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RECTANGULAR COORDINATE SYSTEMS

In the remainder of this slides, we will call:

• three-dimensional space: 3-space

• two-dimensional space (a plane): 2-space

• one-dimensional space (a line): 1-space

Points in 3-space can be placed in one-to-
one correspondence with triples of real 
numbers by using three mutually 
perpendicular coordinate lines, called the 
𝑥 −axis, the 𝑦 −axis, and the 𝑧 −axis, 
positioned so that their origins coincide.



RECTANGULAR COORDINATE SYSTEMS

Example

Draw the point 4,3,5
𝟒, 𝟑, 𝟓

Example

Draw the point −3,2,−4

−𝟑, 𝟐,−𝟒

• The three coordinate axes form a three-
dimensional rectangular coordinate system 
(or Cartesian coordinate system).

• The point of intersection of the coordinate 
axes is called the origin of the coordinate 
system.



RECTANGULAR COORDINATE SYSTEMS



DISTANCE IN 3-SPACE; SPHERES

𝑃1 𝑥1, 𝑦1, 𝑧1

𝑃2 𝑥2, 𝑦2, 𝑧2

𝑑



DISTANCE IN 3-SPACE; SPHERES

Example

Find the distance 𝑑 between the points (2, 3, −1) and (4, −1, 3).
𝑥1 𝑦1 𝑧1 𝑥2 𝑦2 𝑧2

𝑑 = 4 − 2 2 + −1 − 3 2 + 3 − −1
2

= 4 + 16 + 16

= 6



DISTANCE IN 3-SPACE; SPHERES

𝑃1 𝑥1, 𝑦1, 𝑧1

𝑃2 𝑥2, 𝑦2, 𝑧2

Midpoint =
𝑥1 + 𝑥2

2
,
𝑦1 + 𝑦2

2
,
𝑧1 + 𝑧2

2



DISTANCE IN 3-SPACE; SPHERES

Midpoint =
𝑥1 + 𝑥2

2
,
𝑦1 + 𝑦2

2
,
𝑧1 + 𝑧2

2

Example

Find the midpoint between the points (2, 3, −1) and (4, −1, 3).
𝑥1 𝑦1 𝑧1 𝑥2 𝑦2 𝑧2

midpoint =
2 + 4

2
,
3 + −1

2
,
−1 + 3

2

= 3,1,1



DISTANCE IN 3-SPACE; SPHERES

𝑎, 𝑏

𝑟

𝑥 − 𝑎 2 + 𝑦 − 𝑏 2 = 𝑟2

𝑎, 𝑏, 𝑐

𝑟

𝑥 − 𝑎 2 + 𝑦 − 𝑏 2 + 𝑧 − 𝑐 2 = 𝑟2

Circle in 2-space Sphere in 3-space



DISTANCE IN 3-SPACE; SPHERES

𝑎, 𝑏, 𝑐

𝑟

𝑥 − 𝑎 2 + 𝑦 − 𝑏 2 + 𝑧 − 𝑐 2 = 𝑟2

Sphere in 3-space

Example

Find the equation of the sphere with center
(1, −2,−4) and radius 3.

Example

Find the center and radius of the sphere
𝑥 − 5 2 + 𝑦2 + 𝑧 + 3 2 = 5

𝑥 − 1 2 + 𝑦 + 2 2 + 𝑧 + 4 2 = 9

𝑥2 + 𝑦2 + 𝑧2 − 2𝑥 + 4𝑦 + 8𝑧 = −12

Center

Radius 5

5 , 0 ,−3



DISTANCE IN 3-SPACE; SPHERES

𝑎, 𝑏, 𝑐

𝑟

𝑥 − 𝑎 2 + 𝑦 − 𝑏 2 + 𝑧 − 𝑐 2 = 𝑟2

Standard equation of the sphere

If the terms in the equation of SPHERE are
expanded and like terms are collected, then
the resulting equation has the form

The following example shows how the center
and radius of a sphere that is expressed in
this form can be obtained by completing the
squares.



DISTANCE IN 3-SPACE; SPHERES 𝑥 − 𝑎 2 + 𝑦 − 𝑏 2 + 𝑧 − 𝑐 2 = 𝑟2

Example Find the center and radius of the sphere

𝑥2 + 𝑦2 + 𝑧2 − 2𝑥 − 4𝑦 + 8𝑧 + 17 = 0𝑥2 + 𝑦2 + 𝑧2 − 2𝑥 − 4𝑦 + 8𝑧 + 17 = 0

𝑥2 − 2𝑥 + 𝑦2 − 4𝑦 + 𝑧2 + 8𝑧 = −17

𝑥2 − 2𝑥 + 1 − 1 + 𝑦2 − 4𝑦 + 4 − 4 + 𝑧2 + 8𝑧 + 16 − 16 = −17

−2

2

2

= 1
8

2

2

= 16
−4

2

2

= 4

𝑥2 − 2𝑥 + 1 − 1 + 𝑦2 − 4𝑦 + 4 − 4 + 𝑧2 + 8𝑧 + 16 − 16 = −17

𝑥2 − 2𝑥 + 1 − 1 + 𝑦2 − 4𝑦 + 4 − 4 + 𝑧2 + 8𝑧 + 16 − 16 = −17



DISTANCE IN 3-SPACE; SPHERES 𝑥 − 𝑎 2 + 𝑦 − 𝑏 2 + 𝑧 − 𝑐 2 = 𝑟2

Example Find the center and radius of the sphere

𝑥2 + 𝑦2 + 𝑧2 − 2𝑥 − 4𝑦 + 8𝑧 + 17 = 0

𝑥2 − 2𝑥 + 1 + 𝑦2 − 4𝑦 + 4 + 𝑧2 + 8𝑧 + 16 = 1 + 4 + 16 − 17

𝑥 − 1 2 + 𝑦 − 2 2 + 𝑧 + 4 2 = 4

Center = 1,2, −4

Radius = 4 = 2



DISTANCE IN 3-SPACE; SPHERES

In general, completing the squares produces an equation of the formNOTE:

If 𝑘 > 0

If 𝑘 = 0

If 𝑘 < 0

the graph of this equation is a sphere

the graph of this equation is the point 𝑥0, 𝑦0, 𝑧0

no graph !!



CYLINDRICAL SURFACES

It is possible to graph equations in two
variables in 3 −space.

Example: 𝑥2 + 𝑦2 = 1

Observe that the equation does not impose
any restrictions on 𝑧.

This means that we can obtain the graph of
𝑥2 + 𝑦2 = 1 in an 𝑥𝑦𝑧 −coordinate system
by first graphing the equation in the
𝑥𝑦 −plane.



CYLINDRICAL SURFACES

It is possible to graph equations in two
variables in 3 −space.

Example: 𝑥2 + 𝑦2 = 1

Observe that the equation does not impose
any restrictions on 𝑧.

This means that we can obtain the graph of
𝑥2 + 𝑦2 = 1 in an 𝑥𝑦𝑧 −coordinate system
by first graphing the equation in the
𝑥𝑦 −plane.

And then translating that graph parallel to
the 𝑧 −axis to generate the entire graph.



CYLINDRICAL SURFACES

Example 𝑥2 + 𝑧2 = 1



CYLINDRICAL SURFACES

Example 𝑧 = 𝑦2



CYLINDRICAL SURFACES

Example 𝑧 = sin 𝑥



CYLINDRICAL SURFACES
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VECTORS VIEWED GEOMETRICALLY

A Vector in 2-space or 3-space;
is an arrow with direction and
length (magnitude).

Initial Point

Terminal Point

v or Ԧ𝑣

Two vectors v and w are equal
if they have the same length
and same direction, and we
write v = w.

w

v = w

w

v ≠ w

w

v ≠ w



VECTORS VIEWED GEOMETRICALLY

Two vectors are equal if they are translations
of one another.

Because vectors are not affected by
translation, the initial point of a vector v can
be moved to any convenient point 𝐴 by
making an appropriate translation.



VECTORS VIEWED GEOMETRICALLY

v

w



VECTORS VIEWED GEOMETRICALLY

v

w



VECTORS VIEWED GEOMETRICALLY

v

w

v + w
v

w

v + w



VECTORS VIEWED GEOMETRICALLY

NOTE:

• If the initial and terminal points of a vector coincide, then the

vector has length zero; we call this the zero vector and denote it by

0.

• The zero vector does not have a specific direction

• v + w = w + v and 0 + v = v + 0 = v.



VECTORS VIEWED GEOMETRICALLY

NOTE: The vectors v and 𝑘v are parallel vectors.



VECTORS VIEWED GEOMETRICALLY

Vector subtraction is defined in terms of addition and scalar
multiplication by

v

w
(−w)



VECTORS VIEWED GEOMETRICALLY

Vector subtraction is defined in terms of addition and scalar
multiplication by

v

(−w)

v−w

NOTE:



VECTORS IN COORDINATE SYSTEMS

If a vector v is positioned with its initial point
at the origin of a rectangular coordinate
system, then its terminal point will have
coordinates of the form 𝑣1, 𝑣2, 𝑣3 .

We call these coordinates the components of v,
and we write v in component form using the
bracket notation



VECTORS IN COORDINATE SYSTEMS

NOTE:

Example: Find the values of 𝑎, 𝑏, 𝑐 if −2, 𝑏, 3 = 𝑎, 0, 𝑐 .



ARITHMETIC OPERATIONS ON VECTORS



ARITHMETIC OPERATIONS ON VECTORS

Example: If v = 2,0,1 and w = 3,5, −4 , then

1. v + w=

2. v − 2w=

2,0,1 + 3,5, −4 = 5,5, −3

2,0,1 − 2 3,5, −4

= 2,0,1 − 6,10,−8

= −4,−10,9



VECTORS WITH INITIAL POINT NOT AT THE ORIGIN

𝑂

𝑃1 𝑥1, 𝑦1

𝑃2 𝑥2, 𝑦2

𝑃1𝑃2

𝑂𝑃1 = 𝑥1, 𝑦1

𝑃1𝑃2 + 𝑂𝑃1 = 𝑂𝑃2

𝑂𝑃2 = 𝑥2, 𝑦2
𝑃1𝑃2 + 𝑥1, 𝑦1 = 𝑥2, 𝑦2

𝑃1𝑃2 = 𝑥2, 𝑦2 − 𝑥1, 𝑦1

= 𝑥2 − 𝑥1, 𝑦2 − 𝑦1



VECTORS WITH INITIAL POINT NOT AT THE ORIGIN

𝑂

𝑃1 𝑥1, 𝑦1

𝑃2 𝑥2, 𝑦2

𝑃1𝑃2

= 𝑥2 − 𝑥1, 𝑦2 − 𝑦1

𝑃1𝑃2

𝑥2 − 𝑥1, 𝑦2 − 𝑦1

𝑃1𝑃2

Example:

The vector from the point 𝐴 0,−2,5 to
the point 𝐵 3,4, −1 is

𝐴𝐵 = 3 − 0,4 − −2 ,−1 − 5
= 3,6, −6



RULES OF VECTOR ARITHMETIC



NORM OF A VECTOR

• The distance between the initial and terminal

points of a vector v is called the length, the

norm, or the magnitude of v and is denoted

by v .

v = 𝑣1, 𝑣2

v

𝑣1

𝑣2

v = 𝑣1
2 + 𝑣2

2



NORM OF A VECTOR

NOTE

Example: If w = 2,3,6 then find the norm of

w

−3w

w = 2 2 + 3 2 + 6 2 = 49 = 7

−3w = −3 × w = 3 × 7 = 21



UNIT VECTORS

• A vector of length 1 is called a
unit vector.

• In an 𝑥𝑦 −coordinate system the
unit vectors along the 𝑥 − and
𝑦 −axes are denoted by i and j,
respectively.

• In an 𝑥𝑦𝑧 − coordinate system
the unit vectors along the 𝑥 −, 𝑦
− and 𝑧 −axes are denoted by i, j
and k, respectively.



UNIT VECTORS

Every vector in 2 −space is expressible uniquely in terms of i and j
as follows:

NOTE

v = 𝑣1, 𝑣2 = 𝑣1, 0 + 0, 𝑣2

= 𝑣1 1,0 + 𝑣2 0,1 = 𝑣1i + 𝑣2j

Also, every vector in 3 −space is expressible uniquely in terms of i,
j and k as follows:

v = 𝑣1, 𝑣2, 𝑣3 = 𝑣1i + 𝑣2j + 𝑣3k



UNIT VECTORS

Example:



NORMALIZING A VECTOR

The unit vector u that has the same direction as some given nonzero
vector v is

u =
1

v
v =

v

v

The process of obtaining a unit vector with the same direction of v is
called normalizing v.

Example: Find the unit vector that has the same direction as v = 2i + 2j − k

v = 22 + 22 + −1 2 = 9 = 3 ∴ u =
v

v
=

2

3
,
2

3
,
−1

3



VECTORS DETERMINED BY LENGTH AND ANGLE

v = 𝑥, 𝑦

v

𝑥

𝑦

𝜃

cos 𝜃 =
𝑥

v

sin 𝜃 =
𝑦

v

⇒

⇒

𝑥 = v cos 𝜃

𝑦 = v sin 𝜃

∴ v = v cos 𝜃 , v sin 𝜃



VECTORS DETERMINED BY LENGTH AND ANGLE

v = 𝑥, 𝑦

v

𝑥

𝑦

𝜃

∴ v = v cos 𝜃 , v sin 𝜃

Example:

Find the vector of length 2 that makes

an angle of
𝜋

4
with the positive 𝑥 −axis.

v = 2 cos
𝜋

4
, 2 sin

𝜋

4 =
2

2
,
2

2

= 2, 2



VECTORS DETERMINED BY LENGTH AND ANGLE

∴ v = v cos 𝜃 , v sin 𝜃Example:

Find the angle that the vector v = − 3i + j makes with the positive
𝑥 −axis.

v = − 3
2
+ 12 = 2

cos 𝜃 =
𝑥

v
=
− 3

2

sin 𝜃 =
𝑦

v
=
1

2 Reference Angle

C+ , S+C− , S+

C− , S− C+ , S−

𝛼𝜋 − 𝛼

𝜋 + 𝛼 2𝜋 − 𝛼

𝛼 =
𝜋

6

𝜃 = 𝜋 −
𝜋

6
=
5𝜋

6



Chapter: [11]
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DEFINITION OF THE DOT PRODUCT

In this section we will define a new kind of multiplication in which two
vectors are multiplied to produce a scalar.

Example:



ALGEBRAIC PROPERTIES OF THE DOT PRODUCT



ALGEBRAIC PROPERTIES OF THE DOT PRODUCT

Example: Given that a = 5, b = 10 and a ⋅ b = −48. Find

3a + b ⋅ a − 2b = 3a ⋅ a − 3a ⋅ 2b + b ⋅ a − 2b ⋅ b

= 3 a − 6(a ⋅ b) + a ⋅ b − 2 b

= 3 5 − 5 −48 − 2 10

= 115



ANGLE BETWEEN VECTORS

• Suppose that u and v are nonzero vectors in 2 −space or 3 −space

that are positioned so their initial points coincide.

• We define the angle between u and v to be the angle 𝜃 determined by

the vectors that satisfies the condition 𝜃 ∈ 0, 𝜋 .



ANGLE BETWEEN VECTORS

Example: Find the angle between the vector u = i − 2j + 3k and

(a) v = −i − 5j + 4k

u = 12 + −2 2 + 32 = 14

v = −1 2 + −5 2 + 42 = 42

u ⋅ v = 1 −1 + −2 −5 + 3 4 = 21

∴ cos 𝜃 =
21

14 × 42
=

3

2

𝜃 =
𝜋

6



ANGLE BETWEEN VECTORS

Example: Find the angle between the vector u = i − 2j + 3k and

(b) w = 2i + 7j + 4k

u ⋅ w = 1 2 + −2 7 + 3 4 = 0 ∴ cos 𝜃 = 0

𝜃 =
𝜋

2



ANGLE BETWEEN VECTORS

Example: Find the angle between the vector u = i − 2j + 3k and

(c) v = 4i + 6j − 2k

u = 12 + −2 2 + 32 = 14

v = 42 + 62 + −2 2 = 56

u ⋅ v = 1 4 + −2 6 + 3 −2 = −14

∴ cos 𝜃 =
−14

14 × 56
= −

1

2

𝜃 =
2𝜋

3



ANGLE BETWEEN VECTORS



DIRECTION ANGLES

v = 𝑣1, 𝑣2

𝛼

𝛽

i = 1,0

cos 𝛼 =
v ⋅ i

v i
=

𝑣1
v

j = 0,1

cos 𝛽 =
v ⋅ j

v j
=

𝑣2
v



DIRECTION ANGLES

NOTE:



DIRECTION ANGLES

Example: Find the direction cosines of the vector v = 3 i + k.

v = 3 + 1 = 2
v

v
=

3

2
i +

1

2
k

cos 𝛼 =
3

2

cos 𝛽 = 0

cos 𝛾 =
1

2

𝛼 =
𝜋

6
= 30∘

𝛽 =
𝜋

2
= 90∘

𝛾 =
𝜋

3
= 60∘

The angle between v and 𝑥 −axis

The angle between v and 𝑦 −axis

The angle between v and 𝑧 −axis



ORTHOGONAL PROJECTIONS

a

b

projba

projba ∥ b

projba = 𝑘b

projba =
a ⋅ b

b 2
b

a

b

projba

The orthogonal projection
of a on an arbitrary nonzero
vector b.

a

b

projba



ORTHOGONAL PROJECTIONS

a

w

b

projba

projwa =

The vector component of a
orthogonal to b.

w ⊥ b

b − projba



ORTHOGONAL PROJECTIONS

Example: Find the orthogonal projection of v = i + j + k on b = 2i + 2j,
and then find the vector component of v orthogonal to b.
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DETERMINANTS

• A matrix is a rectangular array (table) of numbers arranged in

rows and columns.

• For example,
−1 0 3
2 5 −7

.

• The determinant is a function that assigns numerical value to

square matrix (number of rows = number of columns) of numbers.

• We define a 2 × 2 determinant by
𝑎 𝑏
𝑐 𝑑

= 𝑎𝑑 − 𝑏𝑐

• For example,
3 −2
4 5

= 3 5 − −2 4 = 15 + 8 = 23



DETERMINANTS

A 3 × 3 determinant is defined in terms of 2 × 2 determinants by

𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3
𝑐1 𝑐2 𝑐3

= 𝑎1
𝑏2 𝑏3
𝑐2 𝑐3

− 𝑎2
𝑏1 𝑏3
𝑐1 𝑐3

+ 𝑎3
𝑏1 𝑏2
𝑐1 𝑐2

Example
3 −2 −5
1 4 −4
0 3 2

= 3
4 −4
3 2

− −2
1 −4
0 2

+ −5
1 4
0 3

= 3 8 − −12 +2 2 − 0 −5 3 − 0

= 49



DETERMINANTS



CROSS PRODUCT

Example

i j k
1 2 −2
3 0 1

= i
2 −2
0 1

− j
1 −2
3 1

+k
1 2
3 0

= 2i − 7j − 6k



ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

• Keep in mind the essential differences between the cross product

and the dot product:

✓ The cross product is defined only for vectors in 3 −space,

whereas the dot product is defined for vectors in 2 −space and

3 −space.

✓ The cross product of two vectors is a vector, whereas the dot

product of two vectors is a scalar.



ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT



ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

Example: Given that a × b = −1,2,1 . Find 2a − 3b × a + 2b .

2a − 3b × a + 2b = 2a × a + 2a × 2b −3b × a − 3b × 2b

= 2 a × a + 4(a × b)−3 b × a − 6 b × b

= 2 0 + 4 a × b + 3 a × b − 6 0

= 7 a × b

= −7,14,7



ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

The following cross products occur so frequently that it is helpful to be
familiar with them:



ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

WARNING

• We can write a product of three real numbers as 𝑎𝑏𝑐 since the

associative law 𝑎𝑏 𝑐 = 𝑎 𝑏𝑐 ensures that the same value for the

product results no matter how the factors are grouped.

• The associative law does not hold for cross products. For example,

i × j × j = i × 0 = 0

i × j × j = k × j = −i

• Thus, we cannot write a cross product with three vectors as u × v × w,

since this expression is ambiguous (مُبهم) without parentheses.



GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

u

v

u × v



GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

Example



GEOMETRIC PROPERTIES OF THE CROSS PRODUCT



GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

u

v

𝑇
𝑇 =

1

2
u × v



GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

Example Find the area of the triangle that is determined by the points
𝑃1(2, 2, 0), 𝑃2(−1, 0, 2), and 𝑃3(0, 4, 3).



SCALAR TRIPLE PRODUCTS

Example



GEOMETRIC PROPERTIES OF THE SCALAR TRIPLE PRODUCT



GEOMETRIC PROPERTIES OF THE SCALAR TRIPLE PRODUCT

ALGEBRAIC PROPERTIES OF THE
SCALAR TRIPLE PRODUCT
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PARAMETRIC EQUATIONS



PARAMETRIC EQUATIONS

Example Express the graph of 𝑦 = 𝑥2 where 𝑥 ≥ 0 as parametric
equations.

Orientation

Let 𝑥 = 𝑡 𝑦 = 𝑡2 𝑡 ≥ 0



PARAMETRIC EQUATIONS

Example The counter-clockwise orientation parametric equations of the

circle 𝑥2 + 𝑦2 = 𝑎2 are

𝑥 = 𝑎 cos 𝑡 , 𝑦 = 𝑎 sin 𝑡 , 0 ≤ 𝑡 ≤ 2𝜋
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LINES DETERMINED BY A POINT AND A VECTOR

ℓ

𝑃0 𝑥0, 𝑦0

v = 𝑎, 𝑏

𝑥 = 𝑥0 + 𝑎𝑡 , 𝑦 = 𝑦0 + 𝑏𝑡

The parametric equations of the line in
2 −space that passes through the point
𝑃0(𝑥0, 𝑦0) and is parallel to the nonzero
vector v = 𝑎, 𝑏 = 𝑎i + 𝑏j are



LINES DETERMINED BY A POINT AND A VECTOR

𝑥 = 𝑥0 + 𝑎𝑡 , 𝑦 = 𝑦0 + 𝑏𝑡

The parametric equations of the line in 3 −space that passes
through the point 𝑃0(𝑥0, 𝑦0, 𝑧0) and is parallel to the nonzero vector
v = 𝑎, 𝑏, 𝑐 = 𝑎i + 𝑏j + 𝑐k are

, 𝑧 = 𝑧0 + 𝑐𝑡

Example Find parametric equations of the line passing through
(1, 2, −3) and parallel to v = 4i + 5j − 7k.

𝑥 = 1 + 4𝑡 , 𝑦 = 2 + 5𝑡 , 𝑧 = −3 − 7𝑡



LINES DETERMINED BY A POINT AND A VECTOR

Example

1. Find parametric equations of the line ℓ passing through the points
𝑃1(2, 4, −1) and 𝑃2(5, 0, 7).

The vector 𝑃1𝑃2 = 5 − 2,0 − 4,7 − −1 = 3,−4,8 is parallel to ℓ.

If 𝑃1 is chosen: If 𝑃2 is chosen:

𝑥 = 2 + 3𝑡1
𝑦 = 4 − 4𝑡1
𝑧 = −1 + 8𝑡1

𝑥 = 5 + 3𝑡2
𝑦 = −4𝑡2
𝑧 = 7 + 8𝑡2

4 − 4𝑡1 = −4𝑡2

−1 + 𝑡1 = 𝑡2



LINES DETERMINED BY A POINT AND A VECTOR

Example

1. Find parametric equations of the line ℓ passing through the points
𝑃1(2, 4, −1) and 𝑃2(5, 0, 7).

𝑥 = 5 + 3𝑡2
𝑦 = −4𝑡2
𝑧 = 7 + 8𝑡2

2. Where does the line intersect the 𝑥𝑦 −plane?

𝑧 = 0 7 + 8𝑡2 = 0 𝑡2 =
−7

8

The point is
19

8
,
7

2
, 0



LINES DETERMINED BY A POINT AND A VECTOR

Example Let ℓ1 and ℓ2 be the lines

ℓ1: 𝑥 = 1 + 4𝑡, 𝑦 = 5 − 4𝑡, 𝑧 = −1 + 5𝑡

ℓ2: 𝑥 = 2 + 8𝑡, 𝑦 = 4 − 3𝑡, 𝑧 = 5 + 𝑡

1. Are the lines parallel?

ℓ1 ∥ ℓ2

v2 = 8,−3,1

v1 = 4,−4,5

v1 ∥ v2⇔ ⇔ v2 = 𝑐 v1

4𝑐 = 8
−4𝑐 = −3
5𝑐 = 1

No such 𝒄 ∴ ℓ1 and ℓ2 are NOT parallel lines.



LINES DETERMINED BY A POINT AND A VECTOR

Example Let ℓ1 and ℓ2 be the lines

ℓ1: 𝑥 = 1 + 4𝑡, 𝑦 = 5 − 4𝑡, 𝑧 = −1 + 5𝑡

ℓ2: 𝑥 = 2 + 8𝑡, 𝑦 = 4 − 3𝑡, 𝑧 = 5 + 𝑡

2. Do the lines intersect?

Suppose the point of intersection is

𝑥∗

𝑦∗

𝑧∗

=

=

=

=

=

=

1 + 4𝑡1

5 − 4𝑡1

−1 + 5𝑡1

2 + 8𝑡2

4 − 3𝑡2

5 + 𝑡2



LINES DETERMINED BY A POINT AND A VECTOR

Example Let ℓ1 and ℓ2 be the lines

ℓ1: 𝑥 = 1 + 4𝑡, 𝑦 = 5 − 4𝑡, 𝑧 = −1 + 5𝑡

ℓ2: 𝑥 = 2 + 8𝑡, 𝑦 = 4 − 3𝑡, 𝑧 = 5 + 𝑡

2. Do the lines intersect?

Suppose the point of intersection is

=

=

=

1 + 4𝑡1

5 − 4𝑡1

−1 + 5𝑡1

2 + 8𝑡2

4 − 3𝑡2

5 + 𝑡2

6 = 6 + 5𝑡2

𝑡2 = 0

𝑡1 =
1

4

BUT !!

Do not satisfy the 3rd equation.

∴ ℓ1 and ℓ2 do NOT intersect.



LINES DETERMINED BY A POINT AND A VECTOR

• Two lines in 3 −space that are

not parallel and do not intersect

are called skew lines.

• Any two skew lines lie in parallel

planes.



Chapter: [11]
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PLANES IN 3-SPACE

Course: Calculus (3)



PLANES PARALLEL TO THE COORDINATE PLANES

Parallel to
𝑦𝑧 −plane

Parallel to
𝑥𝑧 −plane

Parallel to
𝑥𝑦 −plane



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

• A plane in 3 −space can be determined

uniquely by specifying a point in the

plane and a vector perpendicular to the

plane.

• A vector perpendicular to a plane is

called a normal to the plane.



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

𝑃0 𝑥0, 𝑦0, 𝑧0

n = 𝑎, 𝑏, 𝑐
𝑎 𝑥 − 𝑥0 + 𝑏 𝑦 − 𝑦0 + 𝑐 𝑧 − 𝑧0 = 0

This is called the
point-normal form
of the equation of
a plane.



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Find an equation of the plane passing through the point
(3, −1, 7) and perpendicular to the vector n = 4,2, −5 .

4 𝑥 − 3 + 2 𝑦 + 1 − 5 𝑧 − 7 = 0

4𝑥 − 12 + 2𝑦 + 2 − 5𝑧 + 35 = 0

4𝑥 + 2𝑦 − 5𝑧 + 25 = 0



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Determine whether the two planes are parallel.
𝑃1: 3𝑥 − 4𝑦 + 5𝑧 = 0
𝑃2: −6𝑥 + 8𝑦 − 10𝑧 − 4 = 0

𝑃1 ∥ 𝑃2 ⇔ n1 ∥ n2 ⇔ n2 = 𝑘 n1

n1 = 3,−4,5
n2 = −6,8, −10

−6,8, −10 = 𝑘 3,−4,5⇔

⇔ −6 = 3𝑘
8 = −4𝑘

−10 = 5𝑘

⇔ 𝑘 = −2 ∴ 𝑃1and 𝑃2 are parallel planes



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Find an equation of the plane through the points 𝑃1(1, 2, −1),
𝑃2(2, 3, 1), and 𝑃3(3, −1, 2).

𝑃2𝑃1 × 𝑃2𝑃3

n = 𝑃2𝑃1 × 𝑃2𝑃3 =
i j k
−1 −1 −2
1 −4 1

= −9,−1,5

By using this normal and the point 𝑃3(3, −1,2) in the
plane, we obtain the point-normal form

−9 𝑥 − 3 − 𝑦 + 1 + 5 𝑧 − 2 = 0

−9𝑥 − 𝑦 + 5𝑧 + 16 = 0

9𝑥 + 𝑦 − 5𝑧 − 16 = 0



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Determine whether the line
ℓ: 𝑥 = 3 + 8𝑡 , 𝑦 = 4 + 5𝑡 , 𝑧 = −3 − 𝑡

is parallel to the plane 𝑥 − 3𝑦 + 5𝑧 = 12.

ℓ

v

n

v = 8,5, −1 n = 1,−3,5



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Determine whether the line
ℓ: 𝑥 = 3 + 8𝑡 , 𝑦 = 4 + 5𝑡 , 𝑧 = −3 − 𝑡

is parallel to the plane 𝑥 − 3𝑦 + 5𝑧 = 12.

v

n

v = 8,5, −1 n = 1,−3,5

n ⋅ v = 1 8 + −3 5 + 5 −1 = 12 ≠ 0

∴ The line and the plane are not parallel.

∴ The line and the plane intersects.



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Find the intersection of the line
ℓ: 𝑥 = 3 + 8𝑡 , 𝑦 = 4 + 5𝑡 , 𝑧 = −3 − 𝑡

and the plane 𝑥 − 3𝑦 + 5𝑧 = 12.

Suppose the point of intersection is 𝑥0, 𝑦0, 𝑧0

LINE

𝑥0 = 3 + 8𝑡0
𝑦0 = 4 + 5𝑡0
𝑧0 = −3 − 𝑡0

PLANE

𝑥0 − 3𝑦0 + 5𝑧0 = 12

3 + 8𝑡0 − 3 4 + 5𝑡0 + 5 −3 − 𝑡0 = 12

𝑡0 = −3

POINT

−21,−11,0



INTERSECTING PLANES

Two distinct intersecting planes
determine two positive angles
of intersection

If n1 and n2 are normals to the
planes, then the acute angle 𝜃
between the planes satisfies:



INTERSECTING PLANES

Example Find the acute angle of intersection between the two planes

4𝑥 + 2𝑦 + 2𝑧 = 6 and   𝑥 + 2𝑦 − 𝑧 = 4

n1 = 4,2,2 n2 = 1,2, −1

n1 = 42 + 22 + 22 = 24 = 2 6

n2 = 12 + 22 + −1 2 = 6

n1 ⋅ n2 = 4 1 + 2 2 + 2 −1 = 6

cos 𝜃 =
n1 ⋅ n2
n1 n2

cos 𝜃 =
6

2 6 × 6
=
1

2

𝜃 =
𝜋

3



INTERSECTING PLANES

Example Find an equation for the line ℓ of intersection of the planes

2𝑥 − 4𝑦 + 4𝑧 = 6 and   6𝑥 + 2𝑦 − 3𝑧 = 4

ℓ

v

v ∥ Plane 1

v ∥ Plane 2

v ⊥ n1

v ⊥ n2

⇒

⇒

∴ v = n1 × n2 =
i j k
2 −4 4
6 2 −3

v = 4,30,28



INTERSECTING PLANES

Example Find an equation for the line ℓ of intersection of the planes

2𝑥 − 4𝑦 + 4𝑧 = 6 and   6𝑥 + 2𝑦 − 3𝑧 = 4

v = 4,30,28

To find a point on ℓ

ℓ is not perpendicular to k = 0,0,1

v ⋅ k = 0 + 0 + 28 ≠ 0

∴ ℓ intersects the 𝑥𝑦 −plane 𝑧 = 0

2𝑥 − 4𝑦 = 6
6𝑥 + 2𝑦 = 4

Solve the equations:

𝑥 = 1, 𝑦 = −1

∴ point = 1,−1,0



INTERSECTING PLANES

Example Find an equation for the line ℓ of intersection of the planes

2𝑥 − 4𝑦 + 4𝑧 = 6 and   6𝑥 + 2𝑦 − 3𝑧 = 4

v = 4,30,28

∴ point = 1,−1,0

The parametric equations of ℓ are

𝑥 = 1 + 4𝑡
𝑦 = −1 + 30𝑡
𝑧 = 28𝑡



DISTANCE PROBLEMS INVOLVING PLANES

• The distance between a point and a plane.
• The distance between two parallel planes.
• The distance between two skew lines.



DISTANCE PROBLEMS INVOLVING PLANES

The distance 𝐷 between a point 𝑃0(𝑥0, 𝑦0, 𝑧0) and the plane
𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 is

Example Find the distance 𝐷 between the point (1, −4,−3) and the plane 
2𝑥 − 3𝑦 + 6𝑧 = −1.
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REVIEW OF POLAR COORDINATES

Rectangular 
Coordinates

𝑥, 𝑦 𝑟, 𝜃

origin

𝑥

𝑦

Polar 
Coordinates

Polar AxisPole

𝑟

𝜃



REVIEW OF POLAR COORDINATES

From Rectangular
To Polar

𝑥, 𝑦 𝑟, 𝜃

𝑥

𝑦

From Polar
To Rectangular

𝑟

𝜃

=
𝑟 = 𝑥2 + 𝑦2

tan 𝜃 =
𝑦

𝑥

cos 𝜃 =
𝑥

𝑟
sin 𝜃 =

𝑦

𝑟
,

𝑥 = 𝑟 cos 𝜃

𝑦 = 𝑟 sin 𝜃



CYLINDRICAL AND SPHERICAL COORDINATE SYSTEMS



CONSTANT SURFACES

In rectangular coordinates

𝑥 = 𝑎 𝑦 = 𝑏 𝑧 = 𝑐



CONSTANT SURFACES

In cylindrical coordinates

𝑟 = 𝑟0 𝜃 = 𝜃0 𝑧 = 𝑐



CONSTANT SURFACES

In spherical coordinates

𝜌 = 𝜌0 𝜃 = 𝜃0 𝜙 = 𝜙0



CONVERTING COORDINATES

From

Rectangular

Cylindrical

To

𝑥 = 𝑟 cos 𝜃

𝑦 = 𝑟 sin 𝜃

𝑧 = 𝑧

From Rectangular

CylindricalTo

𝑟 = 𝑥2 + 𝑦2

tan 𝜃 = Τ𝑦 𝑥
𝑧 = 𝑧

From

Cylindrical

Spherical

To

𝑟 = 𝜌 sin𝜙

𝜃 = 𝜃

𝑧 = 𝜌 cos𝜙

From Cylindrical

SphericalTo

𝜌 = 𝑟2 + 𝑧2

𝜃 = 𝜃
tan𝜙 = Τ𝑟 𝑧

From

Rectangular

Spherical

To

𝑥 = 𝜌 sin𝜙 cos 𝜃

𝑦 = 𝜌 sin𝜙 sin 𝜃

𝑧 = 𝜌 cos𝜙

From Rectangular

SphericalTo

𝜌 = 𝑥2 + 𝑦2 + 𝑧2

tan 𝜃 = Τ𝑦 𝑥
cos𝜙 = Τ𝑧 𝜌



CONVERTING COORDINATES

Example Find the rectangular coordinates of the point with cylindrical
coordinates

𝑟, 𝜃, 𝑧 = 4,
𝜋

3
, −3

From

Rectangular

Cylindrical

To

𝑥 = 𝑟 cos 𝜃

𝑦 = 𝑟 sin 𝜃

𝑧 = 𝑧

𝑥 = 4 cos
𝜋

3
= 2

𝑦 = 4 sin
𝜋

3
= 2 3

𝑧 = −3

∴ 𝑥, 𝑦, 𝑧 = 2,2 3,−3



CONVERTING COORDINATES

Example Find the rectangular coordinates of the point with spherical
coordinates

𝜌, 𝜃, 𝜙 = 4,
𝜋

3
,
𝜋

4

𝑥 = 4 sin
𝜋

4
cos

𝜋

3
=

2

2
= 2

𝑦 = 4 sin
𝜋

4
sin

𝜋

3
=
2 3

2
= 6

𝑧 = 4 cos
𝜋

4
= 2 2

∴ 𝑥, 𝑦, 𝑧 = 2, 6, 2 2

From

Rectangular

Spherical

To

𝑥 = 𝜌 sin𝜙 cos 𝜃

𝑦 = 𝜌 sin𝜙 sin 𝜃

𝑧 = 𝜌 cos𝜙



CONVERTING COORDINATES

Example Find the spherical coordinates of the point that has rectangular
coordinates

𝑥, 𝑦, 𝑧 = 4,−4,4 6

𝜌 = 42 + −4 2 + 4 6
2
= 128 = 8 2

tan 𝜃 =
−4

4
= −1

cos𝜙 =
4 6

8 2
=

3

2

From Rectangular

SphericalTo

𝜌 = 𝑥2 + 𝑦2 + 𝑧2

tan 𝜃 = Τ𝑦 𝑥
cos𝜙 = Τ𝑧 𝜌



CONVERTING COORDINATES

Example Find the spherical coordinates of the point that has rectangular
coordinates

𝑥, 𝑦, 𝑧 = 4,−4,4 6

𝜌 = 42 + −4 2 + 4 6
2
= 128 = 8 2

tan 𝜃 =
−4

4
= −1

cos𝜙 =
4 6

8 2
=

3

2

∴ 𝜌, 𝜃, 𝜙 = 8 2,
7𝜋

4
,
𝜋

6

𝜃 =
7𝜋

4

𝜙 =
𝜋

6



EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

Example Find equations of the cone 𝑧 = 𝑥2 + 𝑦2 in cylindrical and
spherical coordinates.

From Rectangular

CylindricalTo

𝑟 = 𝑥2 + 𝑦2

tan 𝜃 = Τ𝑦 𝑥
𝑧 = 𝑧

𝑧 = 𝑟

From

Rectangular

Spherical

To

𝑥 = 𝜌 sin𝜙 cos 𝜃

𝑦 = 𝜌 sin𝜙 sin 𝜃

𝑧 = 𝜌 cos𝜙

𝜌 cos𝜙 = 𝜌2 sin2 𝜙 cos2 𝜃 + 𝜌2 sin2 𝜙 sin2 𝜃



EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

Example Find equations of the cone 𝑧 = 𝑥2 + 𝑦2 in cylindrical and
spherical coordinates.

From Rectangular

CylindricalTo

𝑟 = 𝑥2 + 𝑦2

tan 𝜃 = Τ𝑦 𝑥
𝑧 = 𝑧

𝑧 = 𝑟

From

Rectangular

Spherical

To

𝑥 = 𝜌 sin𝜙 cos 𝜃

𝑦 = 𝜌 sin𝜙 sin 𝜃

𝑧 = 𝜌 cos𝜙

𝜌 cos𝜙 = 𝜌2 sin2 𝜙 cos2 𝜃 + sin2 𝜃



EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

Example Find equations of the cone 𝑧 = 𝑥2 + 𝑦2 in cylindrical and
spherical coordinates.

From Rectangular

CylindricalTo

𝑟 = 𝑥2 + 𝑦2

tan 𝜃 = Τ𝑦 𝑥
𝑧 = 𝑧

𝑧 = 𝑟

From

Rectangular

Spherical

To

𝑥 = 𝜌 sin𝜙 cos 𝜃

𝑦 = 𝜌 sin𝜙 sin 𝜃

𝑧 = 𝜌 cos𝜙

𝜌 cos𝜙 = 𝜌2 sin2 𝜙



EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

Example Find equations of the cone 𝑧 = 𝑥2 + 𝑦2 in cylindrical and
spherical coordinates.

From Rectangular

CylindricalTo

𝑟 = 𝑥2 + 𝑦2

tan 𝜃 = Τ𝑦 𝑥
𝑧 = 𝑧

𝑧 = 𝑟

From

Rectangular

Spherical

To

𝑥 = 𝜌 sin𝜙 cos 𝜃

𝑦 = 𝜌 sin𝜙 sin 𝜃

𝑧 = 𝜌 cos𝜙

𝜌 cos𝜙 = 𝜌 sin𝜙

1 = tan𝜙
𝜙 =

𝜋

4



Example Find equations of the paraboloid 𝜌 = cos𝜙 csc2 𝜙 in cylindrical
coordinates.

EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

From

Cylindrical

Spherical

To

𝑟 = 𝜌 sin𝜙
𝜃 = 𝜃
𝑧 = 𝜌 cos𝜙

𝜌 = cos𝜙 csc2 𝜙

sin2 𝜙 𝜌 = cos𝜙

𝑟2

𝜌2
𝜌 =

𝑧

𝜌

𝑧 = 𝑟2



EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES



EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES


