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RECTANGULAR COORDINATE SYSTEMS

In the remainder of this slides, we will call:

• three-dimensional space:  3-space

• two-dimensional space (a plane): 2-space

• one-dimensional space (a line): 1-space

Points in 3-space can be placed in one-to-
one correspondence with triples of real 
numbers by using three mutually 
perpendicular coordinate lines, called the 
𝑥 −axis, the 𝑦 −axis, and the 𝑧 −axis, 
positioned so that their origins coincide.



RECTANGULAR COORDINATE SYSTEMS

Example

Draw the point 4,3,5
𝟒, 𝟑, 𝟓

Example

Draw the point −3,2, −4

−𝟑, 𝟐, −𝟒

• The three coordinate axes form a three-
dimensional rectangular coordinate system 
(or Cartesian coordinate system).

• The point of intersection of the coordinate 
axes is called the origin of the coordinate 
system.



RECTANGULAR COORDINATE SYSTEMS



DISTANCE IN 3-SPACE; SPHERES

𝑃1 𝑥1, 𝑦1, 𝑧1

𝑃2 𝑥2, 𝑦2, 𝑧2

𝑑



DISTANCE IN 3-SPACE; SPHERES

Example

Find the distance 𝑑 between the points (2, 3, −1) and (4, −1, 3).
𝑥1 𝑦1 𝑧1 𝑥2 𝑦2 𝑧2

𝑑 = 4 − 2 2 + −1 − 3 2 + 3 − −1
2

= 4 + 16 + 16

= 6



DISTANCE IN 3-SPACE; SPHERES

𝑃1 𝑥1, 𝑦1, 𝑧1

𝑃2 𝑥2, 𝑦2, 𝑧2

Midpoint =
𝑥1 + 𝑥2

2
,
𝑦1 + 𝑦2

2
,
𝑧1 + 𝑧2

2



DISTANCE IN 3-SPACE; SPHERES

Midpoint =
𝑥1 + 𝑥2

2
,
𝑦1 + 𝑦2

2
,
𝑧1 + 𝑧2

2

Example

Find the midpoint between the points (2, 3, −1) and (4, −1, 3).
𝑥1 𝑦1 𝑧1 𝑥2 𝑦2 𝑧2

midpoint =
2 + 4

2
,
3 + −1

2
,
−1 + 3

2

= 3,1,1



DISTANCE IN 3-SPACE; SPHERES

𝑎, 𝑏

𝑟

𝑥 − 𝑎 2 + 𝑦 − 𝑏 2 = 𝑟2

𝑎, 𝑏, 𝑐

𝑟

𝑥 − 𝑎 2 + 𝑦 − 𝑏 2 + 𝑧 − 𝑐 2 = 𝑟2

Circle in 2-space Sphere in 3-space



DISTANCE IN 3-SPACE; SPHERES

𝑎, 𝑏, 𝑐

𝑟

𝑥 − 𝑎 2 + 𝑦 − 𝑏 2 + 𝑧 − 𝑐 2 = 𝑟2

Sphere in 3-space

Example

Find the equation of the sphere with center 
(1, −2, −4) and radius 3.

Example

Find the center and radius of the sphere
𝑥 − 5 2 + 𝑦2 + 𝑧 + 3 2 = 5

𝑥 − 1 2 + 𝑦 + 2 2 + 𝑧 + 4 2 = 9

𝑥2 + 𝑦2 + 𝑧2 − 2𝑥 + 4𝑦 + 8𝑧 = −12

Center

Radius 5

5 , 0 , −3



CYLINDRICAL SURFACES

It is possible to graph equations in two 
variables in 3 −space.

Example: 𝑥2 + 𝑦2 = 1

Observe that the equation does not impose 
any restrictions on 𝑧.

This means that we can obtain the graph of 
𝑥2 + 𝑦2 = 1 in an 𝑥𝑦𝑧 −coordinate system 
by first graphing the equation in the 
𝑥𝑦 −plane.



CYLINDRICAL SURFACES

It is possible to graph equations in two 
variables in 3 −space.

Example: 𝑥2 + 𝑦2 = 1

Observe that the equation does not impose 
any restrictions on 𝑧.

This means that we can obtain the graph of 
𝑥2 + 𝑦2 = 1 in an 𝑥𝑦𝑧 −coordinate system 
by first graphing the equation in the 𝑥𝑦
−plane.

And then translating that graph parallel to 
the 𝑧 −axis to generate the entire graph.



CYLINDRICAL SURFACES

Example 𝑥2 + 𝑧2 = 1



CYLINDRICAL SURFACES

Example 𝑧 = 𝑦2



CYLINDRICAL SURFACES

Example 𝑧 = sin 𝑥



CYLINDRICAL SURFACES
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VECTORS VIEWED GEOMETRICALLY

A Vector in 2-space or 3-space; 
is an arrow with direction and
length (magnitude).

Initial Point

Terminal Point

v or Ԧ𝑣

Two vectors  v and w are equal 
if they have the same length 
and same direction, and we 
write v = w.

w

v = w

w

v ≠ w

w

v ≠ w



VECTORS VIEWED GEOMETRICALLY

Two vectors are equal if they are translations 
of one another.

Because vectors are not affected by 
translation, the initial point of a vector v can 
be moved to any convenient point 𝐴 by 
making an appropriate translation.



VECTORS VIEWED GEOMETRICALLY

NOTE:

• If the initial and terminal points of a vector coincide, then the 

vector has length zero; we call this the zero vector and denote it by 

0.

• The zero vector does not have a specific direction



VECTORS VIEWED GEOMETRICALLY

NOTE: The vectors v and 𝑘v are parallel vectors.



VECTORS IN COORDINATE SYSTEMS

If a vector v is positioned with its initial point 
at the origin of a rectangular coordinate 
system, then its terminal point will have 
coordinates of the form 𝑣1, 𝑣2, 𝑣3 .

We call these coordinates the components of v, 
and we write v in component form using the 
bracket notation



VECTORS IN COORDINATE SYSTEMS

NOTE:

Example: Find the values of 𝑎, 𝑏, 𝑐 if −2, 𝑏, 3 = 𝑎, 0, 𝑐 .



ARITHMETIC OPERATIONS ON VECTORS



ARITHMETIC OPERATIONS ON VECTORS

Example: If v = 2,0,1  and w = 3,5, −4 , then

1. v + w =

2. v − 2w =

2,0,1 + 3,5, −4 = 5,5, −3

2,0,1 − 2 3,5, −4

= 2,0,1 − 6,10, −8

= −4, −10,9



VECTORS WITH INITIAL POINT NOT AT THE ORIGIN

𝑂

𝑃1 𝑥1, 𝑦1

𝑃2 𝑥2, 𝑦2

𝑃1𝑃2

= 𝑥2 − 𝑥1, 𝑦2 − 𝑦1

𝑃1𝑃2

𝑥2 − 𝑥1, 𝑦2 − 𝑦1

𝑃1𝑃2

Example:

The vector from the point 𝐴 0, −2,5  to 
the point 𝐵 3,4, −1  is

𝐴𝐵 = 3 − 0,4 − −2 , −1 − 5
= 3,6, −6



RULES OF VECTOR ARITHMETIC



NORM OF A VECTOR

• The distance between the initial and terminal 

points of a vector v is called the length, the 

norm, or the magnitude of v and is denoted 

by v .

v = 𝑣1, 𝑣2

v

𝑣1

𝑣2

v = 𝑣1
2 + 𝑣2

2



NORM OF A VECTOR

NOTE

Example: If w = 2,3,6  then find the norm of

w

−3w

w = 2 2 + 3 2 + 6 2 = 49 = 7

−3w = −3 × w = 3 × 7 = 21



UNIT VECTORS

• A vector of length 1 is called a 
unit vector.

• In an 𝑥𝑦 −coordinate system the 
unit vectors along the 𝑥 − and 𝑦
−axes are denoted by i and j, 
respectively.

• In an 𝑥𝑦𝑧 − coordinate system 
the unit vectors along the 𝑥 −, 
𝑦 − and 𝑧 −axes are denoted by 
i, j and k, respectively.



UNIT VECTORS

Every vector in 2 −space is expressible uniquely in terms of i and j 
as follows:

NOTE

v = 𝑣1, 𝑣2 = 𝑣1, 0 + 0, 𝑣2

= 𝑣1 1,0 + 𝑣2 0,1 = 𝑣1i + 𝑣2j

Also, every vector in 3 −space is expressible uniquely in terms of i, 
j and k as follows:

v = 𝑣1, 𝑣2, 𝑣3 = 𝑣1i + 𝑣2j + 𝑣3k



UNIT VECTORS

Example:



NORMALIZING A VECTOR

The unit vector u that has the same direction as some given nonzero 
vector v is

u =
1

v
v =

v

v

The process of obtaining a unit vector with the same direction of v is 
called normalizing v.

Example: Find the unit vector that has the same direction as v = 2i + 2j − k

v = 22 + 22 + −1 2 = 9 = 3 ∴ u =
v

v
=

2

3
,
2

3
,
−1

3



VECTORS DETERMINED BY LENGTH AND ANGLE

v = 𝑥, 𝑦

v

𝑥

𝑦

𝜃

cos 𝜃 =
𝑥

v

sin 𝜃 =
𝑦

v

⇒

⇒

𝑥 = v cos 𝜃

𝑦 = v sin 𝜃

∴ v = v cos 𝜃 , v sin 𝜃



VECTORS DETERMINED BY LENGTH AND ANGLE

v = 𝑥, 𝑦

v

𝑥

𝑦

𝜃

∴ v = v cos 𝜃 , v sin 𝜃

Example:

Find the vector of length 2 that makes 

an angle of
𝜋

4
 with the positive 𝑥 −axis.

v = 2 cos
𝜋

4
 , 2 sin

𝜋

4 =
2

2
 ,

2

2

= 2, 2
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DEFINITION OF THE DOT PRODUCT

In this section we will define a new kind of multiplication in which two
vectors are multiplied to produce a scalar.

Example:



ALGEBRAIC PROPERTIES OF THE DOT PRODUCT



ALGEBRAIC PROPERTIES OF THE DOT PRODUCT

Example: Given that a = 5, b = 10 and a ⋅ b = −48. Find

3a + b ⋅ a − 2b = 3a ⋅ a − 3a ⋅ 2b + b ⋅ a − 2b ⋅ b

= 3 a 2− 6(a ⋅ b) + a ⋅ b − 2 b 2

= 3 25 − 5 −48 − 2 100

= 115



ANGLE BETWEEN VECTORS

• Suppose that u and v are nonzero vectors in 2 −space or 3 −space 

that are positioned so their initial points coincide.

• We define the angle between u and v to be the angle 𝜃 determined by 

the vectors that satisfies the condition 𝜃 ∈ 0, 𝜋 .



ANGLE BETWEEN VECTORS

Example: Find the angle between the vector u = i − 2j + 3k and

(a) v = −i − 5j + 4k

u = 12 + −2 2 + 32 = 14

v = −1 2 + −5 2 + 42 = 42

u ⋅ v = 1 −1 + −2 −5 + 3 4 = 21

∴ cos 𝜃 =
21

14 × 42
=

3

2

𝜃 =
𝜋

6



ANGLE BETWEEN VECTORS

Example: Find the angle between the vector u = i − 2j + 3k and

(b) w = 2i + 7j + 4k

u ⋅ w = 1 2 + −2 7 + 3 4 = 0 ∴ cos 𝜃 = 0

𝜃 =
𝜋

2



ANGLE BETWEEN VECTORS

Example: Find the angle between the vector u = i − 2j + 3k and

(c) v = 4i + 6j − 2k

u = 12 + −2 2 + 32 = 14

v = 42 + 62 + −2 2 = 56

u ⋅ v = 1 4 + −2 6 + 3 −2 = −14

∴ cos 𝜃 =
−14

14 × 56
= −

1

2

𝜃 =
2𝜋

3



ANGLE BETWEEN VECTORS



DIRECTION ANGLES

v = 𝑣1, 𝑣2

𝛼

𝛽

i = 1,0

cos 𝛼 =
v ⋅ i

v i
=

𝑣1

v

j = 0,1

cos 𝛽 =
v ⋅ j

v j
=

𝑣2

v



DIRECTION ANGLES

NOTE:



DIRECTION ANGLES

Example: Find the direction cosines of the vector v = 3 i + k.

v = 3 + 1 = 2
v

v
=

3

2
 i +

1

2
 k

cos 𝛼 =
3

2

cos 𝛽 = 0

cos 𝛾 =
1

2

𝛼 =
𝜋

6
= 30∘

𝛽 =
𝜋

2
= 90∘

𝛾 =
𝜋

3
= 60∘

The angle between v and 𝑥 −axis

The angle between v and 𝑦 −axis

The angle between v and 𝑧 −axis



ORTHOGONAL PROJECTIONS

a

b

projba

projba ∥ b

projba = 𝑘b

projba =
a ⋅ b

b 2
 b

a

b

projba

The orthogonal projection 
of a on an arbitrary nonzero 
vector b.

a

b

projba



ORTHOGONAL PROJECTIONS

a

w

b

projba

projwa =

The vector component of a 
orthogonal to b.

w ⊥ b

a − projba
a − projba



ORTHOGONAL PROJECTIONS

Example: Find the orthogonal projection of v = i + j + k on b = 2i + 2j, 
and then find the vector component of v orthogonal to b.
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DETERMINANTS

• A matrix is a rectangular array (table) of numbers arranged in

rows and columns.

• For example,
−1 0 3
2 5 −7

.

• The determinant is a function that assigns numerical value to 

square matrix (number of rows = number of columns) of numbers.

• We define a 2 × 2 determinant by
𝑎 𝑏
𝑐 𝑑

= 𝑎𝑑 − 𝑏𝑐

• For example,
3 −2
4 5

= 3 5 − −2 4 = 15 + 8 = 23



DETERMINANTS

A 3 × 3 determinant is defined in terms of 2 × 2 determinants by

𝑎1 𝑎2 𝑎3

𝑏1 𝑏2 𝑏3

𝑐1 𝑐2 𝑐3

= 𝑎1
𝑏2 𝑏3

𝑐2 𝑐3
− 𝑎2

𝑏1 𝑏3

𝑐1 𝑐3
+ 𝑎3

𝑏1 𝑏2

𝑐1 𝑐2

Example
3 −2 −5
1 4 −4
0 3 2

= 3
4 −4
3 2

− −2
1 −4
0 2

+ −5
1 4
0 3

= 3 8 − −12 +2 2 − 0 −5 3 − 0

= 49



DETERMINANTS



CROSS PRODUCT

Example

i j k
1 2 −2
3 0 1

= i
2 −2
0 1

− j
1 −2
3 1

+ k
1 2
3 0

= 2i − 7j − 6k



ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

• Keep in mind the essential differences between the cross product 

and the dot product:

✓ The cross product is defined only for vectors in 3 −space, 

whereas the dot product is defined for vectors in 2 −space and 

3 −space.

✓ The cross product of two vectors is a vector, whereas the dot

product of two vectors is a scalar.



ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT



ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

Example: Given that a × b = −1,2,1 . Find 2a − 3b × a + 2b .

2a − 3b × a + 2b = 2a × a + 2a × 2b −3b × a − 3b × 2b

= 2 a × a + 4(a × b) −3 b × a − 6 b × b

= 2 0 + 4 a × b + 3 a × b − 6 0

= 7 a × b

= −7,14,7



ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

The following cross products occur so frequently that it is helpful to be 
familiar with them:



ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

WARNING

• We can write a product of three real numbers as 𝑎𝑏𝑐  since the 

associative law 𝑎𝑏 𝑐 = 𝑎 𝑏𝑐  ensures that the same value for the 

product results no matter how the factors are grouped.

• The associative law does not hold for cross products. For example,

i × j × j = i × 0 = 0

i × j × j = k × j = −i

• Thus, we cannot write a cross product with three vectors as u × v × w, 

since this expression is ambiguous (مُبهم) without parentheses.



GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

u

v

u × v



GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

Example



GEOMETRIC PROPERTIES OF THE CROSS PRODUCT



GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

u

v

𝑇
𝑇 =

1

2
u × v



GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

Example Find the area of the triangle that is determined by the points 
𝑃1(2, 2, 0), 𝑃2(−1, 0, 2), and 𝑃3(0, 4, 3).
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PARAMETRIC EQUATIONS



PARAMETRIC EQUATIONS

Example Express the graph of 𝑦 = 𝑥2 where 𝑥 ≥ 0 as parametric 
equations.

Orientation

Let 𝑥 = 𝑡 𝑦 = 𝑡2 𝑡 ≥ 0



PARAMETRIC EQUATIONS

Example The counter-clockwise orientation parametric equations of the 

circle 𝑥2 + 𝑦2 = 𝑎2 are

𝑥 = 𝑎 cos 𝑡 , 𝑦 = 𝑎 sin 𝑡 , 0 ≤ 𝑡 ≤ 2𝜋
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LINES DETERMINED BY A POINT AND A VECTOR

ℓ

𝑃0 𝑥0, 𝑦0 

v = 𝑎, 𝑏

𝑥 = 𝑥0 + 𝑎𝑡 , 𝑦 = 𝑦0 + 𝑏𝑡

The parametric equations of the line in 2
−space that passes through the point 
𝑃0(𝑥0, 𝑦0) and is parallel to the nonzero 
vector v = 𝑎, 𝑏 = 𝑎i + 𝑏j are



LINES DETERMINED BY A POINT AND A VECTOR

𝑥 = 𝑥0 + 𝑎𝑡 , 𝑦 = 𝑦0 + 𝑏𝑡

The parametric equations of the line in 3 −space that passes 
through the point 𝑃0(𝑥0, 𝑦0, 𝑧0) and is parallel to the nonzero vector 
v = 𝑎, 𝑏, 𝑐 = 𝑎i + 𝑏j + 𝑐k are

, 𝑧 = 𝑧0 + 𝑐𝑡

Example Find parametric equations of the line passing through 
(1, 2, −3) and parallel to v = 4i + 5j − 7k.

𝑥 = 1 + 4𝑡 , 𝑦 = 2 + 5𝑡 , 𝑧 = −3 − 7𝑡



LINES DETERMINED BY A POINT AND A VECTOR

Example

1. Find parametric equations of the line ℓ passing through the points 
𝑃1(2, 4, −1) and 𝑃2(5, 0, 7).

The vector 𝑃1𝑃2 = 5 − 2,0 − 4,7 − −1 = 3, −4,8  is parallel to ℓ.

If 𝑃1 is chosen: If 𝑃2 is chosen:

𝑥 = 2 + 3𝑡1

𝑦 = 4 − 4𝑡1

𝑧 = −1 + 8𝑡1

𝑥 = 5 + 3𝑡2

𝑦 = −4𝑡2

𝑧 = 7 + 8𝑡2

4 − 4𝑡1 = −4𝑡2

−1 + 𝑡1 = 𝑡2



LINES DETERMINED BY A POINT AND A VECTOR

Example

1. Find parametric equations of the line ℓ passing through the points 
𝑃1(2, 4, −1) and 𝑃2(5, 0, 7).

𝑥 = 5 + 3𝑡2

𝑦 = −4𝑡2

𝑧 = 7 + 8𝑡2

2. Where does the line intersect the 𝑥𝑦 −plane?

𝑧 = 0 7 + 8𝑡2 = 0 𝑡2 =
−7

8

The point is
19

8
,
7

2
, 0



LINES DETERMINED BY A POINT AND A VECTOR

Example Let ℓ1 and ℓ2 be the lines

ℓ1: 𝑥 = 1 + 4𝑡, 𝑦 = 5 − 4𝑡, 𝑧 = −1 + 5𝑡

ℓ2: 𝑥 = 2 + 8𝑡, 𝑦 = 4 − 3𝑡, 𝑧 = 5 + 𝑡

1. Are the lines parallel?

ℓ1 ∥ ℓ2

v2 = 8, −3,1

v1 = 4, −4,5

v1 ∥ v2⇔ ⇔ v2 = 𝑐 v1

4𝑐 = 8
−4𝑐 = −3

5𝑐 = 1
No such 𝒄 ∴ ℓ1 and ℓ2 are NOT parallel lines.



LINES DETERMINED BY A POINT AND A VECTOR

Example Let ℓ1 and ℓ2 be the lines

ℓ1: 𝑥 = 1 + 4𝑡, 𝑦 = 5 − 4𝑡, 𝑧 = −1 + 5𝑡

ℓ2: 𝑥 = 2 + 8𝑡, 𝑦 = 4 − 3𝑡, 𝑧 = 5 + 𝑡

2. Do the lines intersect?

Suppose the point of intersection is

𝑥∗

𝑦∗

𝑧∗

=

=

=

=

=

=

1 + 4𝑡1

5 − 4𝑡1

−1 + 5𝑡1

2 + 8𝑡2

4 − 3𝑡2

5 + 𝑡2



LINES DETERMINED BY A POINT AND A VECTOR

Example Let ℓ1 and ℓ2 be the lines

ℓ1: 𝑥 = 1 + 4𝑡, 𝑦 = 5 − 4𝑡, 𝑧 = −1 + 5𝑡

ℓ2: 𝑥 = 2 + 8𝑡, 𝑦 = 4 − 3𝑡, 𝑧 = 5 + 𝑡

2. Do the lines intersect?

Suppose the point of intersection is

=

=

=

1 + 4𝑡1

5 − 4𝑡1

−1 + 5𝑡1

2 + 8𝑡2

4 − 3𝑡2

5 + 𝑡2

6 = 6 + 5𝑡2

𝑡2 = 0

𝑡1 =
1

4

BUT !!

Do not satisfy the 3rd equation.

∴ ℓ1 and ℓ2 do NOT intersect.



LINES DETERMINED BY A POINT AND A VECTOR

• Two lines in 3 −space that are 

not parallel and do not intersect 

are called skew lines.

• Any two skew lines lie in parallel 

planes.
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PLANES PARALLEL TO THE COORDINATE PLANES

Parallel to
𝑦𝑧 −plane

Parallel to
𝑥𝑧 −plane

Parallel to
𝑥𝑦 −plane



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

• A plane in 3 −space can be determined 

uniquely by specifying a point in the 

plane and a vector perpendicular to the 

plane.

• A vector perpendicular to a plane is 

called a normal to the plane.



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

𝑃0 𝑥0, 𝑦0, 𝑧0

n = 𝑎, 𝑏, 𝑐
𝑎 𝑥 − 𝑥0 + 𝑏 𝑦 − 𝑦0 + 𝑐 𝑧 − 𝑧0 = 0

This is called the
point-normal form 
of the equation of 
a plane.



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Find an equation of the plane passing through the point 
(3, −1, 7) and perpendicular to the vector n = 4,2, −5 .

4 𝑥 − 3 + 2 𝑦 + 1 − 5 𝑧 − 7 = 0

4𝑥 − 12 + 2𝑦 + 2 − 5𝑧 + 35 = 0

4𝑥 + 2𝑦 − 5𝑧 + 25 = 0



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Determine whether the two planes are parallel.
𝑃1: 3𝑥 − 4𝑦 + 5𝑧 = 0
𝑃2: −6𝑥 + 8𝑦 − 10𝑧 − 4 = 0

𝑃1 ∥ 𝑃2 ⇔ n1 ∥ n2 ⇔ n2 = 𝑘 n1

n1 = 3, −4,5
n2 = −6,8, −10

−6,8, −10 = 𝑘 3, −4,5⇔

⇔ −6 = 3𝑘
8 = −4𝑘

−10 = 5𝑘

⇔ 𝑘 = −2 ∴ 𝑃1and 𝑃2 are parallel planes



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Find an equation of the plane through the points 𝑃1(1, 2, −1), 
𝑃2(2, 3, 1), and 𝑃3(3, −1, 2).

𝑃2𝑃1 × 𝑃2𝑃3

n = 𝑃2𝑃1 × 𝑃2𝑃3 =
i j k

−1 −1 −2
1 −4 1

= −9, −1,5

By using this normal and the point 𝑃3(3, −1,2) in the 
plane, we obtain the point-normal form

−9 𝑥 − 3 − 𝑦 + 1 + 5 𝑧 − 2 = 0

−9𝑥 − 𝑦 + 5𝑧 + 16 = 0

9𝑥 + 𝑦 − 5𝑧 − 16 = 0



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Determine whether the line
ℓ: 𝑥 = 3 + 8𝑡 , 𝑦 = 4 + 5𝑡 , 𝑧 = −3 − 𝑡

is parallel to the plane 𝑥 − 3𝑦 + 5𝑧 = 12.

ℓ

v

n

v = 8,5, −1 n = 1, −3,5



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Determine whether the line
ℓ: 𝑥 = 3 + 8𝑡 , 𝑦 = 4 + 5𝑡 , 𝑧 = −3 − 𝑡

is parallel to the plane 𝑥 − 3𝑦 + 5𝑧 = 12.

v

n

v = 8,5, −1 n = 1, −3,5

n ⋅ v = 1 8 + −3 5 + 5 −1 = 12 ≠ 0

∴ The line and the plane are not parallel.

∴ The line and the plane intersects.



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Find the intersection of the line
ℓ: 𝑥 = 3 + 8𝑡 , 𝑦 = 4 + 5𝑡 , 𝑧 = −3 − 𝑡

and the plane 𝑥 − 3𝑦 + 5𝑧 = 12.

Suppose the point of intersection is 𝑥0, 𝑦0, 𝑧0

LINE

𝑥0 = 3 + 8𝑡0

𝑦0 = 4 + 5𝑡0

𝑧0 = −3 − 𝑡0

PLANE

𝑥0 − 3𝑦0 + 5𝑧0 = 12

3 + 8𝑡0 − 3 4 + 5𝑡0 + 5 −3 − 𝑡0 = 12

𝑡0 = −3

POINT

−21, −11,0



INTERSECTING PLANES

Two distinct intersecting planes 
determine two positive angles 
of intersection

If n1 and n2 are normals to the 
planes, then the acute angle 𝜃 
between the planes satisfies:



INTERSECTING PLANES

Example Find the acute angle of intersection between the two planes

4𝑥 + 2𝑦 + 2𝑧 = 6   and   𝑥 + 2𝑦 − 𝑧 = 4

n1 = 4,2,2 n2 = 1,2, −1

n1 = 42 + 22 + 22 = 24 = 2 6

n2 = 12 + 22 + −1 2 = 6

n1 ⋅ n2 = 4 1 + 2 2 + 2 −1 = 6

cos 𝜃 =
n1 ⋅ n2

n1 n2

cos 𝜃 =
6

2 6 × 6
=

1

2

𝜃 =
𝜋

3



INTERSECTING PLANES

Example Find an equation for the line ℓ of intersection of the planes

2𝑥 − 4𝑦 + 4𝑧 = 6   and   6𝑥 + 2𝑦 − 3𝑧 = 4

ℓ

v

v ∥ Plane 1

v ∥ Plane 2

v ⊥ n1

v ⊥ n2

⇒

⇒

∴ v = n1 × n2 =
i j k
2 −4 4
6 2 −3

v = 4,30,28



INTERSECTING PLANES

Example Find an equation for the line ℓ of intersection of the planes

2𝑥 − 4𝑦 + 4𝑧 = 6   and   6𝑥 + 2𝑦 − 3𝑧 = 4

v = 4,30,28

To find a point on ℓ

ℓ is not perpendicular to k = 0,0,1

v ⋅ k = 0 + 0 + 28 ≠ 0

∴ ℓ intersects the 𝑥𝑦 −plane 𝑧 = 0

2𝑥 − 4𝑦 = 6
6𝑥 + 2𝑦 = 4

Solve the equations:

𝑥 = 1, 𝑦 = −1

∴ point = 1, −1,0



INTERSECTING PLANES

Example Find an equation for the line ℓ of intersection of the planes

2𝑥 − 4𝑦 + 4𝑧 = 6   and   6𝑥 + 2𝑦 − 3𝑧 = 4

v = 4,30,28

∴ point = 1, −1,0

The parametric equations of ℓ are

𝑥 = 1 + 4𝑡
𝑦 = −1 + 30𝑡
𝑧 = 28𝑡



DISTANCE PROBLEMS INVOLVING PLANES

• The distance between a point and a plane.
• The distance between two parallel planes.
• The distance between two skew lines.



DISTANCE PROBLEMS INVOLVING PLANES

The distance 𝐷 between a point 𝑃0(𝑥0, 𝑦0, 𝑧0) and the plane 
𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 is

Example Find the distance 𝐷 between the point (1, −4, −3) and the plane 
2𝑥 − 3𝑦 + 6𝑧 = −1.
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REVIEW OF POLAR COORDINATES

Rectangular 
Coordinates

𝑥, 𝑦 𝑟, 𝜃

origin

𝑥

𝑦

Polar 
Coordinates

Polar AxisPole

𝑟

𝜃



REVIEW OF POLAR COORDINATES

From Rectangular
To Polar

𝑥, 𝑦 𝑟, 𝜃

𝑥

𝑦

From Polar
To Rectangular

𝑟

𝜃

=
𝑟 = 𝑥2 + 𝑦2

tan 𝜃 =
𝑦

𝑥

cos 𝜃 =
𝑥

𝑟
sin 𝜃 =

𝑦

𝑟
,

𝑥 = 𝑟 cos 𝜃

𝑦 = 𝑟 sin 𝜃



CYLINDRICAL AND SPHERICAL COORDINATE SYSTEMS



CONSTANT SURFACES

In rectangular coordinates

𝑥 = 𝑎 𝑦 = 𝑏 𝑧 = 𝑐



CONSTANT SURFACES

In cylindrical coordinates

𝑟 = 𝑟0 𝜃 = 𝜃0 𝑧 = 𝑐



CONSTANT SURFACES

In spherical coordinates

𝜌 = 𝜌0 𝜃 = 𝜃0 𝜙 = 𝜙0



CONVERTING COORDINATES

From

Rectangular

Cylindrical

To

𝑥 = 𝑟 cos 𝜃

𝑦 = 𝑟 sin 𝜃

𝑧 = 𝑧

From Rectangular

CylindricalTo

𝑟 = 𝑥2 + 𝑦2

tan 𝜃 = Τ𝑦 𝑥
𝑧 = 𝑧

From

Cylindrical

Spherical

To

𝑟 = 𝜌 sin 𝜙

𝜃 = 𝜃

𝑧 = 𝜌 cos 𝜙

From Cylindrical

SphericalTo

𝜌 = 𝑟2 + 𝑧2

𝜃 = 𝜃
tan 𝜙 = Τ𝑟 𝑧

From

Rectangular

Spherical

To

𝑥 = 𝜌 sin 𝜙 cos 𝜃

𝑦 = 𝜌 sin 𝜙 sin 𝜃

𝑧 = 𝜌 cos 𝜙

From Rectangular

SphericalTo

𝜌 = 𝑥2 + 𝑦2 + 𝑧2

tan 𝜃 = Τ𝑦 𝑥
cos 𝜙 = Τ𝑧 𝜌



CONVERTING COORDINATES

Example Find the rectangular coordinates of the point with cylindrical 
coordinates

𝑟, 𝜃, 𝑧 = 4,
𝜋

3
, −3

From

Rectangular

Cylindrical

To

𝑥 = 𝑟 cos 𝜃

𝑦 = 𝑟 sin 𝜃

𝑧 = 𝑧

𝑥 = 4 cos
𝜋

3
= 2

𝑦 = 4 sin
𝜋

3
= 2 3

𝑧 = −3

∴ 𝑥, 𝑦, 𝑧 = 2,2 3, −3



CONVERTING COORDINATES

Example Find the rectangular coordinates of the point with spherical 
coordinates

𝜌, 𝜃, 𝜙 = 4,
𝜋

3
,
𝜋

4
 

𝑥 = 4 sin
𝜋

4
cos

𝜋

3
=

2

2
= 2

𝑦 = 4 sin
𝜋

4
sin

𝜋

3
=

2 3

2
= 6

𝑧 = 4 cos
𝜋

4
= 2 2

∴ 𝑥, 𝑦, 𝑧 = 2, 6, 2 2

From

Rectangular

Spherical

To

𝑥 = 𝜌 sin 𝜙 cos 𝜃

𝑦 = 𝜌 sin 𝜙 sin 𝜃

𝑧 = 𝜌 cos 𝜙



CONVERTING COORDINATES

Example Find the spherical coordinates of the point that has rectangular 
coordinates

𝑥, 𝑦, 𝑧 = 4, −4,4 6

𝜌 = 42 + −4 2 + 4 6
2

= 128 = 8 2

tan 𝜃 =
−4

4
= −1

cos 𝜙 =
4 6

8 2
=

3

2

From Rectangular

SphericalTo

𝜌 = 𝑥2 + 𝑦2 + 𝑧2

tan 𝜃 = Τ𝑦 𝑥
cos 𝜙 = Τ𝑧 𝜌



CONVERTING COORDINATES

Example Find the spherical coordinates of the point that has rectangular 
coordinates

𝑥, 𝑦, 𝑧 = 4, −4,4 6

𝜌 = 42 + −4 2 + 4 6
2

= 128 = 8 2

tan 𝜃 =
−4

4
= −1

cos 𝜙 =
4 6

8 2
=

3

2

∴ 𝜌, 𝜃, 𝜙 = 8 2,
7𝜋

4
,
𝜋

6
 

𝜃 =
7𝜋

4

𝜙 =
𝜋

6



EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

Example Find equations of the cone 𝑧 = 𝑥2 + 𝑦2 in cylindrical and 
spherical coordinates.

From Rectangular

CylindricalTo

𝑟 = 𝑥2 + 𝑦2

tan 𝜃 = Τ𝑦 𝑥
𝑧 = 𝑧

𝑧 = 𝑟

From

Rectangular

Spherical

To

𝑥 = 𝜌 sin 𝜙 cos 𝜃

𝑦 = 𝜌 sin 𝜙 sin 𝜃

𝑧 = 𝜌 cos 𝜙

𝜌 cos 𝜙 = 𝜌2 sin2 𝜙 cos2 𝜃 + 𝜌2 sin2 𝜙 sin2 𝜃



EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

Example Find equations of the cone 𝑧 = 𝑥2 + 𝑦2 in cylindrical and 
spherical coordinates.

From Rectangular

CylindricalTo

𝑟 = 𝑥2 + 𝑦2

tan 𝜃 = Τ𝑦 𝑥
𝑧 = 𝑧

𝑧 = 𝑟

From

Rectangular

Spherical

To

𝑥 = 𝜌 sin 𝜙 cos 𝜃

𝑦 = 𝜌 sin 𝜙 sin 𝜃

𝑧 = 𝜌 cos 𝜙

𝜌 cos 𝜙 = 𝜌2 sin2 𝜙 cos2 𝜃 + sin2 𝜃



EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

Example Find equations of the cone 𝑧 = 𝑥2 + 𝑦2 in cylindrical and 
spherical coordinates.

From Rectangular

CylindricalTo

𝑟 = 𝑥2 + 𝑦2

tan 𝜃 = Τ𝑦 𝑥
𝑧 = 𝑧

𝑧 = 𝑟

From

Rectangular

Spherical

To

𝑥 = 𝜌 sin 𝜙 cos 𝜃

𝑦 = 𝜌 sin 𝜙 sin 𝜃

𝑧 = 𝜌 cos 𝜙

𝜌 cos 𝜙 = 𝜌2 sin2 𝜙



EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

Example Find equations of the cone 𝑧 = 𝑥2 + 𝑦2 in cylindrical and 
spherical coordinates.

From Rectangular

CylindricalTo

𝑟 = 𝑥2 + 𝑦2

tan 𝜃 = Τ𝑦 𝑥
𝑧 = 𝑧

𝑧 = 𝑟

From

Rectangular

Spherical

To

𝑥 = 𝜌 sin 𝜙 cos 𝜃

𝑦 = 𝜌 sin 𝜙 sin 𝜃

𝑧 = 𝜌 cos 𝜙

𝜌 cos 𝜙 = 𝜌 sin 𝜙

1 = tan 𝜙
𝜙 =

𝜋

4



Example Find equations of the paraboloid 𝜌 = cos 𝜙 csc2 𝜙 in cylindrical 
coordinates.

EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

From

Cylindrical

Spherical

To

𝑟 = 𝜌 sin 𝜙
𝜃 = 𝜃
𝑧 = 𝜌 cos 𝜙

𝜌 = cos 𝜙 csc2 𝜙

sin2 𝜙 𝜌 = cos 𝜙

𝑟2

𝜌2
 𝜌 =

𝑧

𝜌

𝑧 = 𝑟2



EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES



EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES
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