Course: Calculus (3)

Chapter: [11]
THREE-DIMENSIONAL SPACE; VECTORS

Section: [11.1]
RECTANGULAR COORDINATES IN 3-SPACE; SPHERES;
CYLINDRICAL SURFACES




RECTANGULAR COORDINATE SYSTEMS

In the remainder of this slides, we will call:
* three-dimensional space: 3-space
e two-dimensional space (a plane): 2-space

e one-dimensional space (a line): 1-space

Points in 3-space can be placed in one-to-
one correspondence with triples of real
numbers by using three mutually
perpendicular coordinate lines, called the
x —axis, the y —axis, and the z —axis,
positioned so that their origins coincide.

VY=




RECTANGULAR COORDINATE SYSTEMS

A Z * The three coordinate axes form a three-
dimensional rectangular coordinate system
- (or Cartesian coordinate system).

.  The point of intersection of the coordinate
Draw the point (4’3’5) — axes is called the origin of the coordinate

u * system.

Example

Example

Draw the point (—3,2, —4)
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RECTANGULAR COORDINATE SYSTEMS

xz-plane

—

X

B

yz-plane

£

xy-plane
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REGION

DESCRIPTION

xy-plane
xz-plane
yz-plane
X-ax1s
y-axis
Z-axis

Consists of all points of the form (x, y, 0)
Consists of all points of the form (x, 0, 2)
Consists of all points of the form (0, y, 2)
Consists of all points of the form (x, 0, 0)
Consists of all points of the form (0, y, 0)
Consists of all points of the form (0, 0, 2)



DISTANCE IN 3-SPACE; SPHERES

Py (x2,¥2,27)

d = (x2—x)%+ (O — y)? + (20 — 21)?

Py (x1,¥1,21)



DISTANCE IN 3-SPACE; SPHERES

d = (x2—x1)2+ (y2 — y1)2 + (22 — 71)?

Example
P X1 V1 41 X2 Y2 Z3

Find the distance d between the points (2,3,—1) and (4, —1, 3).

d = J(4 ~2)2+(-1-3)2+ (3- (D)’

=4+ 16 + 16

=6



DISTANCE IN 3-SPACE; SPHERES

Py(x2,¥2,23)

Midpoint — (x1+x2’y1 +J’2’Z1+Zz)
2 2 2

Py (x1,¥1,21)



DISTANCE IN 3-SPACE; SPHERES

X1+ X ~+ Z1 + Z
Midpoint =(1 2 Y1 TY2 Z3 2)

2 2 2

Example
X1 V1 41 X2 Y2 2p

Find the midpoint between the points (2,3, —1) and (4, —1, 3).

2+4 3+(-1) —1+3
2 2 2

midpoint =

= (3,1,1)



DISTANCE IN 3-SPACE; SPHERES

(x —a)? + (y—b)? =r? (x—a))+(y—-b)+(z—-0c)?=r?

Circle in 2-space Sphere in 3-space



DISTANCE IN 3-SPACE; SPHERES

(x—a)’+(y—-b)+(z—-0c)=r?

Sphere in 3-space

Example

Find the equation of the sphere with center
(1, —2,—4) and radius 3.

(x—1D?+@+2)°+(zZ+4)?*=9
x2+y%2+2z2—-2x+4y+8z=—-12

Example

Find the center and radius of the sphere
(x—=5)2+y*+(z+3)* =5

Center C, ., )

Radius V5



DISTANCE IN 3-SPACE; SPHERES

(x—a) )+ —-b)+(z—-0c)=r?

Standard equation of the sphere

If the terms in the equation of SPHERE are
expanded and like terms are collected, then
the resulting equation has the form

xz—l—yz—l—zz—l—Gx—l—Hy—l—Iz—l—J:O

The following example shows how the center
and radius of a sphere that is expressed in
this form can be obtained by completing the
squares.



DISTANCE IN 3-SPACE; SPHERES (x—a)>+(y—b)*+(z—0c)*=r?
Example Find the center and radius of the sphere

x2+y2+z2—-2x—4y+8z+17=0

(x? —2x) + (y? —4y) + (z? + 82) = —17

(x*=2x+ — )+@*=4y+ — )+ (z°+8z2+ — )=-17

_22—1 _42—4 82—16
Fe @
(x? —2x+1E1D)+ (y? -4y +454) + (z° + 8z + 16 =16) = —17

(x?=2x+1)—1+(@y?*—4y+4)—4+(z°+8z+16) —16 = —17



DISTANCE IN 3-SPACE; SPHERES (x—a)*+ (@ —b)>+(z—c)* =7r?
Example Find the center and radius of the sphere

x24+vy24+2z2—-2x—4y+8z+17=0

(x?—=2x+1)+(@?—4y+4)+(z°+8z+16)=1+4+16—17

(x—1)24+@y—-2)°+(z+4)?*=4

Center (1,2, —4)

Vi =2

Radius



DISTANCE IN 3-SPACE; SPHERES
NOTE: In general, completing the squares produces an equation of the form
(x —x0)"+ (v —y0) + (z —20)° =k

Ifk >0 the graph of this equation is a sphere
Ifk =0 the graph of this equation is the point (xq, Yo, Zo)
Ifk <0 no graph !!

11.1.1 THEOREM An equation of the form

x2—|—y2—|—z2—|—Gx—|—Hy—|—Iz—|—J:O

represents a sphere, a point, or has no graph.




CYLINDRICAL SURFACES

It is possible to graph equations in two
variables in 3 —space.

Example: x> + y2 =1

Observe that the equation does not impose
any restrictions on z.

This means that we can obtain the graph of

x% +y% = 1in an xyz —coordinate system

by first graphing the equation in the
xy —plane.




CYLINDRICAL SURFACES

It is possible to graph equations in two
variables in 3 —space.

Example: x> + y2 =1

Observe that the equation does not impose
any restrictions on Zz.

This means that we can obtain the graph of

x2 +y% = 1in an xyz —coordinate system .

by first graphing the equation in the
xy —plane.

And then translating that graph parallel to
the z —axis to generate the entire graph.




CYLINDRICAL SURFACES

Example x?+2z%=1




CYLINDRICAL SURFACES

2

Example z =1y




CYLINDRICAL SURFACES

Example z =sinx




CYLINDRICAL SURFACES

11.1.2 THEOREM An equation that contains only two of the variables x, vy, and
z represents a cylindrical surface in an xyz-coordinate system. The surface can be
obtained by graphing the equation in the coordinate plane of the two variables that
appear in the equation and then translating that graph parallel to the axis of the missing

variable.



Course: Calculus (3)

Chapter: [11]
THREE-DIMENSIONAL SPACE; VECTORS

Section: [11.2]
VECTORS




VECTORS VIEWED GEOMETRICALLY

A Vector in 2-space or 3-space;

. . _ _ Terminal Point
is an arrow with direction and

length (magnitude). Initial Point vor®

Two vectors v and w are equal

if they have the same length /’
. w w

and same direction, and we

write v = w. r"

— W V-'FW |V-'FW




VECTORS VIEWED GEOMETRICALLY

Two vectors are equal if they are translations
of one another.

Because vectors are not affected by
translation, the initial point of a vector v can
be moved to any convenient point A by
making an appropriate translation.




VECTORS VIEWED GEOMETRICALLY

11.2.1 operFINITION If v and w are vectors, then the sum v + w is the vector from
the 1nitial point of v to the terminal point of w when the vectors are positioned so the
initial point of w 1s at the terminal point of v



VECTORS VIEWED GEOMETRICALLY

11.2.1 DpEFINITION If v and w are vectors, then the sum@is the vector from
the 1nitial point of v to the terminal point of w when the vectors are positioned so the
initial point of w 1s at the terminal point of v



VECTORS VIEWED GEOMETRICALLY

11.2.1 DpEFINITION If v and w are vectors, then the sum@is the vector from
the 1nitial point of v to the terminal point of w when the vectors are positioned so the
initial point of w 1s at the terminal point of v

V+WwW




VECTORS VIEWED GEOMETRICALLY

NOTE:

 If the initial and terminal points of a vector coincide, then the
vector has length zero; we call this the zero vector and denote it by
0.

 The zero vector does not have a specific direction

e v+w=w+vandO+v=v+0-=v.



VECTORS VIEWED GEOMETRICALLY

11.2.2 pEFINITION If visanonzero vector and & 1s a nonzero real number (a scalar),
then the scalar multiple kv is defined to be the vector whose length is | k| times the length
of v and whose direction 1s the same as that of v if £ > 0 and opposite to that of v if

k <0.Wedefinekv=0ifk=0o0rv=0.

NOTE: The vectors v and kv are parallel vectors.



VECTORS VIEWED GEOMETRICALLY

Vector subtraction is defined in terms of addition and scalar
multiplication by

V—W=V+ (—W)



VECTORS VIEWED GEOMETRICALLY

Vector subtraction is defined in terms of addition and scalar
multiplication by

V—W=V+ (—W)

(—w)

NOTE: V4+(—v)=v—v=0



VECTORS IN COORDINATE SYSTEMS (o

If a vector v is positioned with its initial point
at the origin of a rectangular coordinate
system, then its terminal point will have
coordinates of the form (v, v,, U3).

We call these coordinates the components of v,
and we write v in component form using the
bracket notation

vV = (v, 12, V3)



VECTORS IN COORDINATE SYSTEMS

NOTE: 0 = (0,0, 0)

11.2.3 THEOREM Two vectors are equivalent if and only if their corresponding com-
ponents are equal.

{ |

Example: Find the values of a, b, c if (—2, b,@ = (aq, O@.




ARITHMETIC OPERATIONS ON VECTORS

11.2.4 THEOREM Ifv = (v, v2) and w = (wq, wa) are vectors in 2-space and k is
any scalar, then

V+W= (v, +w, v+ ws) (1)
V—W= (v —wp, V2 — W) (2)
kv = (kv;, kv)) (3)

Similarly, if v = (v, v2, v3) and w = (w, w2, w3) are vectors in 3-space and k is any
scalar, then

V+w= (v +wi,v2+ wa, v3 4+ ws) (4)
V—W= (V] —w, V2 — W, V3 — W3) (5)
kv = (kvy, kva, kv3) (6)



ARITHMETIC OPERATIONS ON VECTORS

Example: Ifv=(2,0,1) andw = (3,5, —4), then

1.v+w= (2,0,1) + (3,5, —4) = (5,5, —3)

2.v—2w=(2,0,1) — 2(3,5, —4)
= (2,0,1) — (6,10, —8)

— <_4) _1O)9>



VECTORS WITH INITIAL POINT NOT AT THE ORIGIN

_— —

P,P, + OP, = OP,
P1P2 -|—<X1,y1>: (Xz,y2>
PP, =(x3,¥2) — (x1,¥1)

={X; — X1, Y2 — Y1)




VECTORS WITH INITIAL POINT NOT AT THE ORIGIN

P, (x2,¥2)

Example: PP,
_ P (x1,y1)
The vector from the point 4(0,—2,5) to

the point B(3,4,—1) is

(X2 = X1,¥2 — Y1)

AB=(3-04—(-2),—1—75)
= (3,6, —6)

PP, = (Xp —X1,¥2 — Y1)



RULES OF VECTOR ARITHMETIC

11.2.6 THEOREM Foranyvectorsu, v, and w and any scalars k and [, the following

relationships hold.:

(a) u+v=v+u (e) k(lu) = (kl)u

b) +v)+w=u+(v+w) (f) k(w+v) =ku+ kv
(¢c) u+0=04+u=u (g) (k+Du=ku+/u

d)u+(—u) =0 (h) lu=u



NORM OF A VECTOR

* The distance between the initial and terminal
points of a vector v is called the length, the

norm, or the magnitude of v and is denoted

by [|v]|.




NORM OF A VECTOR

NOTE [lkv|| = [k[[lv]

Example: If w = (2,3,6) then find the norm of

Ow Iwll = V22 + B)2 + (6) = V49 = 7

©® 3w |-3wll=|-3x|wll=3x7=21



UNIT VECTORS

* A vector of length 1 is called a * In an xyz —coordinate system
unit vector. the unit vectors along the x —, y
— and z —axes are denoted by i, j

* In an xy —coordinate system the _
and K, respectively.

unit vectors along the x — and
y —axes are denoted by 1 and j,

respectively. 1 0.0, 1) i1=(1,0,0)
;3}/(0 1) J=10,1,0)
’ k k= (0,0, 1)
i — (0. 1 B i 0,1,0
J=10.1) X 400 (0,1, 0)

: Y
bo(1,0) X



UNIT VECTORS

NOTE Every vector in 2 —space is expressible uniquely in terms of i and j
as follows:

vV =A(v1,13) = (v1,0) + (0,v,)
= v,(1,0) + v,(0,1) = v;i + v,j

Also, every vector in 3 —space is expressible uniquely in terms of i,
j and k as follows:

V = (vq,V,,V3) = v1i+ v,j + v3k



UNIT VECTORS
Example: (2,3) =2i+ 3j
(2,-3,4) =2i—-3j+4k
(=4, 0) = —4i+ 0j = —4i
(0, 3, 0) =3j
(0,0, 0) = 0i + 0j + Ok = 0
5(61—2j) = 301 — 10j
Bi+2j—-k)—(4i—j+2k)=—-i+3j -3k
Ji+2j - 3k|| = V17 + 22+ (-3)* =14




NORMALIZING A VECTOR

The unit vector u that has the same direction as some given nonzero

vectorvis

1 Vv
u=—v=—

14| —A

The process of obtaining a unit vector with the same direction of v is
called normalizing v.

Example: Find the unit vector that has the same directionasv = 2i + 2j — Kk

v o[22 -1
IVl =22+ 22 + (-1)2 = V9 = 3 -'-u=—=<§,§, >



VECTORS DETERMINED BY LENGTH AND ANGLE

X
cosd =— = x =||v|/cos@

Iyl

sinf = = vy =||vlsiné

Y
Iyl

~ v ={(||v|[cosd,||v| sinH)




VECTORS DETERMINED BY LENGTH AND ANGLE

= v ={|lvl][cos8,||vl|l sin )

Example:

Find the vector of length 2 that makes
T . . .
an angle on with the positive x —axis.

T . I 2 2
V=<2COS-,ZSIH—> — ,
4 4 V2 2

= (V2,v2)




VECTORS DETERMINED BY LENGTH AND ANGLE
Example: . v = (]|v]| cos 8, ||v]| sin &)
Find the angle that the vector v = —/3i+j makes with the positive

X —axis.
c—,s+ 4  c+,s+

> T
||V||=\/(_\/§) +12 =2 n\—/cx a a:g
X __‘/§ g gzn_EZS_n
COSQ:M_T T+ a 2T — @ 6 6
C—,S— C+,S—
sin9=L

4l 2 Reference Angle



Course: Calculus (3)

Chapter: [11]
THREE-DIMENSIONAL SPACE; VECTORS

Section: [11.3]
DOT PRODUCT; PROJECTIONS




DEFINITION OF THE DOT PRODUCT

In this section we will define a new kind of multiplication in which two
vectors are multiplied to produce a scalar.

11.3.1 DEFINITION Ifu = (u;,u,) and v = (v, vy) are vectors in 2-space, then the
dot product of u and v is written as u + v and is defined as

U-*vV=uvy+urvs
Stmilarly, if w = (u, u,, u3) and v = (v, vy, v3) are vectors in 3-space, then their dot

product is defined as
U°*V=1ujv+ urvy + u3vy

Example: (3,5)-(—1,2) =3(—-1)+52) =7
(2,3) - (=3,2) =2(=3)+3(2) =0
i—3J+4k) - i+5j+2k) =1(1) +(=3)(5) +4(2) = —6



ALGEBRAIC PROPERTIES OF THE DOT PRODUCT

11.3.2 THEOREM Ifu, v, and w are vectors in 2- or 3-space and k is a scalar, then:
(a) u*v=v-u

(b) u*(v+w)=u-v+u-w

(c) k(w-v)=(ku)-v=u- (kv)

d) v-v=|Vv[I* v =./V-V

(¢) 0-v=0



ALGEBRAIC PROPERTIES OF THE DOT PRODUCT

Example: Given that ||al]| =5, ||b|| = 10 anda-b = —48. Find

(3a+b)-(a—2b)=3a-a—3a-2b+b-a—2b-b
W
= 3|lall — 6(a-b) +(a-b) — 2||b]|

= (3)(5) — (5)(—48) — (2)(10)
= 115



ANGLE BETWEEN VECTORS

e Suppose that u and v are nonzero vectors in 2 —space or 3 —space
that are positioned so their initial points coincide.
* We define the angle between u and v to be the angle 6 determined by

the vectors that satisfies the condition 6 € [0, ].




ANGLE BETWEEN VECTORS

11.3.3 THEOREM [fu and v are nonzero vectors in 2-space or 3-space, and if 0 is

the angle between them, then 0y
cost =
[a]f[v]]

Example: Find the angle between the vectoru =1 — 2j + 3k and
(@) v=—i—5j+ 4k
u-v= 1D+ (=2)(=5) +B)4) =21

ull = V1% + (=2)% + 3% = V14 ~cosf = 21 =\/_§
Vv :\/(—1)2+(_5)2+42:m 9_\E/ﬁxm 2

6



ANGLE BETWEEN VECTORS

11.3.3 THEOREM [fu and v are nonzero vectors in 2-space or 3-space, and if 0 is

the angle between them, then 0y
cost =
[a]f[v]]

Example: Find the angle between the vectoru =1 — 2j + 3k and

(b) w = 2i + 7j + 4k
u-w= (D) + (DN +@)@) =0 = cos

6 =0
9 [
2



ANGLE BETWEEN VECTORS

11.3.3 THEOREM [fu and v are nonzero vectors in 2-space or 3-space, and if 0 is

the angle between them, then 0y
cost =
[a]f[v]]

Example: Find the angle between the vectoru =1 — 2j + 3k and
(c) v=4i+ 6j — 2k
u-v= (14 +(=2)(6) + (3)(-2) = -14

ull =12 + (-2)2 + 32 =14 | _ i1
~ Cos 0 = ==3
vl = /4% + 62 + (=2)% = V56 y L4 Vs6
0 =—

3



ANGLE BETWEEN VECTORS

=\

u-v>0

u-v=|ullv]cost

=\

u-v<o

=\



DIRECTION ANGLES

\"4 l vl
cosa = — = —
VIl (vl
V-] %
cosf = l__ %

vl Ivll




DIRECTION ANGLES

11.3.4 THEOREM The direction cosines of anonzero vectorv = vil + v2j + viKare

U U U3
COS = —,

cosfB = COS
vl vl vl

NOTE:

cos’a +cos” B +cos’y =1

Y=




DIRECTION ANGLES

Example: Find the direction cosines of the vectorv =31+ k.

vl =v3+1=2 —
V3 0
— > =—=30°
cos a 5 a c
[
cosf =0 —>,B=§=90°
1 T .
COS)/=§ —>V=§=60

V3

1
= —i+-k
vl 2 2

The angle between v and x —axis

The angle between v and y —axis

The angle between v and z —axis



ORTHOGONAL PROJECTIONS

d .
rojpa ll b
PTlb The orthogonal projection
projpa = kb of a on an arbitrary nonzero
a-b vector b.

projpa

projpa ~~



ORTHOGONAL PROJECTIONS

wlb
projwa = b — projpa

The vector component of a
orthogonal to b.

projpa



ORTHOGONAL PROJECTIONS

Example: Find the orthogonal projection of v=1i+j+ konb = 2i + 2j,
and then find the vector component of v orthogonal to b.

veb=(i+j+k -Qi+2j)=2+24+0=4

[b|? =22 +22 =8

Thus, the orthogonal projection of v on b 1s

v'b

Ib]°

and the vector component of v orthogonal to b 1s
v—proj,v = (i+j+k) —(i+j) =k

. 4 e e
proj,v = b = §(2l +2j) =1+
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DETERMINANTS

A matrix is a rectangular array (table) of numbers arranged in

rows and columns.

2 5 )

The determinant is a function that assigns numerical value to

For example, [

square matrix (hnumber of rows = number of columns) of numbers.

We define a 2 X 2 determinant by M = ad — bc

For example, ‘i _52‘ = (3)(5) - (-2)(4) =15+ 8 =23



DETERMINANTS

A 3 X 3 determinant is defined in terms of 2 X 2 determinants by
OG-
F1 b, b3
C

1 G2 (3

b, b3
Ca C3

by b,
= A4 — ay + ds
1 G

DRSNS
Example ]\] L =4

B e A R

=3(8-(-12))+2(2-0)-5(3 - 0)
= 49



DETERMINANTS

11.4.1 THEOREM

(a) If two rows in the array of a determinant are the same, then the value of the deter-
minant is 0.

(b) Interchanging two rows in the array of a determinant multiplies its value by —1.



CROSS PRODUCT

11.4.2 DEFINITION Ifu = (u;,u>,u3) and v = (v, vy, v3) are vectors 1n 3-space,
then the cross product u X v is the vector defined by

uUuXxXv=|u, uUxy U3

Example Letu = (1,2, —2)andv = (3,0, 1). Find u X v
_kz _i‘z —2‘_.‘1 —2‘+k‘1 2
ol I V3 1 3 0

O DD ‘e

i
1
3

= 2i — 7j — 6k



ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

Keep in mind the essential differences between the cross product

and the dot product:

v' The cross product is defined only for vectors in 3 —space,
whereas the dot product is defined for vectors in 2 —space and

3 —space.

v' The cross product of two vectors is a vector, whereas the -

- of two vectors --



ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

11.4.3 THEOREM [Ifu, v, and w are any vectors in 3-space and k is any scalar, then:
(a) a Xv=—(vXxXu

(b) u X (Vv+w)=(u X V)+ (uxw)

(c) M+Vv)Xw=UmmX W)+ (vXW)

(d) k(u X v)=(ku) X v=u X (kv)

() uX0=0xu=90

(f) uxu=90



ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

Example: Giventhata X b = (—1,2,1). Find (2a — 3b) X (a + 2b).

~ N

(2a—3b)x(@a+2b) =2axa+2ax2b—-3bxa—3bx2b

L

= 2(axa)+4(axb)—3(bxa)—6(bxb)

= (2)(0) + (4)(axb) + (3)(axb) —(6)(0)
= (7)(axb)
= (—7,14,7)



ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

The following cross products occur so frequently that it is helpful to be
familiar with them:

k
i X j=Kk jxX k=i KXxXi=]
jXi=-Kk KXj=-—1 i X k=—]j




ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

WARNING

We can write a product of three real numbers as abc since the
associative law (ab)c = a(bc) ensures that the same value for the
product results no matter how the factors are grouped.
The associative law does not hold for cross products. For example,
ix(xj)=ix0=0
ixj)xj=kxj=—i
Thus, we cannot write a cross product with three vectors as u X v X w,

since this expression is ambiguous (<) without parentheses.



GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

11.4.4 THEOREM Ifuand v are vectors in 3-space, then:

(a) u+(uxv)=0 (u X v is orthogonal to u)

(b) v-(uXxv)y=0 (w X v is orthogonal to V)

uxv

uxy




GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

Example Find a vector that is orthogonal to both of the vectorsu = (2, —1, 3) and

v=(-7,2,—1).
i j Kk
uxv=| 2 —1 3
—7 2 —1
—1 3. 2 3. 2 =1, } .
_‘ 5 _11—‘_7 B ‘,]—I—‘_7 2‘k_—51—19j—3k




GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

11.4.5 THEOREM Letu and v be nonzero vectors in 3-space, and let 6 be the angle
between these vectors when they are positioned so their initial points coincide.

(@) Jlux v = ul]v]sine



GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

11.4.5 THEOREM Letu and v be nonzero vectors in 3-space, and let 6 be the angle
between these vectors when they are positioned so their initial points coincide.

(@) Jlu X v| = [u]]v]siné

(b) The area A of the parallelogram that has w and v as adjacent sides is

A= u X V| VA S ™™™~ 7
I
- 1 'l'
=7 lluxv] u

(c) u xX v =\0ifandonly if u and v are parallel vectors, that is, if and only if they are
scalar multiples of one another.



GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

Example Find the area of the triangle that is determined by the points
p,(2,2,0), P,(—1,0,2), and P3(0, 4, 3).

A

—>
P P; = <_23 2, 3) Py(—1,0,2) P4(0, 4, 3)
—_—
1P, X PPy = (—10,5, —10) N
L — — | / >

P2, 2,0)




SCALAR TRIPLE PRODUCTS

Ifu=(u,ur,usz),v= (v, vy, v3),and w = (w;, wy, wsz) are vectors in 3-space, then the
number

Ui U Uj
U (vXWw)=1|vy v 3
wp wy W3

1s called the scalar triple product of u, v, and w.

Example Calculate the scalar triple product u « (v X w) of the vectors
u=3i—2j—5k, v=i+4j—4k, w=3j+2k

3 -2 =5
u-(vxxw) =|I 4 —41 =49
0 3 2




GEOMETRIC PROPERTIES OF THE SCALAR TRIPLE PRODUCT

11.4.6 THEOREM Letu, v, and W be nonzero vectors in 3-space.

(a) The volume V of the parallelepiped that has a, v, and w as adjacent edges is

V=Ja-(vXw),|




GEOMETRIC PROPERTIES OF THE SCALAR TRIPLE PRODUCT

11.4.6 THEOREM Letu, v, and W be nonzero vectors in 3-space.

(a) The volume V' of the parallelepiped that has w, v, and W as adjacent edges is
V=la-(vXxXw),|

(b) u- (v Xxw)=0ifandonlyifu, v, and w lie in the same plane.

ALGEBRAIC PROPERTIES OF THE
SCALAR TRIPLE PRODUCT W

U (VXW)=w-uXvVv)=v-(wXu D
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PARAMETRIC EQUATIONS

Definition of a Plane Curve

If f and g are continuous functions of 7 on an interval I, then the equations

x=f(r) and y=g()

are parametric equations and 7 is the parameter. The set of points (x, y)
obtained as f varies over the interval / 1s the graph of the parametric equations.
Taken together, the parametric equations and the graph are a plane curve,
denoted by C.




PARAMETRIC EQUATIONS

Example Express the graph of y = x? where x = 0 as parametric
equations.

letx=t y=t* t=0

Orientation



PARAMETRIC EQUATIONS

Example The counter-clockwise orientation parametric equations of the
circle x2 + y = a® are
Y x=acost , y=asint , 0<t<2nm

_ T x?+yr=1
=3

el P(cos t, sint)

0 1.0) |
x? + y?> = a’cos’t + a’ sin’t = a°.
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LINES DETERMINED BY A POINT AND A VECTOR

The parametric equations of the line in A
2 —space that passes through the point
Py(xg,yo) and is parallel to the nonzero
vector v = (a, b) = ai + bj are Po(x0, Yo )

/v=<a,b>
X=Xxgt+at , y=vy,+ bt >




LINES DETERMINED BY A POINT AND A VECTOR

The parametric equations of the line in 3 —space that passes
through the point Py(xg, Vo, Zg) and is parallel to the nonzero vector
v={(a,b,c) =ai+ bj+ ckare

X=xptat , y=yo+bt , z=2zy+cct

Example Find parametric equations of the line passing through
(1,2,—3) and parallel tov = 4i + 5j — 7k.

x=1+4t , y=2+4+5t , z=-3-7t



LINES DETERMINED BY A POINT AND A VECTOR

Example

1. Find parametric equations of the line £ passing through the points

P1(2, 4‘, _1) and P2(5, O, 7)

The vector PP, = (56— 2,0 — 4,7 — (—1)) = (3, —4,8) is parallel to ¥.

If P, is chosen:

4 — 4¢,

y:4—4t1/ —1+t,
YA

—4t,

n N

If P, is chosen:

X
Y
Z

— —4‘t2




LINES DETERMINED BY A POINT AND A VECTOR

Example

1.

Find parametric equations of the line £ passing through the points
Pl(Z, 4‘, _1) and P2(5, O, 7)

Where does the line intersect the xy —plane? y = —4t,
—7 z=7+ 8t2

z=20 7+8t2=0 t2:8

19 7

The pointis | — — 0
o (22



LINES DETERMINED BY A POINT AND A VECTOR

Example Let#; and ¥, be the lines
£1: x=14+4t, y=5—-4t, z=—-1+5t v, =(4,—4,5)
£ x=2+4+8t y=4-—-3t, z=5+t v, =(8,—3,1)
1. Are the lines parallel?

’glll’gz el V1"V2 &S Vo =0V

4c = 8
—4c = -3 ) No such c ~ £, and £, are NOT parallel lines.
5c =1 O




LINES DETERMINED BY A POINT AND A VECTOR

Example Let#; and ¥, be the lines
£ x=1+4t, y=>5—4t,
£, x=24+8t, y=4-—3t,

2. Do the lines intersect?
Suppose the point of intersection is

5—4t, = y" = 4 — 3t,
—1+5t1= A S‘I‘tz

z=—1+4+5t
Z=5+4+t



LINES DETERMINED BY A POINT AND A VECTOR

Example Let £ and £, be the lines

?i: x=1+4t, y=5—-4t, z=-1+5t
f: x=2+4+8t y=4-—-3t, z=5+t
2. Do the lines intersect?
Suppose the point of intersection is
1+4t; = 2 + 8t, <\6=6+5t2 BUT !!
5—4 4—3t,| T t, =0 - -
—aly = 4 — 3l 2 Do not satisfy the 3 equation.
—1+5t1= 5+t2 tlzl
4 ~. €1 and £, do NOT intersect.



LINES DETERMINED BY A POINT AND A VECTOR

e Two lines in 3 —space that are

not parallel and do not intersect // /
are called skew lines. /\
 Any two skew lines lie in parallel /

planes.
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PLANES PARALLEL TO THE COORDINATE PLANES

(a, o0, O)/

Y=

/x

Parallel to
yz —plane

Y
=

A
//9beD

Parallel to
xz —plane

Z

L

Y=<

Parallel to
xy —plane



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

n
e A planein 3 —space can be determined )
uniquely by specifying a point in the |
plane and a vector perpendicular to the
plane.

e A vector perpendicular to a plane is

called a normal to the plane.



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

—

,a(x—x0)+b(y—y0)+c(z—zo)=O

\’ This is called the

point-normal form
of the equation of
d plane. Po (X0, Y0, Zo)

n={a,b,c)



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Find an equation of the plane passing through the point
(3,—1,7) and perpendicular to the vector n = (4,2, —5).

4(x —3)+2(y+1)—-5(=z—-7)=0
4x — 12+ 2y+2—-5z+35=0
4x + 2y —5z+25=0



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Determine whether the two planes are parallel.
P;: 3x—4y+5z=0 n, = (3,—4,5)
P,: —6x+8y—10z—4=0 n, =(—6,8,—10)

P1”P2 — n1||n2 — n2=kn1

)

(—6,8,—10) = k(3,—4,5)

\ s | —-6=3k |
'\ 8 = —4k

& k=-=-2 ~. Pyand P, are parallel planes



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Find an equation of the plane through the points P;(1, 2, —1),

P,(2,3,1), and P5(3,—1,2).

L 1 ] k
n=P2P1 XP2P3 — —1 —1 —2 — <_9,_1,5>
1 -4 1

By using this normal and the point P;(3,—1,2) in the
plane, we obtain the point-normal form

—9x—-3)—-(y+1)+5=-2)=0

—9x—vy+5z+16=0

9% +y—5z—-16=0

P,P, X P,P;




PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Determine whether the line
¢ x=3+8t , y=4+4+5t , z=-3—-t
is parallel to the planex — 3y + 5z = 12.

v=(8,5—-1) n=(1,-3,5)

/V/

")



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Determine whether the line
¢ x=3+8t , y=4+4+5t , z=-3—-t
is parallel to the planex — 3y + 5z = 12.

v=(8,5—-1) n=(1,-3,5)
n-v=(1@8)+ (-3)(5)+(B)(-1)=12+#0

~. The line and the plane are not parallel.

». The line and the plane intersects. n '\Q/)



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Find the intersection of the line
¢ x=3+8t , y=4+4+5t , z=-3—-t
and the plane x — 3y + 5z = 12.

Suppose the point of intersection is (xg, Vg, Zo)

LINE PLANE POINT
Xog = 3+ 8t0 Xo — 3y0 + SZO =12 (_21) _1110)
Yo =4+ 5ty (3 + 8ty) — 3(4 + 5t5) + 5(=3 — t,) = 12
Zoy = —3 — tO



INTERSECTING PLANES

Two distinct intersecting planes If n; and n, are normals to the
determine two positive angles planes, then the acute angle 6
of intersection between the planes satisfies:

n; * no|

COS ) =
[ {[ [ ||




INTERSECTING PLANES

Example Find the acute angle of intersection between the two planes

dx +2y+2z=6 and x+2y—z=4
- > O

_
Y ~"
n, =(4,2,2) n, =(1,2,—1)

In; - n,|
”n1||=\/42+22+22=\/24=2\/€ cosf = —2

[Iny [||[n;|]
”n2”:\/12+22+(—1)2:\/8 B 6 _1

cos O = NN =5

n,-n, =41+ @2)R)+2)(-1) =6

T



INTERSECTING PLANES

Example Find an equation for the line £ of intersection of the planes

2x —4y+4z=6 and 6x+ 2y —3z=4

v || Plane 1 = v 1L nl

v || Plane 2 = vV.1ln2

i ] k
~v=nlXxXxn2=12 —4 4
6 2 -3

v = (4,30,28)




INTERSECTING PLANES

Example Find an equation for the line £ of intersection of the planes

2x —4y+4z=6 and 6x+ 2y —3z=4

v =(4,30,28) Solve the equations:
To find a point on £ 2x —4y =6
6x + 2y =4
£ is not perpendicular to k = (0,0,1) — _
v.-k=04+0+4+28+#0 x=1y=-1

o £ intersects the xy —plane (z = 0) ~ point = (1,—1,0)



INTERSECTING PLANES

Example Find an equation for the line £ of intersection of the planes

2x —4y+4z=6 and 6x+ 2y —3z=4

v = (4,30,28) The parametric equations of £ are
~ point = (1,—1,0)
x=1+4t
y=—1+ 30t

Z = 28t



DISTANCE PROBLEMS INVOLVING PLANES

* The distance between a point and a plane.
* The distance between two parallel planes.

* The distance between two skew lines.
I
T
I
I
|
|
¢ |




DISTANCE PROBLEMS INVOLVING PLANES

The distance D between a point Py(xg, Yo, Zg) and the plane
ax +by+cz+d=20is

_ |axo 4+ byo + czo + d|
va* + b* + ¢?

Example Find the distance D between the point (1, —4, —3) and the plane
2x — 3y +6z=—1.

QM+ EHH 6D 1 |3

3
V22 + (=32 + 62
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REVIEW OF POLAR COORDINATES

Rectangular
Coordinates A

origin

Polar
Coordinates

>
Polar Axis



REVIEW OF POLAR COORDINATES

From Rectangular

To Polar

From Polar
To Rectangular

cos @ =

=

| =

, Sin@ =

r\

X
J

~
T cos @

rsinHJ

RIS



CYLINDRICAL AND SPHERICAL COORDINATE SYSTEMS

Z

X

X

Rectangular coordinates
x, V. 2)

Cylindrical coordinates
(r, 6, 2)
(r=0,0<0<2m

Spherical coordinates

(p, 0, D)
(p>0,0<0<2m,0<Pp<T)




CONSTANT SURFACES

In rectangular coordinates

Y=

Y=

@ b, 0)
(a, 0, 0) /
/s x



CONSTANT SURFACES

In cylindrical coordinates




CONSTANT SURFACES

In spherical coordinates

#
X 1 y




CONVERTING COORDINATES

From Cylindrical From Spherical From Spherical

To Rectangular To Cylindrical To Rectangular
X =71cos6 r =psing X = psing coso
y =7rsinf 6 =20 y=psingsinb
Z=12Z Z = pCOS Z = pCoS

From Rectangular From Cylindrical From Rectangular

To Cylindrical To Spherical To Spherical
r=./x2+ y2 p =12+ 22 p=+/x% +y? + 22
tanf = y/x 0 =20 tanf = y/x
zZ =1z tang =r/z cosp =z/p



CONVERTING COORDINATES

Example Find the rectangular coordinates of the point with cylindrical
coordinates

(r,0,7) = (4,3,—3)

3
T
X =4cosc =2
3 From Cylindrical
T
y = 4Sin§ — 2\/§ To RECtangUIar
;= _3 X =1cosf

y =71sin0
Z=12z



CONVERTING COORDINATES

Example Find the rectangular coordinates of the point with spherical
coordinates

000421

T T 2

X 51n4cos3 N V2 |
e - ”_2\/5_\/8 From Spherical
y = sm451n3— N To Rectangular
T — '
z=4cosZ=2\/§ X = psingcosb

y = psin¢ sin 0
+ (x,y,2) = (V2,V6,2V2) Z = pcosa@



CONVERTING COORDINATES

Example Find the spherical coordinates of the point that has rectangular
coordinates

(x,y,z) = (4, —4,4\/5)

p = \/42+( 1?2 + (4V6) = = 8v2
—4
tanf = = —1 From Rectangular
4\/— V3 To Spherical
COS @ = —
8VZ 2 p=+x%+y?+2°

tanf = y/x
cosp =z/p



CONVERTING COORDINATES

Example Find the spherical coordinates of the point that has rectangular

coordinates

(x,y,z) = (4, —4,4\/5)
D = \/42 + (—4)2 + (4\/8)2 =+/128 = 82

anf=——_1 g=_E

AWM= ~ 2
46 /3 _ T

COSh =——==— Qb—g
8vV2 2

/T
~(p,0,0) = (8\5’7'5>

4

A Z

46

82

N

/6

/4



EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

Example Find equations of the cone z = \/xz + yZ in cylindrical and

To

spherical coordinates. z

From Rectangular From Spherical ‘T r

Cylindrical To _
r=+x2 4+ y2 x = psin¢ cosb Y

tan@:y/x y=psin¢sin0 o
Z =12z Z = pCos

7 =7 pcos ¢ = +/p?sin? ¢ cos? O + p? sin? ¢ sin? O




EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

Example Find equations of the cone z = \/xz + yZ in cylindrical and

To

spherical coordinates. z

From Rectangular From Spherical ‘T r

Cylindrical To _
r=+x2 4+ y2 x = psin¢ cosb Y

tan@:y/x y=psin¢sin0 o
Z =12z Z = pCos

Z7=r p cos ¢ = +/p?sin? ¢ (cos? O + sin? 6)




EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

Example Find equations of the cone z = \/xz + yZ in cylindrical and

spherical coordinates.

From Rectangular From Spherical

To Cylindrical To _
r=+x2 4+ y2 x = psin¢ cosb
tanf = y/x y =psingsinf
7 =7 Z = pCos@

Z=T7T pcosp = +/p?sin? ¢

Z

-

T

X



EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

Example Find equations of the cone z = \/xz + yZ in cylindrical and
spherical coordinates.

From Rectangular

To

Cylindrical

To

r=\/x2+y2
tanf = y/x
Z =7z

From Spherical

X = psing cos@
y = psing sin 0
Z = pCos

pCcos¢ = psing
1 =tan¢

Z

-

T




EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

Example Find equations of the paraboloid p = cos ¢ csc? ¢ in cylindrical
coordinates.

p = cos ¢ csc? ¢

sin® ¢ p = cos ¢
2

From Spherical

To Cylindrical

4 _Z r =psing
02?7 p 6 =0
Z:T‘Z Z=pCOS¢



EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

CONE

CYLINDER

SPHERE

> N

zZ
A

s

X

VA
A

—

/7

RECTANGULAR z=\x>+ y? X+ 2 =1 X+ +z22=1
CYLINDRICAL zZ=r r=1 Z=1-r2
SPHERICAL b =m/4 p=Ccsc ¢ p=1




EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

PARABOLOID HYPERBOLOID

> N

RECTANGULAR 7= X"+ y?
CYLINDRICAL z=r?

SPHERICAL p = cos ¢ csc? ¢




