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Stochastic Process

Intferest: Sometimes we are inferested in how a random variable
changes over time.

Roll1 Roll2 Roll3 Roll4 Rollb

R 0 R I R I R e

Definifion: A stochastic (random) process involves a sequence of
experiments where The oufcome of each experiment is
not certain.



Stochastic Process

Exampile:

(Cat & Mouse)

There are seven doors arranged in a straight line. A mouse
iniTiates The game at The central door, which is door 4. Door 1
houses a cat, and the ulfimafe goal is To reach door 7 for
freedom. Each day, The mouse makes a random decision To move
either one door To the left or one door To The right, with an egual
50% chance for each direction. The game continues until one of
Two conditions is meT: if The mouse encounters The cat at door 1,
The game ends with The cat catching The mouse; conversely, if The
mouse successfully reaches door 7, iT secures ifs freedom,
concluding the game.



StochasTic Process _
Example: (Cat & Mouse) f P Q q Qﬂ
l l l l BRI

* The door where the mouse resides is Day Door
referred to as the system's current stafe. . 4
" LeT X+ be the mouse position after t days. ; E’r
* The state space of {X;: T € T} is: 3 3
4 2
S = {112)3l4l51617} 5 3
T — {®l112;31°“} 6 2
7 1



StochasTic Process _
Example: (Cat & Mouse) f P Q q Q&j
l l l l BRI

" Note that Xi is a discrete random Day Door
variable.
0 4
1 5
" In this example, being in a state at time 2 4
T+ 1depends on The stafe af Time T and 3 3
does not depend on The stfates The chain 4 2
passed through on the way 1o it at Time T. 5 3
6 2
7 1



Stochastic Process

Example:  Let X+ be The number of customers in a supermarket
at any period of Time T.

" Nofe that Xt is a confinuous random Time Customers
variable.

1215 PM &
* The state space of {X;: T € T} is: > minutes

affer opening
S=1{0123;} T=1[0.°)

From 10:10
To 10:22



Stochastic Process

Exampile:

(Balls from Urn)

An urn contains Two unpainted balls aT present. We choose a ball
at random and flip a coin. If The chosen ball is unpainted and the
coin comes up heads, we paint the chosen unpainted ball red; if
The chosen ball is unpainted and the coin comes up Tails, we paint
The chosen unpainted ball black. If the ball has already been
painted, Then (whether heads or tails has been tossed) we change
the color of the ball (from red to black or from black fo red). To
model This situation as a stochastic process, we define fime 1 1o be
the Time aftfer The coin has been flipped for the t™ fime and the
chosen ball has been painted.



Stochastic Process
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Stochastic Process

Example:  (Balls from Urn) The state at any time may be described

by The 3-digiTs number

D <

N
SR OO
Y e = @ number of number of
O ( ,\ '\ ,‘ unpainted number of black balls
~ ; balls red balls
S
X Xg = 200

After The first coin toss
X1 = 110 or X1 = 101

¥

SRR
‘l“ @«
)0 @0

/

O

If Xt = 020 Then Xyuq = 01
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Markov Chain

Goncept:

Definition:

A Markov Chain is a stochastic process used 1o describe a
sequence of events where the oufcome of each event
depends only on the previous one, exhibiTing a Mmemoryless
property.

A discrefe—time stochastic process is a Markov chain if, for
=02, and all states,

POt = bpsfXp = 5, Xpog = Iog, o X = . Xg = )
= P(Xps1 = ipsq[X = iy)



Markov Chain

Example:  Assume there's a restaurant that serves only three fypes

of foods:
AR
< @ N

Burger Pizza  Sausage

But the restaurant follows a weird rule in serving These
foods. On any given day They serve only one of These
Three ifems and it depends on what they had served
yesterday, and can’t serve Pizza in Two consecufive days.

Day1 Day2 Day3 DagAr Day 5

~ @ N @ ..y Predict ?



Markov Chain

Example: The states of The system is The setT
S = {Burger, Pizza, Sausage}

Each weighted directed arrow is called a
Transition from one sfate 1o The ofher with
The given probabiliTy.

Each number Pi In The diagram is the

probability that given The system is in stafe |
at Time T, it will be in a state j af Time T+1.

For all states i and j and all T, P(X4q = j|¥+ =)
s independent of The tfime T.

N\~

4
O s

\j
Q.7

P(Xps1 = [[%r =1) = by



Markov Chain

Example: The states of The system is The setT

S=1{B,Z S}
Next
State
Same A
Order r )
B Z S

02 06 02 |X=1

Current

Stote 03 00 07 Y — 1

B
VA
S

0.4 0.1 0.5 2 =1

4
O s

\j
Q.7

The probabilities shown in the
directed graph can be represented
by a square matrix called The
Transition probabilities of The
Markov chain.



Markov Chain

Example: In a given city, if today's weather is sunny, there is a 40% chance
That Tomorrow will be partly cloudy, and a 10% chance of rain. If
today's weather is partly cloudy, there is a 20% chance thatf
tomorrow will also be partly cloudy, and a 4@% chance of rain. If
today's weather is rainy, there is a 50% chance that fomorrow wil
also be rainy, and a 30% chance of it being partly cloudy. Find The

fransition matrix of The problem. @
% ' 4
s ¢ R 0. '.’.' 0.4
s [o5 04 o @ @
W= ¢ | 04 02 o4 @ o d
R | 02 03 05 e R__

) ** T



Markov Chain

Example: Find the fransition matrix of the ‘Cat & Mouse” problem.

ﬁmmm@m rw&]

1T 2 3 4 b5 6 7
1f1 @ @ o0 o0 0 0
2005 0 05 o0 o 0 0
3]0 05 0 05 0 0 0
D= 410 @ 05 0 05 0 0
5006 0 0 05 0 05 0
6§06 0 0 0 05 0 05
L6 0 o0 0 0 0 1



Markov Chain

Example: Find the transition matrix of the "Balls from Urn’ problem.

X 200 10 101 01 020 002
2@@ 1@1 11@ 200 0 050 050 0 0 0@
AN N A0 A0 M| 06 © 050 025 025 0
S @ R @ @ g_ |0 oes0 0 025 0 025
O‘S é‘s O‘S  oml o o o 0@ 050 050
" sﬂb’ %2 @2@ 020l o0 o o 1 o 0
@ @ @ @ @ 0021 © 0 0 1 0 0



Markov Chain

Example: Find the transition matrix of the "Balls from Urn’ problem.

Whenever we select a ball from
The box, we ensure that its color is
altered. Gonsequently, no state is
permitted To fransition back To
ITself.

As any ball once painted cannot
reverT To an unpainted state, The
fransifion probability for such a
scenario is zero.

200
10
101
o1

020

002

1 101  on 020 002
050 050 0 0 0
@ 050 025 025 0

250 0 025 0 025

? ? @ 050 050
? ? 1 ? ?
Q Q 1 Q Q



Markov Chain

Example: Find the transition matrix of the "Balls from Urn’ problem.

Every time, The color of precisely
one ball musT undergo a change,
making  iT  impossible 1o
simultaneously alter The colors of
Two balls.

If There are two painted balls of
The same color in The box, iT is
certfain That when we select one,
ITs color musT be changed.

200 110 101 o1 020 002

2000 050 050 0 0 0
m | @ o 050 025 025 0
01|l @ 050 @ 025 0 025
B="nlo 0 o o os0 os0
00l 0o o o 1 o o
o2l o o o 1 o o



Markov Chain

Example: Find the transition matrix of the "Balls from Urn’ problem.

Unpainted otHtin 200 110 101 0N 020 002
p(110|200) = P( olrlwooosen ngheadg) 2000 0 050 050 @ @ 0
M| @6 @ 050 025 025 @
=1x05=05 5 _ 1) 0 050 @ 025 0 025
oo | o ) ) @ 050 050
020l @ o0 @ 1 o 0
red
p(101[110) = p( 1) =05 o2l o 0 @ 1 0 o

p(020|110) = p (unpain‘reol A geﬂing)

choosen head

=05x05=025



Markov Chain

Example: Find the transition matrix of the "Balls from Urn’ problem.

002 200 10 101 o1 020 002

O 20000 050 050 @ @ o

ml 0o 0 050 025 025 0

| 0 o050 0 025 @ 025

B —

101 Q ——— () o11 on |l @ © 0 0 050 050
ool @ o o 1 o o

o2l e o o 1 o o

©—>©—>©

110
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n-STep Transition

To understand The idea of this section, we starT by an example.

Example: Gonsider The following Markov chain.

1 2 3
1f o5 04 01 " What is the probability of reaching “state 3

M= 2| 04 o2 o4 from “state 2" in exactly ONE step?

3] 0.2 0.3 0.5

8
AN

CO~— @D

Moz = 0.4 = Myg(1)



n-STep Transition

To understand The idea of this section, we starT by an example.

Example: Gonsider The following Markov chain.

1 2 3
1f o5 04 01 " Wha:r IS The QrobabiliTg of reaching “state 3’
M= 2| 04 02 o4 from “state 2" in exactly TWO steps?
L0208 08 M23(2) = MaiMiz +MgpMag + MogMas
= (04)(0.1) + (0.2)(0.4) + (0.4)(@.5)

= 0.32

8
AN

CO~— @D



n-STep Transition

To understand The idea of this section, we starT by an example.

Example: Gonsider The following Markov chain.

1 2 3
il o5 04 o1 " Wha:r IS The |?roloaloili’rg of reaching “state 3’
M= 2|l 04 02 04 from “state 2" in exactly TWO steps?
Loz 0808 M23(2) = MgiMig +MopMog +Mo3Mag
Myg

= [Mg1 Mgp Mag]-|Myg

()
® M33]
,//' ‘\\A =[04 02 04]- lgﬂ = 0.32

CO~— @D




n-STep Transition

To understand The idea of this section, we starT by an example.

Example: Gonsider The following Markov chain.
1 2 3
€ o5 o4 o * What is the probability of reaching “state |’

M= 2|l 04 02 o4 from “state i" in exactly TWO steps?

3] 02 0.3 0.5
0.5 0.4 0.1 0.5 0.4 0.1

0.4 0.2 0.4 0.4 0.2 0.4
0.2 0.3 0.5 0.2 0.3 0.5

® 2 3
/ \ 1fo43 031 026 Maq(2) = M% — 032
=2| 03 032 032

C@ — @D 3| 032 029 039 M11(2) = M121 = 0.43

2 _
i

MU(Z) =MJ



n-STep Transition

To understand The idea of this section, we starT by an example.

Example: Gonsider The following Markov chain.
1 2 3
€ o5 o4 o * What is the probability of reaching “state |’

M= 2| 04 02 o4 from “state i’ in exactly n-steps?

3l 02 03 05
U".‘ = i element of M.

8 N — M Mn-1 N — MK MK
‘//v‘\\‘ {M zm:m} { " i::an“fk; ®<k<rJ

CO—=0D

Mu(n) =M




n-STep Transition

Example: Back To The weather example. The Markov chain was
S c R
s{ o5 04 o
W= ¢| 04 02 04
Rl 2 03 05

If iT is rainy Today, what is The probability that it will
be sunny after 3-days?

043 031 020)[ 05 04 01 0391 @312 @297
W2 =WZw=lo3 032 032|| 04 02 o4 0372 0304 0324
0354 0303 0343

r WRs(?)) = 0.354



n-STep Transition

Example: Back To The restaurant example. The Markov chain was
B Z S
B[ 02 06 02
M= z| 03 00 07
04 01 05

If the resTaurant serves Pizza today, what is the
probability That it will serve Sausage after 4-days?

3112 2394 4494
MY =MZ2M2Z= | 034 02 034 02 — 7| 311 2290 4569
3166 2319 4525

. Mzg(4) = 0.4569



The Probability DisTribution of the STates

Idea: In many situations, we do not know the state of The Markov chain
at Time 0.

In This case, we can deTermine tThe probability That The system is in
“state j af any “time n" by defining the vector

a=[n a2 — %]
where

dq is the probability of being at *state 1" at *fime @".
g, is the probability of being at “state 2" at “time @".

dk is the probability of being at “state s” af *fime @".



The Probability DisTribution of the STates

Idea: In the resfaurant example, someone asks: ‘from today,
what is The probability that the restaurant will serve
Burger after 4-days?’

. MB(‘]') = P(X4. = B|X® = B) :P(XQ — B)
Toolag? "r-DOIl:jS +P(X"r = B|X® = Z):P(X@ = Z):
+P(X4 = B|Xp = 3):"()‘@ = 5):

ag = P(X@ = B) . /\
= Mpg(4) ag +Mzg(4) dz +Mgg(4) ds

dz = P(¥p = 2) '-.-'

ws=P0o=9 & \/ Mpg(4)"

=[A8 9z ds]|Mzg(1)
Mgg(4).




The Probability DisTribution of the STates

Idea: In the resfaurant example, someone asks: ‘from today,
what is The probability that the restaurant will serve

Burger after 4-daus?’
g 4 a8 d7 Qs SEPTEMBER 2023
~L ~L ~L sIm[T|w|[T]|F]|S
e 7 9 =6
- Mg =[98 dz 9s]|Mzs(®) = 3@ S@o~scOs

Bssec@Bs>
= [04 03 03]|03141
0.3156. B z s
3112 2394 4494

B
M"r = 7| 3141 2290 .4569
sl 3156 2319 4525

= (0.31339



The Probability DisTribution of the STates

Probability  of
Rule: being in statej = q -

Column]
at Tfime n

jof MN

Note: In The restaurant example,

0312 02394 0.4494
aoM* = [04 03 @.3][@.3141 0.2290 @.4569]
03156 02319 0.4525

3 Probability distribution of

= [.31339 .23403 .45258] states after 4-days.

= 04



The Probability DisTribution of the STates

Note: In The resfaurant example, To calculate all The disTribution
probabilities of states for the first 4-days (day-by-day) from now:

dp = [04 03 03]

% = dM 02 06 02 3 = d2M 0y 06 09
=04 03 03] lo.s 0.9 0'7] =[316 218 467103 00 07
04 01 05 04 01 05
(Tlex o oA = [3162_ 2357 4491
A2 = M A4 = asM
02 06 02 02 06 02
=[029 027 044] l@.s 0.0 @.7] =[3152 2357 4491] [@.3 0.0 @.7]
04 01 05 | 04 01 05
=[315 218 .467] = [31339 23403 .45258]



The Probability DisTribution of the STates

Exampile:

Suppose the enftire cola industry produces only Two colas. Given
That a person last purchased cola 1, There is a 90% chance That
her next purchase will be cola 1. Given That a person lasT
purchased cola 2, There is an 80% chance that her next purchase

will be cola 2. 0.2

1. Write the fransii frix of th Y T
: Y‘IOIQI e 1Transition mairix o e Cola Col
0.1

0.8
a



The Probability DisTribution of the STates

Exampile:

Suppose the enftire cola industry produces only Two colas. Given
That a person last purchased cola 1, There is a 90% chance That
her next purchase will be cola 1. Given That a person lasT
purchased cola 2, There is an 80% chance that her next purchase
will be cola 2.

2. If a person is currently a cola 1 : @19
purchaser, what is The probability That C = [ '
she will purchase cola 1 Two purchases 2102
from now?

1 2

1 (083 0.17 2
2 = , [@34 %6] G1(2) = Cf3 = 0.83

Q.1
0.8



The Probability DisTribution of the STates

Exampile:

Suppose the enftire cola industry produces only Two colas. Given
That a person last purchased cola 1, There is a 90% chance That
her next purchase will be cola 1. Given That a person lasT
purchased cola 2, There is an 80% chance that her next purchase
will be cola 2.

3. Suppose 60% of all people now drink cola 1, and 1 (09
40% now drink cola 2. Two purchases from  C= [ '
now, what fraction of all purchasers will be 2 (02
drinking cola 1? will be drinking cola 27? 1
0.83 0.17 11083 0.17
dp = qpC? =[06 04] 02 =
2= % 034 0.66 2 1034 066

= [.634 .366]
Cola1 <’ \S Cola 2
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Classifications of States

Knowing The classification of The sfafes of
The sfochastic system, and what type of
different states we have, is important to be
able 1o Talk about behavior of sftochastic
systems in The long run.

The following example is used To understand
the first part of definitions.

g 2 O N =

1 2 3
(04 06 0
05 05 0
0.3 0
o 0 09
K 0

/—\

4 5
o 0
o 0
07 0
0 0




Classifications of States

Definition (1)

Given two states i and j, a “path” from i to jis a
sequence of transifions Thaf begins in i and
ends in |, such That each Transition in The
segquence has a positive probability of occurring.

For example, 3-4-5 is a path from 3 to 5.
W_J

2
Poe > 0

Nofe that P35 =0

g 2 O N =

1 2 3
(04 06 0
05 05 0
03 0 0
o 0 09
\ 0

/—\

S
S & & O




Classifications of States

Definition (2)

A state j is “reachable’ from state i if there is a
path leading from i 1o j.

For exampile,

" state 2 is reachable from sfate 4 via the path
4-3-1-2,

" but state 4 is not reachable from statfe 2 since
there is no path from 2 1o 4.

g 2 O N =

1 2 3 5
(04 06 0 0
05 05 0 0 0
03 0 0 07 0
0 09 0 0
" @ 1 o

gox=




Classifications of States

Definition (3)

Two sfafes i and | are said to ‘communicate’ if |
s reachable from i, and i is reachable from j.

For example,

* States 1 and 2 are communicate since we can
go from 110 2 and from 2 To 1.

* States 3 and 2 are not communicate since
state 2 is reachable from state 3, but state 3 is
not reachable from state 2.

g 2 O N =

1 2 3
(04 06 0
05 05 0
03 0 0
o 0 09
\ 0

/—\

S
S & & O




Classifications of States

Definition (4)

A set of states S in a Markov chain is a “closed
set’ if no state oufside of S is reachable from

any state in S.

For example,

" The set Sy = {1,2} is closed sef.
" The set S, = {5} is closed set.

g 2 O N =

1 2 3
(04 06 0
05 05 0
03 0 0
0 0.9
0
\

S
S & & O

CO~—00



Classifications of States

Definition (5)

A state i is an “absorbing’ state if p;; = 1.

For example, sTate 5 is The only absorbing stafte.

Notes

* Whenever we enter an absorbing state, we
never leave The stafe.

" An absorbing state is a closed set containing
only one state.

g 2 O N =

1 2 3 5
(04 06 0 0
05 05 0 0 0
03 0 0 07 0
0 09 0 0
" @ 1 o

gox=




Classifications of States

Definition (6)

A stafe i is a “transient” stafe if There exists a
stafe | That is reachable from i, but the state i is
not reachable from state |.

" In other words, a state i is “transient” if there
IS @ way To leave state | that never returns 1o
state I.

g 2 O N =

1 2 3
(04 06 0
05 05 0
03 0 0
o 0 09
\ 0

/—\

S
S & & O




Classifications of States

State 3is  Because we can go from state 3
Transient 1o stafe 1, but we cannoT go back
to stafe 3 from state 1.

State 4is  Because we can go from sfate 4
Transient  To sfafe 5, buf we cannot go back
fo state 4 from stafe b.

Note: Affer a large number of periods, The
probability of being in any Transient state is 0.

g 2 O N =

1 2 3
(04 06 0
05 05 0
03 0 0
o 0 09
i 0

/—\

S
S & & O




Classifications of States

Definition (7)

If a state is not fTransient, it is called a
‘recurrent” state.

States 1, 2, and 5 are recurrent states.

NoTe: Every absorbing state is a recurrent state,
but noT every recurrent stafe is an absorbing
stafe.

g 2 O N =

1 2 3
(04 06 0
05 05 0
03 0 0
o 0 09
\ 0

/—\

S
S & & O




Classifications of States R

3 5

1 (04 06 0 0
Definition (8) 2 los 05 0 o o
A state i is “periodic’ with period k > 1if k is The P= 3103 0 0 07 0
smallest number such that all paths leading 4 09 0 01

from state i back to state i have a length that is S| ¢ ¢ o ¢ 1|

a mulfiple of k. If a recurrent sfate is nof
periodic, it is referred o as “aperiodic’.

®
The states 1, 2, and 5 are aperiodic ,//' \
® ®D

K = length of The shortest path from state i To iTself
=121 (

CO~— 02



Classifications of States

State 3 is periodic The shorfesT path from stafe
with period 2 3 back to state 3 is 3-4-3

K=2>1
AnoTher path is 3-4-3-4-3
L=4%=12K

State 4 is periodic The shorfest path from state
with period 2 4 back to stafe 4 is 4-3-4

K=2>1
Another path is 4-3-4-3-4
L=4=2K

a » O N =
S
w

(04 06
05 05

S & & W

/—\

S
S & & O

Q.7




Classifications of States

Definition (9)

If all states in a chain are recurrent, aperiodic,
and communicate with each other, The chain is
said o be “ergodic’.

State  Recurrent?  Aperiodic? STates
1 Yes Yes 1,2
2 Yes Yes 1,3
3 Yes Yes 2,3

v v

communicate?

Yes

Yes

Yes

Ergodic
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STeady-State Probabilities

Idea To illustrate the behavior of The n-step Transifion probabilities for
large values of n, we have computfed several of The n-step
transition probabilities for The Cola example (Section 1.3) as follows:

1 2 1 2 1 2
ol = 11 09 01 ot 11 075 0.25 620 _ 1] 0.67 0.33
21 02 08 2] 051 049 21 067 033

1 2 1 2 1 2
9 11083 017 5 11 072 0.28 30 1] 0.67 0.33
2] 034 0.66 2] 056 044 21 067 033

1 2 1 2 1 2

3 11078 022 10 1] 068 032 40 11 067 033
2] 044 056 2] 065 035 2] 067 033



STeady-State Probabilities

1 2

Idea  im on_ [ 067 033
=" 2| 067 033

" Affer a long fime, the probability that a person’s next cola
purchase would be cola 1 approached .67 and .33 that it would be
cola 2.

* These probabilities did not depend on whether the person was
iniTially a cola 1 or a cola 2 drinker.

" For large n, the matrix ¢" approaches a matrix with identical
rows. This means that after a long time, The Markov chain sefTles
down, and there is a probability T that we are in state |.

M T2] =[0.67 0.33]



STeady-State Probabilities

Note The vecfor m=[m 19

k] is offen called the “steady-state

distribution’, or “equilibrium distribution’, for the Markov chain.

Question Does every Markov chain reach The steady-state distribution?

%

Theorem LeT P be The Transition matrix for k—state ergodic chain. Then
there exists a vector m = [y T

m T2

lim PN =
N-oo

_1'[1 1'[2 .

T[K-
Ttk

T[K_

k] such that

; 1T1+T[2-|-“°+T[k=1



STeady-State Probabilities

Question How we can find The steady-stafe distribution for an ergodic
Markov chain?

T Ty - s
For large n, we have P;(n+1) = P;; = T :
2 PJ () = Fyn) = o _ g e
_ n+1 n 5
h P Py P
Th N column
= 1i'""" row of P"'| . [] ] p e Poi P
[ M [P P

In general, for large n,we have m =P




STeady-State Probabilities

Question How we can find The steady-stafe distribution for an ergodic
Markov chain?

" If nis large, solve the system m = m P.

" Unforfunately, this system of equations has an infinite
number of solutions.

" Replace any equationinm=nP by my + my + -+ Mg = 1.



STeady-State Probabilities

Example Find the steady-state probabilities for The cola example.

o [®.9 @.1]
02 08

mT=TP “122“2}1T1=2/3

M T2l =[™ T2] g'z g'; 1y =1 my =1/3

T = @.91‘[1 + @.21'[2 % @.11‘[1 = @.21‘[2
Ty = @.11'[1 + @.81'[2 % @.21‘[2 = @.11‘[1
T+ Ty =1



STeady-State Probabilities

1102 06 0.2
Example Consider the following Markov chain: P =203 @ 0.7
304 01 05
1| Show That the chain is ergodic. C @’ > @
——
State  Recurrent? Aperiodic? GommunicaTe? Y\\@‘//v
1 Yes Yes Yes with 2, 3 U
2 Yes Yes Yeswith 1,3

3 Yes Yes Yes with 1, 2



STeady-State Probabilities

Example Consider The following Markov chain: P = 2

2

L

23 0 0.7
3104 01 05

Find the steady-state distribution of The chain. C @ @
——

TN

T T T3] =[M To T3] lm o 07
24 01 05

T = @.21‘[1 + @.31'[2 + @.4’1‘[3 U
Ty = @.61T1 -+ @.11T3
Mg = @.2111 + @.7112 + @.5113

1[@.2 0.6 @.2]

—@.81'[1 + @.31'[2 + @.4’1‘[3 =0
06my— 19 +0ing =20

Replace by 1y + 1y + g =1 M+ Ty + g = 1



STeady-State Probabilities

Example Consider the following Markov chain: P=2103 0@ 0.7
3104 01 05

2| Find the s’readg state distribution of the chain. C @ @
—__

-ng;izf;:zzgi IR

1'[1-|-T[2+T[3—1 U

™M1 -8 -1137 1137 4313710 43/137
n21= -1@ l5/137 -12/137 32/137] I@] =[32/137]

3 16/137 1137 62137 62/137

1[@.2 0.6 @.2]




STeady-State Probabilities

Example Consider the following Markov chain: P=2103 0@ 0.7
3104 01 05

2| Find the s’readg state distribution of the chain. C @ @
—__

[T T2 T3] =[31387 .23358 .45255] '\\“//'
Lol ©

o O s

1[@.2 0.6 @.2]




Mean First Passage Times

Idea Imagine you're playing a board game where you
move from one square to another based on The
roll of a die, and you want to know, on average,
how many rolls it wil take To reach a
particular square for The first time?

The "Mean First Passage Time" for an ergodic Markov chain,
represents the expected number of sfeps it would take for

the system To reach a parficular state " sfarting from a

given inifial state I, and is denoTed by Mij.




Mean First Passage Times

r
Formulas — mj = pjj + ;Piko + M)

K+
r r
=pjt 2 Pik * Z PikMkj
k=1 k=1
kij K;tj
r
=1+ z Pik™Mki
k=1
K:tj

‘e,

‘e

| > @ 1 X IOU
-/
@ _/ (1 + My, ) X Pip
r
mii =1+ z PikMkj
K=1
kij



Mean First Passage Times

r
mU =1+Zpikka- m;; =1/T[i
k=1
k= >_[09 o1
i i i 12 08
Example Find all The mean first passage times for - o
all the states in the Cola example. M T2]=12/3 1/3
o1 _ 13 _ 1,
M= = 2/3” 2 M2 = T3
The person who last drank cola 1 will The person who last drank cola 2 will
drink, on average, bottle and half of cola drink, on average, 3 boffles of cola

before drinking cola 1 again. before drinking cola 2 again.



Mean First Passage Times

r
mU =1+Zpikka- m" =1/T[i
K=1
) ,_[09 o1
Example  Find all The mean first passage times for 02 08|
all the states in the Cola example. ™M T2]=1[2/3 1/3]
2
Myg =1+ 2 PikMk2 =1+ Pimi2
k=1
Kz2
m12 =1+ ®.9m12 The person who last drank cola 1 will

drink, on average, 10 boffles of cola
before swifching 1o cola 2.

0.1 m12 =1 YY\12= 10 J



Mean First Passage Times

r
mU =1+Zpikka- m" =1/T[i
K=1
) ,_[09 o1
Example  Find all The mean first passage times for 02 08|
all the states in the Cola example. ™M T2]=1[2/3 1/3]
2
Mo =1+ 2 pokMiy =1+ P22M2
k=1
K1
m21 =14+ ®'8m2’| The person who last drank cola 2 will

drink, on average, 5 boffles of cola
before switching to cola 1.

0.2 le =1 m21= 5 J
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Absorbing Markov Ghain

Remember A stafe i in a Markov chain is called an absorbing state
If pii =1.

A 1 2 0 STaTe_ f‘ IS an absorbing state because
P=8 l@.5 0.5 @] PaA =1
G L@ 05 05 srates B and G are nonabsorbing states.

CO—®

Once the absorbing stafe is enfered, i is
iImpossible To leave. @

O



Absorbing Markov Ghain

Definition

Example

A Markov chain is an “absorbing chain® if
1) There is af least one absorbing state; and

2) it is possible To go from each nonabsorbing state to at
least one absorbing state in a finite number of steps.

Determine whether the following Markov
chain is absorbing,.

Although sTafe B is an absorbing state, it is
iImpossible To go from either state A or sfate C
To The absorbing state B. 50, the given Markov
chain is not an absorbing Markov chain.

A [0 0 1
P=B[®1®]

C L1 0 0

® ®)
\\@



Absorbing Markov Chain

Questions

For any absorbing chain, one might want To know certain
Things.

1) If the chain begins in a given Transient state, and before
we reach an absorbing state,
« what is the expected number of Times That each state
will be entered?
* How many periods do we expect To spend in a given
fransient sTate before absorption takes place?

2) If a chain begins in a given transient stafe, what is the
probability That we end up in each absorbing state?



Absorbing Markov Ghain

Standard  To answer those guesTions, we need To write The Transifion
Form matrix in ‘standard form® where the stafes in this form
listed in The following order.

Q" is an (k-m)x(k-m) matrix that o .
- - R" is an (k-m)xm matrix
it TransienT , Absorbin
repre;em‘s Transitions  beftween Cm : " 9 representing fransitions from
fransient states. \ ! / fransient states to absorbing
| [ ! ) states.
Transient Q | R
K—m !
____________ NI —
, |
Absorbing 0 | I
m |
- ! ka
‘0" is an mx(k-m) mafrix consisting /
enfirely of zeros. This reflects the fact T is an mxm identfity matrix
That it is impossible o go from an reflecting the fact That we can

absorbing state 1o a Transient stafe. never leave an absorbing state.



Absorbing Markov Ghain

Q

1

1

315 03 2

210 0

410 0|0

0

315 3 0 2

2

0

1

WriTe The following Transition matrix as standard form.

Example

315 3 0 2|«

410 0 0



Absorbing Markov Ghain

1
Goal Given The maftrices R and @, and The unif column vector 1 = 1 , Then
1.
Expected Time in state | starting 5 i™ element of (1-Q)7".
in state | j
1
Expected time to absorption — (I-Q)" H
1

Probability of absorption — TR



Absorbing Markov Ghain

Example A rat is placed in room F or room B of the maze
shown in The figure. The rat wanders from room 1o
room until it enfers one of the rooms containing
food, L or R. Assume that the rat chooses an exit
from a room at random and That once it enfers a
room with food it never leaves.

a) Find the fransition matrix of the problem.

b f | r
b f o p(o 4|4 2
pvfe 4] _ bv[4 2| _ |5 0|2 25
o= f15 o k= £ |25 .25 "= 1o o |1 0
' ‘ ' ‘ r{e olo 1



Absorbing Markov Chain 7 375 b £ |
Example b) What is The long-run probability that a rat b(o 4|4 2
placed in room b ends up in room r? £15 01|25 25
P—
o [1 @H@ .4H1 —.4] o o1 o
0 - r \@ Q| @ 1
ey 4] [125 .5]
N OTOE ( D0 5)[5 625 125 bt
b | 0 4
L = s o
o, b [125 ” ] -
(I-0) R= ¢ |e25 125] |25 25 o
b [ 4 2
lo 625@ 375@ R=
5625 4375 P12 25




Absorbing Markov Ghain

b £ I r
Example ¢) What is the average number of exifs That p(o 4|4 2
a rat placed in room b will choose unfil it fl15 0|25 25
finds food? P=
. - le o1 o
rge eje 1
b f
m-1M. b [125 .5]1 =[1.75® b (o 4
(-8) [1] f L1625 125 [1] 1.875 Q=
fl15 0
.
o b | 4 .2
- f |25 25
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