining the convergence or divergence
of an infinite series, (see the summary in the next page). Skill in choosing and
applying the various tests will come only with practice. In some instances,
more than one test is applicable. However, your objective should be to learn
to choose the most efficient test. Below is a set of guidelines for choosing an
appropriate test.

Note 2.2. Guidelines for Testing a Series for Convergence or Divergence

1. Does the nth term approach 0? If not, the series diverges.

2. Is the series one of the special types: geometric, p−series, telescoping,
or alternating?

3. Can the Integral Test, the Root Test, or the Ratio Test be applied?

4. Can the series be compared favorably to one of the special types?
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Exercise 2.7. Determine the convergence or divergence of each series.

(1)
∞∑

n=1

n +1

3n +1
(2)

∞∑
n=1

[π
6

]n
(3)

∞∑
n=1

ne−n2
(4)

∞∑
n=1

[
n +1

2n +1

]n

(5)
∞∑

n=1

1

1+3n
(6)

∞∑
n=0

n!

10n
(7)

∞∑
n=1

(−1)n 3

4n +1
(8)

∞∑
n=1

2+cosn

n
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2.8 Power Series

Now that we can test many infinite series of numbers for convergence, we can
study sums that look like infinite polynomials. We call these sums power se-
ries because they are defined as infinite series of powers of some variable, in
our case x. Like polynomials, power series can be added, subtracted, multi-
plied, differentiated, and integrated to give new power series.

We begin with the formal definition, which specifies the notation and terms
used for power series.

Definition 2.8.1. Definition of Power Series
If x is a variable, then an infinite series of the form

∞∑
n=0

an xn = a0 +a1x +a2x2 +a3x3 +·· ·

is called a power series. More generally, an infinite series of the form

∞∑
n=0

an(x − c)n = a0 +a1(x − c)+a2(x − c)2 +a3(x − c)3 +·· ·

is called a power series centered at c, where c is a constant.

Radius and Interval of Convergence

A power series in can be viewed as a function of x as

f (x) =
∞∑

n=0
an(x − c)n

where the domain of f is the set of all x for which the power series converges.
Determination of the domain of a power series is the primary concern in this
section. Of course, every power series converges at its center because

f (c) =
∞∑

n=0
an(c − c)n = a0 +0+0+·· · = a0

So, c always lies in the domain of f . The following important theorem states
that the domain of a power series can take three basic forms: a single point,
an interval centered at c, or the entire real line.
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Theorem 2.8.1. Convergence of a Power Series
For a power series centered at c, precisely one of the following is true.

1. The series converges only at c.

2. There exists a real number R > 0 such that the series converges absolutely
for |x − c| < R, and diverges for |x − c| > R. The series may or may not
converge at either of the endpoints x = c ±R.

3. The series converges absolutely for all x.

The number R is the radius of convergence of the power series. If the series
converges only at c, the radius of convergence is R = 0, and if the series converges
for all x, the radius of convergence is R =∞. The set of all values of x for which
the power series converges is the interval of convergence of the power series.

Note that for a power series whose radius of convergence is a finite num-
ber R, Theorem 2.8.1 says nothing about the convergence at the endpoints
of the interval of convergence. Each endpoint must be tested separately for
convergence or divergence. As a result, the interval of convergence of a power
series can take any one of the six forms shown in the figure below.

The usual procedure for finding the radius and interval of convergence of
a power series is to apply the Ratio (or Root) Test for absolute convergence.
The following examples illustrates how this works.

Example 2.57. Find the interval and radius of convergence of the power series
∞∑

n=0
n! xn .



76 CHAPTER 2. INFINITE SERIES

Solution 2.57. For x = 0, you obtain f (0) =
∞∑

n=0
n!0n = 1. For any fixed value of

x, let an = n! xn . Then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣= lim
n→∞

∣∣∣∣ (n +1)!xn+1

n!xn

∣∣∣∣= |x| lim
n→∞(n +1) =∞

Therefore, by the Ratio Test, the series diverges for x ̸= 0, and converges only
at its center, 0. So, the radius of convergence is R = 0.

Example 2.58. Find the interval and radius of convergence of the power series
∞∑

n=0
(−1)n x2n+1

(2n +1)!
.

Solution 2.58. Let an = x2n+1

(2n +1)!
. Then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣= lim
n→∞

∣∣∣∣ x2n+3

(2n +3)!
× (2n +1)!

x2n+1

∣∣∣∣= lim
n→∞

x2

(2n +3)(2n +2)
= 0

For any fixed value of x, this limit is 0. So, by the Ratio Test, the series con-
verges for all x. Therefore, the radius of convergence is R =∞ and the interval
of convergence is (−∞,∞).

Example 2.59. Find the interval and radius of convergence of the power series
∞∑

n=0

(−1)n(x +1)n

2n
.

Solution 2.59. Letting an = (x +1)n

2n
produces

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣= lim
n→∞

∣∣∣∣ (x +1)n+1

2n+1
× 2n

(x +1)n

∣∣∣∣= lim
n→∞

∣∣∣∣x +1

2

∣∣∣∣= ∣∣∣∣x +1

2

∣∣∣∣
By the Ratio Test, the series converges if

∣∣∣∣x +1

2

∣∣∣∣ < 1 or |x +1| < 2. So, the ra-

dius of convergence is R = 2. Because the series is centered at x = −1, it will
converge in the interval (−3,1). Furthermore, at the endpoints you have

when x =−3 =⇒
∞∑

n=0

(−1)n(−2)n

2n
=

∞∑
n=0

1 Diverges.

when x = 1 =⇒
∞∑

n=0

(−1)n2n

2n
=

∞∑
n=0

(−1)n Diverges.

both of which diverge. So, the interval of convergence is (−3,1)
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Example 2.60. Find the interval and radius of convergence of the power series
∞∑

n=1

(x −5)n

n2
.

Solution 2.60. Letting an = (x −5)n

n2
produces

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣= lim
n→∞

∣∣∣∣ (x −5)n+1

(n +1)2
× n2

(x −5)n

∣∣∣∣= |x −5| lim
n→∞

[ n

n +1

]2
= |x −5|

By the Ratio Test, the series converges if |x −5| < 1. So, the radius of conver-
gence is R = 1. Because the series is centered at x = 5, it will converge in the
interval (4,6). Furthermore, at the endpoints you have

when x = 4 =⇒
∞∑

n=1

(−1)n

n2
Converges.

when x = 6 =⇒
∞∑

n=1

1

n2
Converges.

both of which converge. So, the interval of convergence is [4,6]

Example 2.61. Find the interval and radius of convergence of the power series
∞∑

n=1

nn

2n
xn .

Solution 2.61. Letting an = nn

2n
xn produces

lim
n→∞

n
√
|an | = lim

n→∞

∣∣∣∣nn

2n
xn

∣∣∣∣ 1
n

= |x| lim
n→∞

n

2
=∞ for x ̸= 0

So, the series only converges only it x = 0, and the radius of converges is R = 0.

Differentiation and Integration of Power Series

Power series representation of functions has played an important role in the
development of calculus. In fact, much of Newton’s work with differentia-
tion and integration was done in the context of power series, especially his
work with complicated algebraic functions and transcendental functions. Eu-
ler, Lagrange, Leibniz, and the Bernoulli all used power series extensively in
calculus.
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Once you have defined a function with a power series, it is natural to won-
der how you can determine the characteristics of the function. Is it continu-
ous? Differentiable? Theorem 2.8.2 answers these questions.

Theorem 2.8.2. Properties of Functions Defined by Power Series
If the function f given by

f (x) =
∞∑

n=0
an(x − c)n

= a0 +a1(x − c)+a2(x − c)2 +a3(x − c)3 +a4(x − c)4 +·· ·
has a radius of convergence of R > 0, then, on the interval (c − R,c + R), f
is differentiable (and therefore continuous). Moreover, the derivative and an-
tiderivative of f are as follows.

1. f ′(x) =
∞∑

n=1
nan(x − c)n−1 = a1 +2a2(x − c)+3a3(x − c)2 +·· · .

2.
∫

f (x)d x =C +
∞∑

n=0
an

(x − c)n+1

n +1
=C +a0(x − c)+a1

(x − c)2

2
+·· · .

The radius of convergence of the series obtained by differentiating or integrating
a power series is the same as that of the original power series. The interval of
convergence, however, may differ as a result of the behaviour at the endpoints.

Example 2.62. Consider the function given by

f (x) =
∞∑

n=1

xn

n
= x + x2

2
+ x3

3
+ x4

4
+·· ·

Find the interval of convergence for each of the following.

(1)
∫

f (x)d x (2) f (x) (3) f ′(x)

Solution 2.62. By Theorem 2.8.2, you have

f ′(x) =
∞∑

n=1
xn−1 = 1+x +x2 +x3 +·· ·

and ∫
f (x)d x =C +

∞∑
n=1

xn+1

n(n +1)
=C + x2

1 ·2
+ x3

2 ·3
+ x4

3 ·4
· · ·



2.8. POWER SERIES 79

By the Ratio Test, you can show that each series has a radius of convergence
of R = 1. Considering the interval (−1,1), you have the following.

(1) For
∫

f (x)d x, the series
∞∑

n=1

xn+1

n(n +1)
converges for x =±1, and its inter-

val of convergence is [−1,1].

(2) For f (x), the series
∞∑

n=1

xn

n
converges for x = −1 and diverges for x = 1.

So, its interval of convergence is [−1,1).

(3) For f ′(x), the series
∞∑

n=1
xn−1 diverges for x =±1, and its interval of con-

vergence is (−1,1).

Exercise 2.8.

1. Find the radius and interval of convergence of the series.

(1)
∞∑

n=1

xn

2n −1
(2)

∞∑
n=0

xn

n!
(3)

∞∑
n=0

(x −2)n

n2 +1

(4)
∞∑

n=1
n!(2x −1)n (5)

∞∑
n=1

n

4n
(x +1)n (6)

∞∑
n=1

3n(x +4)n

p
n

2. Find all values of x ∈ [0,2π] for which
∞∑

n=1

[
2p
3

]n

sinn x converges.[
Hint : The answer is

[
0,
π

3

)
∪

(
2π

3
,

4π

3

)
∪

(
5π

3
,2π

]]
3. Give an example of a power series that converges for x ∈ [2,6).[

Hint : For example,
∞∑

n=1

(x −4)n

n 2n

]

4. Let f (x) =
∞∑

n=1

xn

n2
. Find the interval of convergence of : f , f ′, and f ′′.
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2.9 Representation of Functions by Power Series

In this section we learn how to represent certain types of functions as sums
of power series by manipulating geometric series or by differentiating or inte-
grating such a series. You might wonder why we would ever want to express
a known function as a sum of infinitely many terms. We will see later that
this strategy is useful for integrating functions that don’t have elementary an-
tiderivatives, for solving differential equations, and for approximating func-
tions by polynomials.

We start with the geometric power series (a = 1,r = x)

∞∑
n=0

xn = 1+x +x2 +x3 +·· · = 1

1−x
for |x| < 1 (2.9.1)

Example 2.63. Find a power series for f (x) = 1

1+x2
, centered at 0.

Solution 2.63. Replacing x by −x2 in Equation 2.9.1, we have

1

1+x2
= 1

1− (−x2
) = ∞∑

n=0

(−x2)n =
∞∑

n=0
(−1)n x2n

Because this is a geometric series, it converges when
∣∣−x2

∣∣< 1, that is, x2 < 1,
or |x| < 1. Therefore the interval of convergence is (−1,1).

Example 2.64. Find a power series for f (x) = 4

2+x
, centered at 0.

Solution 2.64. In order to put this function in the form of the left side of Equa-
tion 2.9.1, we first factor a 2 from the denominator:

4

2+x
= 4

2
[

1+ x

2

] = 2

1−
[
−x

2

] =
∞∑

n=0
2
[
−x

2

]n
=

∞∑
n=0

(−1)n xn

2n−1

This power series converges when
∣∣∣−x

2

∣∣∣< 1 which implies that the interval of

convergence is (−2,2).

Example 2.65. Find a power series for f (x) = 1

x
, centered at 1.
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Solution 2.65. In order to put this function in the form of the left side of Equa-
tion 2.9.1, we first add and subtract 1 from the denominator:

1

x
= 1

1−1+x
= 1

1− (1−x)
=

∞∑
n=0

[−(x −1)]n =
∞∑

n=0
(−1)n(x −1)n

This power series converges when |x−1| < 1 which implies that the interval of
convergence is (0,2).

Example 2.66. Find a power series for f (x) = 4x3

2+x
, centered at 0.

Solution 2.66. Since this function is just x3 times the function in Example
2.64, all we have to do is to multiply that series by x3:

4x3

2+x
= x3 × 4

2+x
= x3 ×

∞∑
n=0

(−1)n xn

2n−1
=

∞∑
n=0

(−1)n xn+3

2n−1

As in Example 2.64, the interval of convergence is (−2,2).

The versatility of geometric power series will be shown later in this section,
following a discussion of power series operations. These operations, used
with differentiation and integration, provide a means of developing power se-
ries for a variety of elementary functions. For simplicity, the following prop-
erties are stated for a series centered at 0.

Theorem 2.9.1. Operations with Power Series

Let f (x) =
∞∑

n=0
an xn and g (x) =

∞∑
n=0

bn xn .

1. f (mx) =
∞∑

n=0
anmn xn .

2. f
(
xm)= ∞∑

n=0
an xmn .

3. f (x)± g (x) =
∞∑

n=0
(an ±bn) xn .

The operations described above can change the interval of convergence
for the resulting series. For example, in the following addition, the interval of
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convergence for the sum is the intersection of the intervals of convergence of
the two original series.

∞∑
n=0

xn

︸ ︷︷ ︸
(−1,1)

+
∞∑

n=0

(x

2

)n

︸ ︷︷ ︸
(−2,2)

=
∞∑

n=0

(
1+ 1

2n

)
xn

︸ ︷︷ ︸
(−1,1)∩(−2,2)=(−1,1)

Example 2.67. Find a power series, centered at 0, for f (x) = 3x −1

x2 −1
.

Solution 2.67. Using partial fractions, you can write as f (x) = 2

x +1
+ 1

x −1
.

By adding the two geometric power series

2

x +1
= 2

1− (−x)
= 2

∞∑
n=0

(−1)n xn where |x| < 1

and
1

x −1
= −1

1−x
=−

∞∑
n=0

xn where |x| < 1

you obtain the power series
3x −1

x2 −1
=

∞∑
n=0

[
2(−1)n −1

]
xn , where the interval of

convergence for this power series is (−1,1).

Example 2.68. Find a power series for f (x) = ln x, centered at 1.

Solution 2.68. Since
∫

1

x
d x = ln x+C , and from Example 2.65, you know that

1

x
=

∞∑
n=0

(−1)n(x −1)n , then

ln x =C +
∫

1

x
d x =C +

∫ [ ∞∑
n=0

(−1)n(x −1)n
]

d x

=C +
∞∑

n=0
(−1)n (x −1)n+1

n +1

By letting x = 1, you can conclude that C = 0. Therefore,

ln x =
∞∑

n=0
(−1)n (x −1)n+1

n +1

Example 2.69. Find a power series for g (x) = tan−1 x, centered at 0.
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Solution 2.69. Because
d

d x

[
tan−1 x

] = 1

1+x2
, and from Example 2.63 you

know that
1

1+x2
=

∞∑
n=0

(−1)n x2n , you obtain

tan−1 x =C +
∫

1

1+x2
d x =C +

∫ [ ∞∑
n=0

(−1)n x2n
]

d x

=C +
∞∑

n=0
(−1)n x2n+1

2n +1

By letting x = 0, you can conclude that C = 0. Therefore,

tan−1 x =
∞∑

n=0
(−1)n x2n+1

2n +1

Exercise 2.9.

1. Find a power series for the function, centered at c, and determine the
interval of convergence.

a) f (x) = 1

(1−x)2
at c = 0.

[
Hint :

1

(1−x)2
= d

d x

(
1

1−x

)]
. .

b) f (x) = ln(1+x) at c = 0.

[
Hint : ln(1+x) =

∫
1

1+x
d x

]
. .

c) f (x) = 1

3−x
at c = 1.

[
Hint :

1

3−x
= 1/2

1− ( x−1
2

)]. .

d) f (x) = 4x

x2 +2x −3
at c = 0.

[
Hint :

4x

x2 +2x −3
= 1

x −1
+ 3

x +3

]
. .

e) f (x) = 2

(1+x)3
at c = 0.

[
Hint :

2

(1+x)3
= d 2

d x2

(
1

1+x

)]
. .

f ) f (x) = ln
(
1−x2

)
at c = 0.

[
Hint : ln

(
1−x2)= ln(1−x)+ ln(1+x)

]
.

.

g) f (x) = x

(1+4x)2
at c = 0.

h) f (x) =
( x

2−x

)3
at c = 0.

2. Suppose that the series
∑

an xn has radius of convergence 2, and the se-
ries

∑
bn xn has radius of convergence 3. What is the radius of conver-

gence of the series
∑

(an +bn) xn ?
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3. Suppose that the radius of convergence of the power series
∑

an xn is R.
What is the radius of convergence of the power series

∑
an x2n ?

4. Evaluate
∞∑

n=1

n

2n
.

[
Hint : Show that

1

(1−x)2
=

∞∑
n=1

nxn−1
]

.

2.10 Taylor and Maclaurin Series

We saw in the previous section that functions such as f (x) = tan−1 x can be
represented as power series. These power series give us a certain tangible in-
sight into the function represented and they allow us to approximate the val-
ues of f (x) to any desired degree of accuracy. Thus, it is desirable to develop
general methods for finding power series representations.

Theorem 2.10.1. The Form of a Convergent Power Series

If f is represented by a power series f (x) =
∞∑

n=0
an(x − c)n for all x in an open

interval I containing c, then an = f (n)(c)

n!
and f (x) =

∞∑
n=0

f (n)(c)

n!
(x − c)n .

Definition 2.10.1. Definition of Taylor and Maclaurin Series
If a function f has derivatives of all orders at x = c, then the series f (x) =
∞∑

n=0

f (n)(c)

n!
(x − c)n is called the Taylor series for f (x) at c. Moreover, if c = 0,

then the series is the Maclaurin series for f .

If you know the pattern for the coefficients of the Taylor polynomials for a
function, you can extend the pattern easily to form the corresponding Taylor
series.

Example 2.70. Find the Maclaurin series for f (x) = ex .

Solution 2.70. The nth derivative f (x) is f (n)(x) = ex for all n and thus

f (0) = f ′(0) = f ′′(0) = ·· · = e0 = 1.

Therefore, the coefficients of the Maclaurin series are an = f (n)(0)

n!
= 1

n!
and

the Maclaurin series is f (x) =
∞∑

n=0

xn

n!
.
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Example 2.71. Find the Maclaurin series for f (x) = sin x.

Solution 2.71. For f (x) = sin x, we have

f (2n)(x) = (−1)n sin x and f (2n+1)(x) = (−1)n cos x

Therefore, f (2n)(0) = 0 and f (2n+1)(0) = (−1)n . Hence, the coefficients of the

Maclaurin series are a2n+1 = (−1)n

(2n +1)!
and the Maclaurin series is

f (x) =
∞∑

n=0

(−1)n

(2n +1)!
x2n+1

Since a Taylor series is a power series, we may differentiate and integrate
a Taylor series term by term within its interval of convergence. We may also
multiply two Taylor series or substitute one Taylor series into another. This
leads to shortcuts for generating new Taylor series from known ones. The fol-
lowing list provides the Maclaurin series for several elementary functions with
the corresponding intervals of convergence.
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Example 2.72. Find the Maclaurin series for f (x) = x2ex .

Solution 2.72. We obtain the Maclaurin series of f (x) by multiplying the known
Maclaurin series for ex by x2:

x2ex = x2
∞∑

n=0

xn

n!
=

∞∑
n=0

xn+2

n!
=

∞∑
n=2

xn

(n −2)!

Example 2.73. Find the Maclaurin series for f (x) = cos
p

x.

Solution 2.73. Using the power series cos x =
∞∑

n=0

(−1)n

(2n)!
x2n you can replace

x by
p

x to obtain the series cos
p

x =
∞∑

n=0

(−1)n

(2n)!
xn . This series converges for

x ≥ 0.

Example 2.74. Find the Maclaurin series for f (x) = sin2 x.

Solution 2.74. Write sin2 x as

sin2 x = 1

2
− 1

2
cos(2x)

and then, use the Maclaurin series for cos x as follows.

sin2 x = 1

2
− 1

2
cos(2x) = 1

2
− 1

2

∞∑
n=0

(−1)n

(2n)!
(2x)2n

= 1

2
−

∞∑
n=0

(−1)n

(2n)!
22n−1x2n

Example 2.75. Find Taylor series for f (x) = ln x at c = 1.

Solution 2.75. We begin by letting t = x −1 that transforms f to ln(t +1), and
now looking for the Maclaurin series at c = 0. So,

f (x) = ln x = ln(t +1) =
∞∑

n=1
(−1)n−1 t n

n
=

∞∑
n=1

(−1)n−1 (x −1)n

n

Example 2.76. Evaluate
∫

e−x2
d x as an infinite series.
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Solution 2.76. the Maclaurin series for e−x2
is

∞∑
n=0

(−1)n x2n

n!
. Now we integrate

to obtain∫
e−x2

d x =C +
∫ [ ∞∑

n=0
(−1)n x2n

n!

]
d x =C +

∞∑
n=0

(−1)n x2n+1

(2n +1)n!

Example 2.77. If f (x) = sin
(
x3

)
, find f (15)(0).

Solution 2.77. It would be far too much to compute 15 derivatives of f . The
key idea is to remember that f (n)(0) occurs in the coefficient of xn in the
Maclaurin series of f . Since

f (x) = sin
(
x3)= ∞∑

n=0
(−1)n x6n+3

(2n +1)!
= x3 − x9

3!
+ x15

5!
−·· ·

then the coefficient of x15 is
f (15)(0)

15!
= 1

5!
, and hence

f (15)(0) = 15!

5!
= 10897286400

Example 2.78. Find the sum of the series
∞∑

n=1
(−1)n−1 3n

n 5n
.

Solution 2.78. Remember that ln(1+x) =
∞∑

n=1
(−1)n−1 xn

n
. So,

∞∑
n=1

(−1)n−1 3n

n 5n
=

∞∑
n=1

(−1)n−1

(3
5

)n

n
= ln

(
1+ 3

5

)
= ln

(
8

5

)
Exercise 2.10.

1. Find Maclaurin series for the given function.

(1) sin x cos x (2)
1

1+5x
(3) cos2 x

(4) ln

[
1+x

1−x

]
(5) x2e−3x
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2. Find Taylor series for the given function at the indicated value of c.

(1)
1

1+x
, (c = 4) (2) sin x , (c =π/2) (3) ln(1+x) , (c = 2)

(4) ex , (c = 1) (5)
p

x , (c = 1)

3. Find f (10)(0) for f (x) = x4 sin
(
x2

)
.

4. Does f (x) = cot x possess a Maclaurin series representation ?

5. Use Maclaurin series to evaluate lim
x→0

1+x −ex

1−cos x
.

6. Find the sum of the series
∞∑

n=0
(−1)n π2n

36n(2n)!

7. Find the interval of convergence of
∞∑

n=1
n3xn and find its sum.

8. Find the sum of the series

1+ 1

2
+ 1

3
+ 1

4
+ 1

6
+ 1

8
+ 1

9
+ 1

12
+·· ·

where the terms are reciprocals of the positive integers whose only prime
factors are 2’s and 3’s.



APPENDIXA

Indeterminate Forms and

L'Hôspital's Rule

John Bernoulli discovered a rule for calculating limits of fractions whose nu-
merators and denominators both approach zero or +∞. The rule is known
today as l’Hôspital’s Rule, after Guillaume de l’Hôspital. He was a French no-
bleman who wrote the first introductory differential calculus text, where the
rule first appeared in print.

A.1 Indeterminate Form 0/0,∞/∞
If the functions f (x) and g (x) are both zero or both ±∞ at x = a then

lim
x→a

f (x)

g (x)

cannot be found by substituting x = a. The substitution produces 0/0 or
∞/∞, a meaningless expressions (indeterminate forms), that we cannot eval-
uate. Sometimes, but not always, limits that lead to indeterminate forms may
be found by cancelation, rearrangement of terms, or other algebraic manip-
ulations. L’Hôspital’s Rule enables us to draw on our success with derivatives
to evaluate limits that otherwise lead to indeterminate forms.

89
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Theorem A.1.1. Suppose f and g are differentiable and g ′(x) ̸= 0 on an open
interval I that contains a (except possibly at a). Suppose that

lim
x→a

f (x)

g (x)
= 0

0
or

±∞
±∞

(In other words, we have an indeterminate form of type 0/0 or ∞/∞.) Then

lim
x→a

f (x)

g (x)
= lim

x→a

f ′(x)

g ′(x)

if the limit on the right side exists or ±∞.

L’Hôspital’s Rule says that the limit of a quotient of functions is equal to the
limit of the quotient of their derivatives, provided that the given conditions are
satisfied. It is especially important to verify the conditions regarding the limits
of and before using L’Hôspital’s Rule.

L’Hôspital’s Rule is also valid for one-sided limits and for limits at infinity
or negative infinity.

Example A.1. Find

lim
x→1

ln x

x −1

Solution A.1. Since limx→1 ln x = 0 and limx→1(x −1) = 0, then we can apply
L’Hôspital’s Rule:

lim
x→1

ln x

x −1
= lim

x→1

d
d x (ln x)
d

d x (x −1)
= lim

x→1

1/x

1
= lim

x→1

1

x
= 1

Example A.2. Calculate

lim
x→∞

ex

x2

Solution A.2. We have limx→∞ ex = ∞ and limx→∞ x2 = ∞, so L’Hôspital’s
Rule gives:

lim
x→∞

ex

x2
= lim

x→∞

d
d x (ex)
d

d x

(
x2

) = lim
x→∞

ex

2x

Since ex →∞ and 2x →∞ as x →∞, the limit on the right side is also indeter-
minate, but a second application of L’Hôspital’s Rule gives

lim
x→∞

ex

x2
= lim

x→∞
ex

2x
= lim

x→∞
ex

2
=∞
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Example A.3. Calculate

lim
x→∞

ln x
3
p

x

Solution A.3. Since limx→∞ ln x =∞ and limx→∞ 3
p

x =∞ as x →∞, L’Hôspital’s
Rule applies:

lim
x→∞

ln x
3
p

x
= lim

x→∞
1/x

1
3 x−2/3

Notice that the limit on the right side is now indeterminate of type 0
0 . But in-

stead of applying L’Hôspital’s Rule a second time as we did in the previous
example, we simplify the expression and see that a second application is un-
necessary:

lim
x→∞

ln x
3
p

x
= lim

x→∞
1/x

1
3 x−2/3

= lim
x→∞

3
3
p

x
= 0

Example A.4. Find

lim
x→0

tan x −x

x3

Solution A.4. Noting that both tan x − x → 0 and x3 → 0 as x → 0, we use
L’Hôspital’s Rule:

lim
x→0

tan x −x

x3
= lim

x→0

sec2 x −1

3x2

Since the limit on the right side is still indeterminate of type 0
0 , we apply L’Hôspital’s

Rule again:

lim
x→0

tan x −x

x3
= lim

x→0

sec2 x −1

3x2

= lim
x→0

2sec2 x tan x

6x

= 2

6
× lim

x→0
sec2 x × lim

x→0

tan x

x

= 1

3
×1×1 = 1

1

A.2 Indeterminate Products 0 ·±∞
If limx→a f (x) = 0 and limx→a g (x) = ±∞, then it is not clear what the value
of limx→a

[
f (x)g (x)

]
, if any, will be. There is a struggle between f and g . If f
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wins, the answer will be 0; if g wins, the answer will be ±∞. Or there may be a
compromise where the answer is a finite nonzero number. This kind of limit
is called an indeterminate form of type 0 ·∞. We can deal with it by writing
the product as a quotient:

f g = f

1/g
or f g = g

1/ f

This converts the given limit into an indeterminate form of type 0
0 or ∞/∞ so

that we can use L’Hôspital’s Rule.

Example A.5. Evaluate

lim
x→0+

x ln x

Solution A.5. The given limit is indeterminate because, as x → 0+, the first
factor x approaches 0 while the second factor ln x approaches −∞. Writing x
as 1

1/x we have 1/x →∞ as x → 0+, so L’Hôspital’s Rule gives:

lim
x→0+

x ln x = lim
x→0+

ln x

1/x
= lim

x→0+
1/x

−1/x2
= lim

x→0+
(−x) = 0

A.3 Indeterminate Differences ∞−∞
If limx→a f (x) =∞ and limx→a g (x) =∞, then the limit

lim
x→a

[
f (x)− g (x)

]
is called an indeterminate form of type ∞−∞. Again there is a contest be-
tween f and g . Will the answer be ∞ ( f wins) or will it be ∞ (g wins) or
will they compromise on a finite number? To find out, we try to convert the
difference into a quotient (for instance, by using a common denominator, or
rationalization, or factoring out a common factor) so that we have an indeter-
minate form of type 0

0 or ∞/∞.

Example A.6. Evaluate

lim
x→(π/2)−

(sec x − tan x)
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Solution A.6. First notice that sec x →∞ and tan x →∞ as x → (π/2)−, so the
limit is indeterminate. Here we use a common denominator:

lim
x→(π/2)−

(sec x − tan x) = lim
x→(π/2)−

(
1

cos x
− sin x

cos x

)
= lim

x→(π/2)−
1− sin x

cos x

= lim
x→(π/2)−

−cos x

−sin x
= 0

A.4 Indeterminate Powers 00,∞0,1∞

These several indeterminate forms arise from the limit

lim
x→a

[
f (x)

]g (x)

Each of these three cases can be treated by writing the function as an expo-
nential: [

f (x)
]g (x) = eg (x) ln f (x)

and then
lim
x→a

[
f (x)

]g (x) = e limx→a g (x) ln f (x)

where the indeterminate product g (x) ln f (x) is of type 0 ·∞.

Example A.7. Calculate
lim

x→0+
(1+ sin4x)cot x

Solution A.7. First notice that as x → 0+, we have 1+sin4x → 1 and cot x →∞,
so the given limit is indeterminate. Let

(1+ sin4x)cot x = ecot x ln(1+sin4x)

Then
lim

x→0+
(1+ sin4x)cot x = e limx→0+ cot x ln(1+sin4x)

Since

lim
x→0+

cot x ln(1+ sin4x) = lim
x→0+

ln(1+ sin4x)

tan x

= lim
x→0+

4cos4x
1+sin4x

sec2 x
= 4



94 APPENDIX A. INDETERMINATE FORMS AND L’HôSPITAL’S RULE

then
lim

x→0+
(1+ sin4x)cot x = e4

Example A.8. Find
lim

x→0+
xx

Solution A.8. Notice that this limit is indeterminate since 0x = 0 for any x >
0 but x0 = 1 for any x ̸= 0. We could proceed by writing the function as an
exponential

xx = ex ln x

and then
lim

x→0+
xx = e limx→0+ x ln x = e0 = 1


















