
Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.1]
DOUBLE INTEGRALS

Course: Calculus (4)



THE AREA PROBLEM

Given a function 𝑓 that is continuous and nonnegative on 

an interval [𝑎, 𝑏], find the area between the graph of 𝑓 

and the interval [𝑎, 𝑏] on the 𝑥 −axis.

𝑎 𝑏

Δ𝑥𝑘

𝑓 𝑥𝑘
∗

𝐴 ≈ ෍

𝑘=1

𝑛

𝑓 𝑥𝑘
∗ Δ𝑥𝑘

𝐴 = lim
𝑛→∞

෍

𝑘=1

𝑛

𝑓 𝑥𝑘
∗ Δ𝑥𝑘

න

𝑎

𝑏

𝑓 𝑥 𝑑𝑥 = lim
𝑛→∞

෍

𝑘=1

𝑛

𝑓 𝑥𝑘
∗ Δ𝑥𝑘



THE VOLUME PROBLEM

Given a function 𝑓  of two variables that is 

continuous and nonnegative on a region 𝑅 in the 

𝑥𝑦 −plane, find the volume of the solid enclosed 

between the surface 𝑧 = 𝑓(𝑥, 𝑦) and the region 𝑅.

We approximate the volume by using rectangular 

parallelepipeds.

𝑉box = base area × height

= Δ𝐴𝑖𝑗 × 𝑓 𝑥𝑖
∗, 𝑦𝑗

∗

Δ𝑥𝑖

Δ𝑦𝑗

Δ𝐴𝑖𝑗 = Δ𝑥𝑖Δ𝑦𝑗



THE VOLUME PROBLEM

Δ𝑥𝑖

Δ𝑦𝑗

Δ𝐴𝑖𝑗 = Δ𝑥𝑖Δ𝑦𝑗

𝑉 ≈ ෍

𝑖=1

𝑛

෍

𝑗=1

𝑚

𝑓 𝑥𝑖
∗, 𝑦𝑗

∗ Δ𝐴𝑖𝑗

𝑉 = lim
𝑛→∞
𝑚→∞

෍

𝑖=1

𝑛

෍

𝑗=1

𝑚

𝑓 𝑥𝑖
∗, 𝑦𝑗

∗ Δ𝐴𝑖𝑗

𝑉 = ඵ

𝑅

𝑓 𝑥, 𝑦 𝑑𝐴



EVALUATING DOUBLE INTEGRALS

න

𝑎

𝑏

𝑓 𝑥, 𝑦 𝑑𝑥

✓ The partial definite integral with 

respect to 𝒙.

✓ Is evaluated by holding 𝑦  fixed 

and integrating with respect to 𝑥.

• The partial derivatives of a function 𝑓(𝑥, 𝑦) are calculated by holding one of the 
variables fixed and differentiating with respect to the other variable.

• Let us consider the reverse of this process, partial integration.



EVALUATING DOUBLE INTEGRALS

න

𝑐

𝑑

𝑓 𝑥, 𝑦 𝑑𝑦

✓ The partial definite integral with 

respect to 𝒚.

✓ Is evaluated by holding 𝑥  fixed 

and integrating with respect to 𝑦.

• The partial derivatives of a function 𝑓(𝑥, 𝑦) are calculated by holding one of the 
variables fixed and differentiating with respect to the other variable.

• Let us consider the reverse of this process, partial integration.



EVALUATING DOUBLE INTEGRALS

Example (1) න

0

1

𝑥𝑦2𝑑𝑥 = 𝑦2 න

0

1

𝑥𝑑𝑥 = ቉
𝑦2𝑥2

2
0

1

=
𝑦2

2

(2) න

0

1

𝑥𝑦2𝑑𝑦 = 𝑥 න

0

1

𝑦2𝑑𝑦 = ቉
𝑥𝑦3

3
0

1

=
𝑥

3

• A partial definite integral with respect to 𝑥 is a function of 𝑦 and hence 
can be integrated with respect to 𝑦.

• A partial definite integral with respect to 𝑦 can be integrated with respect 
to 𝑥.

• This two-stage integration process is called iterated (or repeated) 
integration.

NOTE



EVALUATING DOUBLE INTEGRALS

න

𝑐

𝑑

න

𝑎

𝑏

𝑓 𝑥, 𝑦 𝑑𝑥 𝑑𝑦 න

𝑎

𝑏

න

𝑐

𝑑

𝑓 𝑥, 𝑦 𝑑𝑦 𝑑𝑥



EVALUATING DOUBLE INTEGRALS

• We introduce the following notation:

න

𝑐

𝑑

න

𝑎

𝑏

𝑓 𝑥, 𝑦 𝑑𝑥 𝑑𝑦 = න

𝑐

𝑑

න

𝑎

𝑏

𝑓 𝑥, 𝑦 𝑑𝑥 𝑑𝑦

න

𝑎

𝑏

න

𝑐

𝑑

𝑓 𝑥, 𝑦 𝑑𝑦 𝑑𝑥 = න

𝑎

𝑏

න

𝑐

𝑑

𝑓 𝑥, 𝑦 𝑑𝑦 𝑑𝑥

• These integrals are called iterated integrals.



EVALUATING DOUBLE INTEGRALS

Example Evaluate න

1

3

න

2

4

40 − 2𝑥𝑦 𝑑𝑦𝑑𝑥

න

1

3

න

2

4

40 − 2𝑥𝑦 𝑑𝑦𝑑𝑥 = න

1

3

න

2

4

40 − 2𝑥𝑦 𝑑𝑦 𝑑𝑥

= න

1

3

]40𝑦 − 𝑥𝑦2
2
4𝑑𝑥

= න

1

3

160 − 16𝑥 − 80 − 4𝑥 𝑑𝑥 = න

1

3

80 − 12𝑥 𝑑𝑥

= 112



EVALUATING DOUBLE INTEGRALS

Homework Evaluate න

2

4

න

1

3

40 − 2𝑥𝑦 𝑑𝑥𝑑𝑦

Fubini’s Theorem

Let R be the rectangle defined by
𝑅 = 𝑥, 𝑦 ∶  𝑎 ≤ 𝑥 ≤ 𝑏 , 𝑐 ≤ 𝑦 ≤ 𝑑

= 𝑎, 𝑏 × 𝑐, 𝑑
If 𝑓(𝑥, 𝑦) is continuous on this rectangle, then

ඵ

𝑅

𝑓 𝑥, 𝑦 𝑑𝐴 = න

𝑎

𝑏

න

𝑐

𝑑

𝑓 𝑥, 𝑦 𝑑𝑦𝑑𝑥 = න

𝑐

𝑑

න

𝑎

𝑏

𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦

𝑎 𝑏

𝑐

𝑑

= 112



EVALUATING DOUBLE INTEGRALS

Example Use a double integral to find the volume of the solid that is bounded above 
by the plane 𝑧 = 4 − 𝑥 − 𝑦 and below by the rectangle 𝑅 = [0, 1] × [0, 2].

න

0

1

න

0

2

4 − 𝑥 − 𝑦 𝑑𝑦𝑑𝑥 = න

0

1

න

0

2

4 − 𝑥 − 𝑦 𝑑𝑦 𝑑𝑥

= න

0

1

቉4𝑦 − 𝑥𝑦 −
𝑦2

2
0

2

𝑑𝑥

= න

0

1

6 − 2𝑥 𝑑𝑥 = 5

𝑉 = ඵ

𝑅

4 − 𝑥 − 𝑦 𝑑𝐴 =

= න

0

2

න

0

1

4 − 𝑥 − 𝑦 𝑑𝑥𝑑𝑦



PROPERTIES OF DOUBLE INTEGRALS

ඵ

𝑅

𝑐𝑓 𝑥, 𝑦 𝑑𝐴 = 𝑐 ඵ

𝑅

𝑓 𝑥, 𝑦 𝑑𝐴 𝑐 constant

ඵ

𝑅

𝑓 𝑥, 𝑦 ± 𝑔 𝑥, 𝑦 𝑑𝐴 = ඵ

𝑅

𝑓 𝑥, 𝑦 𝑑𝐴 ± ඵ

𝑅

𝑔 𝑥, 𝑦 𝑑𝐴

ඵ

𝑅

𝑓 𝑥, 𝑦 𝑑𝐴 = ඵ

𝑅1

𝑓 𝑥, 𝑦 𝑑𝐴 + ඵ

𝑅2

𝑓 𝑥, 𝑦 𝑑𝐴



PROPERTIES OF DOUBLE INTEGRALS

NOTE If 𝑅 = 𝑎, 𝑏 × 𝑐, 𝑑  is a rectangular region, and 𝑓 𝑥, 𝑦 = 𝑔 𝑥 ℎ 𝑦 , then

ඵ

𝑅

𝑓 𝑥, 𝑦 𝑑𝐴 = ඵ

𝑅

𝑔 𝑥 ℎ 𝑦 𝑑𝐴 = න

𝑎

𝑏

𝑔 𝑥 𝑑𝑥 න

𝑐

𝑑

ℎ 𝑦 𝑑𝑦

Example න

0

1

න

0

2

𝑒𝑥+𝑦 𝑑𝑥𝑑𝑦 = න

0

1

න

0

2

𝑒𝑥𝑒𝑦 𝑑𝑥𝑑𝑦

= න

0

2

𝑒𝑥𝑑𝑥 න

0

1

𝑒𝑦𝑑𝑦 = 𝑒2 − 1 𝑒 − 1



EXERCISE SET 14.1 QUESTION 33

Homework Evaluate the integral by choosing a convenient order of integration:

ඵ

𝑅

𝑥 cos 𝑥𝑦 cos2 𝜋𝑥 𝑑𝐴 ;  𝑅 = 0, 1
2

× 0, 𝜋
1

3𝜋
=



Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.2]
DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Course: Calculus (4)



ITERATED INTEGRALS WITH NONCONSTANT LIMITS OF INTEGRATION

In this section we will see that double integrals over nonrectangular regions can 
often be evaluated as iterated integrals

Example න

0

1

න

−𝑥

𝑥2

𝑦2𝑥 𝑑𝑦𝑑𝑥 = න

0

1

න

−𝑥

𝑥2

𝑦2𝑥 𝑑𝑦 𝑑𝑥 = න

0

1

቉
𝑥𝑦3

3
−𝑥

𝑥2

𝑑𝑥

= න

0

1
𝑥7

3
+

𝑥4

3
𝑑𝑥 = ቉

𝑥8

24
+

𝑥5

15
0

1

=
13

120



ITERATED INTEGRALS WITH NONCONSTANT LIMITS OF INTEGRATION

Example න

0

Τ𝜋 3

න

0

cos 𝑦

𝑥 sin 𝑦 𝑑𝑥𝑑𝑦 = න

0

Τ𝜋 3

න

0

cos 𝑦

𝑥 sin 𝑦 𝑑𝑥 𝑑𝑦

= න

0

Τ𝜋 3

቉
𝑥2 sin 𝑦

2
0

cos 𝑦

𝑑𝑦

= න

0

Τ𝜋 3
1

2
cos2 𝑦 sin 𝑦 𝑑𝑦

Let 𝑡 = cos 𝑦

By Substitution

𝑑𝑡

𝑑𝑦
= − sin 𝑦

𝑑𝑦 = −
𝑑𝑡

sin 𝑦

𝑦 = Τ𝜋 3 𝑡 = Τ1 2

𝑦 = 0 𝑡 = 1

= −
1

2
න

1

Τ1 2

𝑡2 sin 𝑦
𝑑𝑡

sin 𝑦

=
1

2
න

Τ1 2

1

𝑡2𝑑𝑡 = ቉
𝑡3

6
Τ1 2

1

=
7

48



DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Type I Region

is bounded on the left and right by 
vertical lines 𝑥 = 𝑎  and 𝑥 = 𝑏  and is 
bounded below and above by continuous 
curves 𝑦 = 𝑔1(𝑥) and 𝑦 = 𝑔2(𝑥), where 
𝑔1(𝑥) ≤ 𝑔2(𝑥) for 𝑎 ≤ 𝑥 ≤ 𝑏.

Type II Region

is bounded below and above by 
horizontal lines 𝑦 = 𝑐  and 𝑦 = 𝑑 
and is bounded on the left and right 
by continuous curves 𝑥 = ℎ1(𝑦) and 
𝑥 = ℎ2 𝑦 satisfying ℎ1(𝑦) ≤ ℎ2(𝑦) 
for 𝑐 ≤ 𝑦 ≤  𝑑



DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

1) If 𝑅 is a type I region on which 𝑓(𝑥, 𝑦) is continuous, then

ඵ

𝑅

𝑓 𝑥, 𝑦 𝑑𝐴 = න

𝑎

𝑏

න

𝑔1 𝑥

𝑔2 𝑥

𝑓 𝑥, 𝑦 𝑑𝑦𝑑𝑥

2) If 𝑅 is a type II region on which 𝑓(𝑥, 𝑦) is continuous, then

ඵ

𝑅

𝑓 𝑥, 𝑦 𝑑𝐴 = න

𝑐

𝑑

න

ℎ1 𝑦

ℎ2 𝑦

𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦



DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate over the region 𝑅 enclosed between 𝑦 =
1

2
𝑥, 𝑦 = 𝑥,ඵ

𝑅

𝑥𝑦𝑑𝐴

𝑥 = 2 and 𝑥 = 4.

ඵ

𝑅

𝑥𝑦𝑑𝐴 = න

2

4

න

Τ𝑥 2

𝑥

𝑥𝑦𝑑𝑦𝑑𝑥

Type I Region

= න

2

4

න

Τ𝑥 2

𝑥

𝑥𝑦𝑑𝑦 𝑑𝑥

= න

2

4

቉
𝑥𝑦2

2
Τ𝑥 2

𝑥

𝑑𝑥 = න

2

4
𝑥2

2
−

𝑥3

8
𝑑𝑥 =

11

6



DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate over the triangular region 𝑅 enclosedඵ

𝑅

2𝑥 − 𝑦2 𝑑𝐴

between the lines 𝑦 = −𝑥 + 1, 𝑦 = 𝑥 + 1, and 𝑦 = 3.

Type II Region
ඵ

𝑅

2𝑥 − 𝑦2 𝑑𝐴 = න

1

3

න

1−𝑦

𝑦−1

2𝑥 − 𝑦2 𝑑𝑥𝑑𝑦

= න

1

3

]𝑥2 − 𝑥𝑦2
1−𝑦
𝑦−1

𝑑𝑦

= න

1

3

2𝑦2 − 2𝑦3 𝑑𝑦 = −
68

3



DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate over the triangular region 𝑅 enclosedඵ

𝑅

2𝑥 − 𝑦2 𝑑𝐴

between the lines 𝑦 = −𝑥 + 1, 𝑦 = 𝑥 + 1, and 𝑦 = 3.

Type I Region
ඵ

𝑅

2𝑥 − 𝑦2 𝑑𝐴



DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate over the triangular region 𝑅 enclosedඵ

𝑅

2𝑥 − 𝑦2 𝑑𝐴

between the lines 𝑦 = −𝑥 + 1, 𝑦 = 𝑥 + 1, and 𝑦 = 3.

Type I Region
ඵ

𝑅

2𝑥 − 𝑦2 𝑑𝐴 = ඵ

𝑅1

2𝑥 − 𝑦2 𝑑𝐴 + ඵ

𝑅2

2𝑥 − 𝑦2 𝑑𝐴

= න

−2

0

න

−𝑥+1

3

2𝑥 − 𝑦2 𝑑𝑦𝑑𝑥 + න

0

2

න

𝑥+1

3

2𝑥 − 𝑦2 𝑑𝑦𝑑𝑥



DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate න

0

2

න

Τ𝑦 2

1

𝑒𝑥2
𝑑𝑥𝑑𝑦

Since there is no elementary antiderivative of 𝑒𝑥2
, 

the integral cannot be evaluated by performing 
the 𝑥 −integration first.

We will try to evaluate this integral by expressing 
it as an equivalent iterated integral with the order 
of integration reversed.

𝑦 = 2𝑥

𝑦 = 2

𝑦 = 2𝑥

𝑥 = 1



DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate න

0

2

න

Τ𝑦 2

1

𝑒𝑥2
𝑑𝑥𝑑𝑦

𝑦 = 2

𝑦 = 2𝑥

𝑥 = 1

න

0

2

න

Τ𝑦 2

1

𝑒𝑥2
𝑑𝑥𝑑𝑦 = න

0

1

න

0

2𝑥

𝑒𝑥2
𝑑𝑦𝑑𝑥 = න

0

1

න

0

2𝑥

𝑒𝑥2
𝑑𝑦 𝑑𝑥

= න

0

1

൧𝑒𝑥2
𝑦

0

2𝑥
𝑑𝑥

= න

0

1

2𝑥𝑒𝑥2
𝑑𝑥 = න

0

1

𝑒𝑡𝑑𝑡 = 𝑒 − 1

By Substitution
Let 𝑡 = 𝑥2



AREA CALCULATED AS A DOUBLE INTEGRAL

Example

Use a double integral to find the area of the 

region 𝑅 enclosed between the parabola 𝑦 =
1

2
𝑥2 

and the line 𝑦 = 2𝑥.



AREA CALCULATED AS A DOUBLE INTEGRAL

Example Use a double integral to find the area of the 

region 𝑅 enclosed between the parabola 𝑦 =
1

2
𝑥2 

and the line 𝑦 = 2𝑥.

Area of 𝑅 = ඵ

𝑅

𝑑𝐴

= න

0

8

න

Τ𝑦 2

2𝑦

𝑑𝑥𝑑𝑦

(Type II Region)

= න

0

8

]𝑥 Τ𝑦 2

2𝑦
 𝑑𝑦

= න

0

8

2𝑦 −
𝑦

2
 𝑑𝑦 =

16

3



AREA CALCULATED AS A DOUBLE INTEGRAL

Example Use a double integral to find the area of the 

region 𝑅 enclosed between the parabola 𝑦 =
1

2
𝑥2 

and the line 𝑦 = 2𝑥.

Area of 𝑅 = ඵ

𝑅

𝑑𝐴

= න

0

4

න

Τ𝑥2 2

2𝑥

𝑑𝑦𝑑𝑥

(Type I Region)

= න

0

4

]𝑦 Τ𝑥2 2
2𝑥  𝑑𝑥

= න

0

4

2𝑥 −
𝑥2

2
 𝑑𝑥 =

16

3



EXERCISE SET 14.2



Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.3]
DOUBLE INTEGRALS IN POLAR COORDINATES

Course: Calculus (4)



REVIEW OF POLAR COORDINATES

Rectangular 
Coordinates

𝑥, 𝑦 𝑟, 𝜃

origin

𝑥

𝑦

Polar 
Coordinates

Polar AxisPole

𝑟

𝜃



REVIEW OF POLAR COORDINATES

From Rectangular
To Polar

𝑥, 𝑦 𝑟, 𝜃

𝑥

𝑦

From Polar
To Rectangular

𝑟

𝜃

=
𝑟 = 𝑥2 + 𝑦2

tan 𝜃 =
𝑦

𝑥

cos 𝜃 =
𝑥

𝑟
sin 𝜃 =

𝑦

𝑟
,

𝑥 = 𝑟 cos 𝜃

𝑦 = 𝑟 sin 𝜃



SIMPLE POLAR REGIONS

• Some double integrals are easier to evaluate if the region of integration is expressed 
in polar coordinates.

• This is usually true if the region is bounded by any curve whose equation is simpler 
in polar coordinates than in rectangular coordinates.

• Example: Consider the quarter-disk 𝑥2 + 𝑦2 = 4 in the first quadrant shown below.

Rectangular
Coordinates

0 ≤ 𝑥 ≤ 2

0 ≤ 𝑦 ≤ 4 − 𝑥2

Polar
Coordinates

≤ 𝑟 ≤

≤ 𝜃 ≤

0 ≤ 𝑟 ≤ 2

0 ≤ 𝜃 ≤ Τ𝜋 2

𝑦 = 4 − 𝑥2

𝑟 = 0

𝑟 = 2

𝜃 = 0∘

𝜃 = 90∘



SIMPLE POLAR REGIONS

• Double integrals whose integrands involve 𝑥2 + 𝑦2 also tend to be easier to evaluate 
in polar coordinates because this sum simplifies to 𝑟2 when the conversion formulas 
𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃 are applied.

• The figure below shows a region 𝑅 in a polar coordinate system that is enclosed 
between two rays, 𝜃 = 𝛼 and 𝜃 = 𝛽, and two polar curves, 𝑟 = 𝑟1 𝜃  and 𝑟 = 𝑟2 𝜃 .

• If the functions 𝑟1 𝜃  and 𝑟2 𝜃  are continuous and their graphs do not cross, then 
the region 𝑅 is called a simple polar region.



DOUBLE INTEGRALS IN POLAR COORDINATES

NOTE A polar rectangle is a simple polar region 
for which the bounding polar curves are 
circular arcs.

Theorem If 𝑅  is a simple polar region whose 
boundaries are the rays 𝜃 = 𝛼 and 𝜃 = 𝛽 
and the curves 𝑟 = 𝑟1 𝜃  and 𝑟 = 𝑟2 𝜃 , 
and if 𝑓 𝑟, 𝜃  is continuous on 𝑅, then

ඵ

𝑅

𝑓 𝑟, 𝜃 𝑑𝐴 = න

𝛼

𝛽

න

𝑟1 𝜃

𝑟2(𝜃)

𝑓 𝑟, 𝜃  𝑟𝑑𝑟𝑑𝜃



DOUBLE INTEGRALS IN POLAR COORDINATES

Example Find the volume of the solid bounded by the cylinder 𝑥2 + 𝑦2 = 4 and 
the plane 𝑦 + 𝑧 = 4.



DOUBLE INTEGRALS IN POLAR COORDINATES

Example Find the volume of the solid bounded by the cylinder 𝑥2 + 𝑦2 = 4 and 
the plane 𝑦 + 𝑧 = 4.

𝑉 = ඵ

𝑅

4 − 𝑦 𝑑𝐴 = න

0

2𝜋

න

0

2

4 − 𝑟 sin 𝜃  𝑟𝑑𝑟𝑑𝜃

= න

0

2𝜋

න

0

2

4𝑟 − 𝑟2 sin 𝜃  𝑑𝑟 𝑑𝜃

= න

0

2𝜋

቉2𝑟2 −
1

3
𝑟3 sin 𝜃

0

2

𝑑𝜃 = න

0

2𝜋

8 −
8

3
sin 𝜃 𝑑𝜃

= ቉8𝜃 +
8

3
cos 𝜃

0

2𝜋

= 16𝜋



DOUBLE INTEGRALS IN POLAR COORDINATES

Example Evaluate න

−1

1

න

0

1−𝑥2

𝑥2 + 𝑦2 Τ3 2𝑑𝑦𝑑𝑥

න

−1

1

න

0

1−𝑥2

𝑥2 + 𝑦2 Τ3 2𝑑𝑦𝑑𝑥 = න

0

𝜋

න

0

1

𝑟2 Τ3 2𝑟𝑑𝑟𝑑𝜃

= න

0

𝜋

න

0

1

𝑟4𝑑𝑟𝑑𝜃 = න

0

𝜋
1

5
𝑑𝜃 =

𝜋

5



DOUBLE INTEGRALS IN POLAR COORDINATES

Example Evaluate ඵ

𝑅

1

1 + 𝑥2 + 𝑦2
𝑑𝐴

first quadrant bounded by 𝑦 = 0, 𝑦 = 𝑥, 𝑥2 + 𝑦2 = 1 and 𝑥2 + 𝑦2 = 4.

where 𝑅 is the region in the

𝑦 = 𝑥

1 2

ඵ

𝑅

1

1 + 𝑥2 + 𝑦2
𝑑𝐴 = න

0

Τ𝜋 4

න

1

2
1

1 + 𝑟2
 𝑟𝑑𝑟𝑑𝜃

tan 𝜃 =
𝑦

𝑥
=

𝑥

𝑥
= 1

𝜃 =
𝜋

4

= න

0

Τ𝜋 4

න

1

2
𝑟

1 + 𝑟2
𝑑𝑟 𝑑𝜃



DOUBLE INTEGRALS IN POLAR COORDINATES

Example Evaluate ඵ

𝑅

1

1 + 𝑥2 + 𝑦2
𝑑𝐴

first quadrant bounded by 𝑦 = 0, 𝑦 = 𝑥, 𝑥2 + 𝑦2 = 1 and 𝑥2 + 𝑦2 = 4.

where 𝑅 is the region in the

𝑦 = 𝑥

1 2

ඵ

𝑅

1

1 + 𝑥2 + 𝑦2
𝑑𝐴 = න

0

Τ𝜋 4

න

1

2
1

1 + 𝑟2
 𝑟𝑑𝑟𝑑𝜃

tan 𝜃 =
𝑦

𝑥
=

𝑥

𝑥
= 1

𝜃 =
𝜋

4

= න

0

Τ𝜋 4
1

2
න

1

2
2𝑟

1 + 𝑟2
𝑑𝑟 𝑑𝜃 = න

0

Τ𝜋 4

቉
1

2
ln 1 + 𝑟2

1

2

𝑑𝜃

= න

0

Τ𝜋 4
1

2
ln

5

2
𝑑𝜃 =

𝜋

8
ln

5

2



DOUBLE INTEGRALS IN POLAR COORDINATES

Example Use a double-integral to show that the area of the region 𝑅 shown is
9𝜋

2
.

Area of 𝑅 = ඵ

𝑅

𝑑𝐴 = න

− Τ𝜋 3

Τ2𝜋 3

න

0

3

𝑟𝑑𝑟𝑑𝜃

𝑦 = − 3𝑥

Arc of a circle of 
radius 3 (centered 
at origin)

𝑅



DOUBLE INTEGRALS IN POLAR COORDINATES

Example Use a double-integral to show that the area of the region 𝑅 shown is
9𝜋

2
.

Area of 𝑅 = ඵ

𝑅

𝑑𝐴 = න

− Τ𝜋 3

Τ2𝜋 3

න

0

3

𝑟𝑑𝑟𝑑𝜃

𝑦 = − 3𝑥

Arc of a circle of 
radius 3 (centered 
at origin)

𝑅

tan 𝜃 =
𝑦

𝑥
=

− 3𝑥

𝑥
= − 3

𝜃 = −
𝜋

3

𝜃 = −
𝜋

3
+ 𝜋

= න

− Τ𝜋 3

Τ2𝜋 3

න

0

3

𝑟𝑑𝑟 𝑑𝜃 = න

− Τ𝜋 3

Τ2𝜋 3

቉
𝑟2

2
0

3

𝑑𝜃

= න

− Τ𝜋 3

Τ2𝜋 3
9

2
𝑑𝜃 = ቉

9

2
𝜃

− Τ𝜋 3

Τ2𝜋 3

=
9𝜋

2



DOUBLE INTEGRALS IN POLAR COORDINATES

Example Evaluate න

0

∞

𝑒−𝑥2
𝑑𝑥 = 𝐼

𝐼2 = න

0

∞

𝑒−𝑥2
𝑑𝑥

2

= න

0

∞

𝑒−𝑥2
𝑑𝑥 න

0

∞

𝑒−𝑥2
𝑑𝑥

= න

0

∞

𝑒−𝑥2
𝑑𝑥 න

0

∞

𝑒−𝑦2
𝑑𝑦

= න

0

∞

න

0

∞

𝑒−𝑥2
𝑒−𝑦2

𝑑𝑥𝑑𝑦 = න

0

∞

න

0

∞

𝑒− 𝑥2+𝑦2
𝑑𝑥𝑑𝑦



DOUBLE INTEGRALS IN POLAR COORDINATES

Example Evaluate න

0

∞

𝑒−𝑥2
𝑑𝑥 = 𝐼

𝐼2 = න

0

∞

න

0

∞

𝑒− 𝑥2+𝑦2
𝑑𝑥𝑑𝑦 = න

0

Τ𝜋 2

න

0

∞

𝑒−𝑟2
𝑟𝑑𝑟𝑑𝜃

= න

0

Τ𝜋 2

න

0

∞

𝑟 𝑒−𝑟2
𝑑𝑟 𝑑𝜃 By substitution. Let 𝑡 = 𝑟2.

= න

0

Τ𝜋 2

቉
−1

2
𝑒−𝑡

0

∞

𝑑𝜃 = න

0

Τ𝜋 2
1

2
𝑑𝜃 =

𝜋

4

∴ 𝑰 = න

𝟎

∞

𝒆−𝒙𝟐
𝒅𝒙 =

𝝅

𝟐

= න

0

Τ𝜋 2

න

0

∞
1

2
𝑒−𝑡𝑑𝑡 𝑑𝜃



Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.4]
SURFACE AREA; PARAMETRIC SURFACES

Course: Calculus (4)



SURFACE AREA FOR SURFACES OF THE FORM 𝒛 =  𝒇(𝒙, 𝒚)

• Consider a surface of the form 𝑧 =  𝑓(𝑥, 𝑦) 

defined over a region 𝑅 in the 𝑥𝑦 −plane.

• We will assume that 𝑓 has continuous first 

partial derivatives at the interior points of 𝑅.

• The surface area of that portion of the 

surface 𝑧 =  𝑓(𝑥, 𝑦)  that lies above the 

rectangle 𝑅 in the 𝑥𝑦 −plane is given by

𝑆 = ඵ

𝑅

𝜕𝑧

𝜕𝑥

2

+
𝜕𝑧

𝜕𝑦

2

+ 1 𝑑𝐴



SURFACE AREA FOR SURFACES OF THE FORM 𝒛 =  𝒇(𝒙, 𝒚)

𝑆 = ඵ

𝑅

𝜕𝑧

𝜕𝑥

2

+
𝜕𝑧

𝜕𝑦

2

+ 1 𝑑𝐴

Example

Find the surface area of that portion of the 

surface 𝑧 = 4 − 𝑥2  that lies above the 

rectangle 𝑅 in the 𝑥𝑦 −plane whose coordinates 

satisfy 0 ≤  𝑥 ≤  1 and 0 ≤ 𝑦 ≤  4.

𝑆 = න

0

1

න

0

4
−2𝑥

2 4 − 𝑥2

2

+ 02 + 1 𝑑𝑦𝑑𝑥

= න

0

1

න

0

4
𝑥2

4 − 𝑥2
+ 1 𝑑𝑦𝑑𝑥 = න

0

1

න

0

4
4

4 − 𝑥2
 𝑑𝑦𝑑𝑥



SURFACE AREA FOR SURFACES OF THE FORM 𝒛 =  𝒇(𝒙, 𝒚)

𝑆 = ඵ

𝑅

𝜕𝑧

𝜕𝑥

2

+
𝜕𝑧

𝜕𝑦

2

+ 1 𝑑𝐴

Example

Find the surface area of that portion of the 

surface 𝑧 = 4 − 𝑥2  that lies above the 

rectangle 𝑅 in the 𝑥𝑦 −plane whose coordinates 

satisfy 0 ≤  𝑥 ≤  1 and 0 ≤ 𝑦 ≤  4.

𝑆 = න

0

1

න

0

4
2

4 − 𝑥2
𝑑𝑦𝑑𝑥 = න

0

1
8

4 − 𝑥2
 𝑑𝑥

= 8 ൨sin−1
𝑥

2 0

1

= 8
𝜋

6
− 0 =

4𝜋

3



SURFACE AREA FOR SURFACES OF THE FORM 𝒛 =  𝒇(𝒙, 𝒚)

𝑆 = ඵ

𝑅

𝜕𝑧

𝜕𝑥

2

+
𝜕𝑧

𝜕𝑦

2

+ 1 𝑑𝐴

Example

Find the surface area of the portion of the paraboloid 

𝑧 = 𝑥2 + 𝑦2 below the plane 𝑧 = 1.

𝑆 = ඵ

𝑅

2𝑥 2 + 2𝑦 2 + 1 𝑑𝐴

= ඵ

𝑅

4 𝑥2 + 𝑦2 + 1  𝑑𝐴

= න

0

2𝜋

න

0

1

4𝑟2 + 1 𝑟𝑑𝑟𝑑𝜃

By Substitution:

Let 𝑡 = 4𝑟2 + 1



SURFACE AREA FOR SURFACES OF THE FORM 𝒛 =  𝒇(𝒙, 𝒚)

𝑆 = ඵ

𝑅

𝜕𝑧

𝜕𝑥

2

+
𝜕𝑧

𝜕𝑦

2

+ 1 𝑑𝐴

Example

Find the surface area of the portion of the paraboloid 

𝑧 = 𝑥2 + 𝑦2 below the plane 𝑧 = 1.

𝑆 = න

0

2𝜋

න

1

5
1

8
𝑡 𝑑𝑡 𝑑𝜃 = න

0

2𝜋

቉
1

12
𝑡3

1

5

𝑑𝜃

= න

0

2𝜋
5 5 − 1

12
𝑑𝜃 =

1

6
5 5 − 1 𝜋



PARAMETRIC REPRESENTATION OF SURFACES

Example

We try to identify the path by
eliminating 𝑡 between the equations:

𝑦 = 𝑡 = 𝑡
2

= 𝑥2

Orientation

We have seen that curves in 2-space can be represented by two equations 
involving one parameter, say

𝑥 = 𝑥(𝑡) , 𝑦 = 𝑦(𝑡) , 𝑎 ≤ 𝑡 ≤ 𝑏

The position 𝑃(𝑥, 𝑦)  of a particle 
moving in the 𝑥𝑦 −plane is given by 
the equations and parameter interval

𝑥 = 𝑡 , 𝑦 = 𝑡 , 𝑡 ≥ 0



PARAMETRIC REPRESENTATION OF SURFACES

Example The counter-clockwise orientation parametric equations of the 

circle 𝑥2 + 𝑦2 = 𝑎2 are

𝑥 = 𝑎 cos 𝑡 , 𝑦 = 𝑎 sin 𝑡 , 0 ≤ 𝑡 ≤ 2𝜋

GeoGebra:

Curve(3cos(t), 3sin(t), t, 0, 2pi)



PARAMETRIC REPRESENTATION OF SURFACES

Example Describe the parametric curve 
represented by the equations

𝑥 = 10 cos 𝑡
𝑦 = 10 sin 𝑡
𝑧 = 𝑡

Curves in 3-space can be represented by three 
equations involving one parameter, say
𝑥 = 𝑥 𝑡 , 𝑦 = 𝑦(𝑡) , 𝑧 = 𝑧(𝑡) , 𝑎 ≤ 𝑡 ≤ 𝑏

GeoGebra:
Curve(10cos(t), 10sin(t), t, t, 0, 6π)



PARAMETRIC REPRESENTATION OF SURFACES

Example Consider the paraboloid 𝑧 = 4 − 𝑥2 − 𝑦2 . One way to 
parametrize this surface is to take

𝑥 = 𝑢
𝑦 = 𝑣
𝑧 = 4 − 𝑢2 − 𝑣2

Surfaces in 3-space can be represented parametrically by three 
equations involving two parameters, say

𝑥 = 𝑥 𝑢, 𝑣 , 𝑦 = 𝑦(𝑢, 𝑣) , 𝑧 = 𝑧(𝑢, 𝑣) ,
𝑎 ≤ 𝑢 ≤ 𝑏
𝑐 ≤ 𝑣 ≤ 𝑑

GeoGebra:
1) 4-x^2-y^2 , x^2+y^2<=4
2) Surface(u, v, 4-u²-v², u,-2,2, v,-2,2)



PARAMETRIC REPRESENTATION OF SURFACES

Example Consider the paraboloid 𝑧 = 4 − 𝑥2 − 𝑦2. Another way to 
parametrize this surface is to take

𝑥 = 𝑟 cos 𝜃
𝑦 = 𝑟 sin 𝜃
𝑧 = 4 − 𝑟2

GeoGebra:
Surface(r cos(θ), r sin(θ), 4 - r², r, 0, 2, θ, 0, 2π)



PARAMETRIC REPRESENTATION OF SURFACES

Example Find parametric equations for the portion of the right 
circular cylinder 𝑥2 + 𝑧2 = 9 for which 0 ≤ 𝑦 ≤ 5 in terms 
of the parameters 𝑢 and 𝑣.

𝑥 = 3 cos 𝑢

𝑦 = 𝑣

𝑧 = 3 sin 𝑢

GeoGebra:
Surface(3cos(u), v, 3sin(u), u,0,2π, v,0,5)



REPRESENTING SURFACES OF REVOLUTION PARAMETRICALLY

Example

Suppose that we want to find parametric equations for the surface 
generated by revolving the plane curve 𝑦 = 𝑓 𝑥  about the 𝑥 −axis for 
example. Then the surface can be represented parametrically as

𝑥 = 𝑢 𝑦 = 𝑓 𝑢 cos 𝑣 𝑧 = 𝑓 𝑢 sin 𝑣

Find parametric equations for the surface 
generated by revolving the curve 𝑦 = 𝑥 
about the 𝑥 −axis.

𝑥 = 𝑢
𝑦 = 𝑢 cos 𝑣

𝑧 = 𝑢 sin 𝑣

0 ≤ 𝑢 ≤ 4
0 ≤ 𝑣 ≤ 2𝜋



REPRESENTING SURFACES OF REVOLUTION PARAMETRICALLY

Example

GeoGebra:
Step [1] f(x) = sqrt(x)
Step [2] Surface(u, f(u)cos(v), f(u)sin(v), u,0,4, v,0, 2π)

Find parametric equations for the surface generated by 
revolving the curve 𝑦 = 𝑢 about the 𝑥 −axis.

𝑥 = 𝑢 𝑦 = 𝑢cos 𝑣 𝑧 = 𝑢 sin 𝑣
0 ≤ 𝑢 ≤ 4
0 ≤ 𝑣 ≤ 2𝜋

GeoGebra:
Step [1] f(x) = sqrt(x)
Step [2] Surface(f, 2π, xAxis)



Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.5]
Triple Integrals

Course: Calculus (4)



EVALUATING TRIPLE INTEGRALS OVER RECTANGULAR BOXES

Let 𝐺 be the rectangular box defined by the inequalities

𝑎 ≤ 𝑥 ≤ 𝑏 , 𝑐 ≤ 𝑦 ≤ 𝑑 , 𝑘 ≤ 𝑧 ≤ ℓ

If 𝑓 is continuous on the region 𝐺, then

ම

𝐺

𝑓 𝑥, 𝑦, 𝑧 𝑑𝑉 = න

𝑎

𝑏

න

𝑐

𝑑

න

𝑘

ℓ

𝑓 𝑥, 𝑦, 𝑧 𝑑𝑧𝑑𝑦𝑑𝑥



EVALUATING TRIPLE INTEGRALS OVER RECTANGULAR BOXES

Example Evaluate the triple integral ම

𝐺

12𝑥𝑦2𝑧3𝑑𝑉 over the rectangular box

𝐺 = −1,2 × 0,3 × 0,2

ම

𝐺

12𝑥𝑦2𝑧3𝑑𝑉 = න

−1

2

න

0

3

න

0

2

12𝑥𝑦2𝑧3𝑑𝑧𝑑𝑦𝑑𝑥 = න

−1

2

න

0

3

න

0

2

12𝑥𝑦2𝑧3𝑑𝑧 𝑑𝑦𝑑𝑥

= න

−1

2

න

0

3

48𝑥𝑦2𝑑𝑦𝑑𝑥 = න

−1

2

432𝑥𝑑𝑥 = 648

ම

𝐺

12𝑥𝑦2𝑧3𝑑𝑉 = 12 න

−1

2

𝑥𝑑𝑥 න

0

3

𝑦2𝑑𝑦 න

0

2

𝑧3𝑑𝑧 = 648



PROPERTIES OF TRIPLE INTEGRALS

ම

𝐺

𝑐𝑓 𝑥, 𝑦, 𝑧 𝑑𝑉 = 𝑐 ම

𝐺

𝑓 𝑥, 𝑦, 𝑧 𝑑𝑉  where 𝑐 is a constant.

ම

𝐺

𝑓 ± 𝑔 𝑑𝑉 = ම

𝐺

𝑓𝑑𝑉 ± ම

𝐺

𝑔𝑑𝑉

If the region 𝐺 is subdivided into two subregions 𝐺1 and 
𝐺2, then

ම

𝐺

𝑓𝑑𝑉 = ම

𝐺1

𝑓𝑑𝑉 + ම

𝐺2

𝑓𝑑𝑉



EVALUATING TRIPLE INTEGRALS OVER MORE GENERAL REGIONS

Example Evaluate න

0

1

න

0

𝑦

න

0

1−𝑦2

𝑧 𝑑𝑧𝑑𝑥𝑑𝑦

න

0

1

න

0

𝑦

න

0

1−𝑦2

𝑧 𝑑𝑧𝑑𝑥𝑑𝑦 = න

0

1

න

0

𝑦

቉
1

2
𝑧2

0

1−𝑦2

𝑑𝑥𝑑𝑦 = න

0

1

න

0

𝑦
1

2
1 − 𝑦2 𝑑𝑥𝑑𝑦

= න

0

1

቉
1

2
1 − 𝑦2 𝑥

0

𝑦

𝑑𝑦 = න

0

1
1

2
1 − 𝑦2 𝑦𝑑𝑦

=
1

2
න

0

1

𝑦 − 𝑦3 𝑑𝑦 =
1

8



EVALUATING TRIPLE INTEGRALS OVER MORE GENERAL REGIONS

Let 𝐺 be a simple 𝑥𝑦 −solid with upper surface 𝑧

= 𝑔2(𝑥, 𝑦) and lower surface 𝑧 = 𝑔1 𝑥, 𝑦 , and let 

𝑅 be the projection of 𝐺 on the 𝑥𝑦 −plane. If 

𝑓(𝑥, 𝑦, 𝑧) is continuous on 𝐺, then

ම

𝐺

𝑓 𝑥, 𝑦, 𝑧 𝑑𝑉 = ඵ

𝑅

න

𝑔1 𝑥,𝑦

𝑔2 𝑥,𝑦

𝑓 𝑥, 𝑦, 𝑧 𝑑𝑧 𝑑𝐴



EVALUATING TRIPLE INTEGRALS OVER MORE GENERAL REGIONS

Example Let 𝐺 be the wedge in the first octant that is cut from the cylindrical solid 
𝑦2 + 𝑧2 ≤ 1 by the planes 𝑦 = 𝑥 and 𝑥 = 0. Evaluate

ම

𝐺

𝑧 𝑑𝑉 = ඵ

𝑅

න

0

1−𝑦2

𝑧 𝑑𝑧 𝑑𝐴

= ඵ

𝑅

቉
1

2
𝑧2

0

1−𝑦2

𝑑𝐴 = ඵ

𝑅

1

2
1 − 𝑦2 𝑑𝐴

= න

0

1

න

0

𝑦
1

2
1 − 𝑦2 𝑑𝑥𝑑𝑦 =

1

8



VOLUME CALCULATED AS A TRIPLE INTEGRAL

Example Use a triple integral to find the volume of the solid 
within the cylinder 𝑥2 + 𝑦2 = 9 and between the 
planes 𝑧 = 1 and 𝑥 + 𝑧 = 5.

Volume of 𝐺 = ම

𝐺

𝑑𝑉 = ඵ

𝑅

න

1

5−𝑥

𝑑𝑧 𝑑𝐴 = ඵ

𝑅

4 − 𝑥 𝑑𝐴

= න

0

2𝜋

න

0

3

4 − 𝑟 cos 𝜃 𝑟𝑑𝑟𝑑𝜃 = 36𝜋

NOTE Volume of 𝐺 = ම

𝐺

𝑑𝑉

Cylindrical Coordinates
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CHANGE OF VARIABLE IN A SINGLE INTEGRAL

• In many instances it is convenient to make a substitution, or change of variable, in 

an integral to evaluate it.

• If 𝑓 is continuous and 𝑥 = 𝑔 𝑢  has a continuous derivative and 𝑑𝑥 = 𝑔′ 𝑢 𝑑𝑢, 

then

න

𝑎

𝑏

𝑓 𝑥 𝑑𝑥 = න

𝑐

𝑑

𝑓 𝑔 𝑢 𝑔′ 𝑢 𝑑𝑢 = න

𝑐

𝑑

𝑓 𝑔 𝑢  𝐽 𝑢 𝑑𝑢

• For example, to evaluate 0׬

2
4 − 𝑥2𝑑𝑥 we use the substitution 𝑥 = 2 sin 𝜃.

න

0

2

4 − 𝑥2𝑑𝑥 = න

0

Τ𝜋 2

2 cos 𝜃 2 cos 𝜃 𝑑𝜃 = 4 න

0

Τ𝜋 2

cos2 𝜃 𝑑𝜃 = 𝜋



CHANGE OF VARIABLE IN A SINGLE INTEGRAL

• In this section we will discuss a general method for evaluating double 

integrals by substitution.

• The polar coordinate substitution is a special case of a more general 

substitution method for double integrals, a method that pictures changes 

in variables as transformations of regions.

• We will consider parametric equations of the form

𝑥 = 𝑥 𝑢, 𝑣 , 𝑦 = 𝑢, 𝑣

• Parametric equations of this type associate points in the 𝑥𝑦 −plane with 

points in the 𝑢𝑣 −plane.



TRANSFORMATIONS OF THE PLANE

• If we think of the pair of numbers (𝑢, 𝑣) as an input, then the two equations, in 

combination, produce a unique output (𝑥, 𝑦), and hence define a function 𝑇 

that associates points in the 𝑥𝑦 −plane with points in the 𝑢𝑣 −plane.

• This function is described by the formula 𝑇 𝑢, 𝑣 = 𝑥 𝑢, 𝑣 , 𝑦 𝑢, 𝑣 .

• We call 𝑇 a transformation from the 𝑢𝑣 −plane to the 𝑥𝑦 −plane.



TRANSFORMATIONS OF THE PLANE

• These equations, which can often be obtained by solving for 𝑢 and 𝑣 in terms of 𝑥 

and 𝑦, define a transformation from the 𝑥𝑦 −plane to the 𝑢𝑣 −plane that maps 

the image of (𝑢, 𝑣) under 𝑇 back into (𝑢, 𝑣). This transformation is denoted by 𝑇−1 

and is called the inverse of 𝑇.



TRANSFORMATIONS OF THE PLANE

• One way to visualize the geometric effect of a transformation 𝑇 is to determine 

the images in the 𝑥𝑦 −plane of the vertical and horizontal lines in the 𝑢𝑣 −plane.

• Sets of points in the 𝑥𝑦 −plane that are images of horizontal lines (𝑣 constant) 

are called constant 𝒗 −curves, and sets of points that are images of vertical lines 

(𝑢 constant) are called constant 𝒖 −curves.



TRANSFORMATIONS OF THE PLANE

Example Let 𝑇 be the transformation from the 𝑢𝑣 −plane to the 𝑥𝑦 −plane defined 
by the equations

𝑥 =
1

4
𝑢 + 𝑣 , 𝑦 =

1

2
𝑢 − 𝑣

a) Find 𝑇 1,3 .

Solution

Substituting 𝑢 = 1 and 𝑣 = 3 in the equations yields 𝑇(1, 3) = (1, −1).



TRANSFORMATIONS OF THE PLANE

Example Let 𝑇 be the transformation from the 𝑢𝑣 −plane to the 𝑥𝑦 −plane defined 
by the equations

𝑥 =
1

4
𝑢 + 𝑣 , 𝑦 =

1

2
𝑢 − 𝑣

b) Sketch the constant 𝑣 −curves corresponding to 𝑣 = −2, −1, 0, 1, 2.
c) Sketch the constant 𝑢 −curves corresponding to 𝑢 = −2, −1, 0, 1, 2.

Solution In these parts it will be convenient to express the transformation 
equations with 𝑢 and 𝑣 as functions of 𝑥 and 𝑦.

4𝑥 = 𝑢 + 𝑣

2𝑦 = 𝑢 − 𝑣 +

𝑢 = 2𝑥 + 𝑦

4𝑥 = 𝑢 + 𝑣

2𝑦 = 𝑢 − 𝑣 −

𝑣 = 2𝑥 − 𝑦



TRANSFORMATIONS OF THE PLANE

Example Let 𝑇 be the transformation from the 𝑢𝑣 −plane to the 𝑥𝑦 −plane defined 
by the equations

𝑥 =
1

4
𝑢 + 𝑣 , 𝑦 =

1

2
𝑢 − 𝑣

b) Sketch the constant 𝑣 −curves corresponding to 𝑣 = −2, −1, 0, 1, 2.
c) Sketch the constant 𝑢 −curves corresponding to 𝑢 = −2, −1, 0, 1, 2.

Solution In these parts it will be convenient to express the transformation 
equations with 𝑢 and 𝑣 as functions of 𝑥 and 𝑦.

𝑢 = 2𝑥 + 𝑦

𝑣 = 2𝑥 − 𝑦
−2 = 2𝑥 − 𝑦

−1 = 2𝑥 − 𝑦

0 = 2𝑥 − 𝑦

1 = 2𝑥 − 𝑦

2 = 2𝑥 − 𝑦

The constant 𝒗 −curves



TRANSFORMATIONS OF THE PLANE

Example Let 𝑇 be the transformation from the 𝑢𝑣 −plane to the 𝑥𝑦 −plane defined 
by the equations

𝑥 =
1

4
𝑢 + 𝑣 , 𝑦 =

1

2
𝑢 − 𝑣

b) Sketch the constant 𝑣 −curves corresponding to 𝑣 = −2, −1, 0, 1, 2.
c) Sketch the constant 𝑢 −curves corresponding to 𝑢 = −2, −1, 0, 1, 2.

Solution In these parts it will be convenient to express the transformation 
equations with 𝑢 and 𝑣 as functions of 𝑥 and 𝑦.

𝑢 = 2𝑥 + 𝑦

𝑣 = 2𝑥 − 𝑦
−2 = 2𝑥 + 𝑦

−1 = 2𝑥 + 𝑦

0 = 2𝑥 + 𝑦

1 = 2𝑥 + 𝑦

2 = 2𝑥 + 𝑦

The constant 𝒖 −curves



TRANSFORMATIONS OF THE PLANE

Example Let 𝑇 be the transformation from the 𝑢𝑣 −plane to the 𝑥𝑦 −plane defined 
by the equations

𝑥 =
1

4
𝑢 + 𝑣 , 𝑦 =

1

2
𝑢 − 𝑣

b) Sketch the constant 𝑣 −curves corresponding to 𝑣 = −2, −1, 0, 1, 2.
c) Sketch the constant 𝑢 −curves corresponding to 𝑢 = −2, −1, 0, 1, 2.

Solution

𝑢 = 2𝑥 + 𝑦

𝑣 = 2𝑥 − 𝑦



TRANSFORMATIONS OF THE PLANE

Example Let 𝑇 be the transformation from the 𝑢𝑣 −plane to the 𝑥𝑦 −plane defined 
by the equations

𝑥 =
1

4
𝑢 + 𝑣 , 𝑦 =

1

2
𝑢 − 𝑣

d) Sketch the image under 𝑇 of the square region in the 𝑢𝑣 −plane bounded by the 
lines 𝑢 = −2, 𝑢 = 2, 𝑣 = −2, and 𝑣 = 2.

Solution NOTE

Square Area = 16

Diamond Area = 4

𝑑𝑥𝑑𝑦 =
1

4
 𝑑𝑢𝑑𝑣



JACOBIANS IN TWO VARIABLES

In the previous example, 𝑥 =
1

4
𝑢 + 𝑣  and 𝑦 =

1

2
𝑢 − 𝑣 . ThenExample

𝐽 𝑢, 𝑣 =

1

4

1

4
1

2
−

1

2

= −
1

8
−

1

8
= −

1

4



JACOBIANS IN TWO VARIABLES

Find the Jacobian for the change of variables 
defined by

𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃

Example

𝐽 𝑟, 𝜃 =
cos 𝜃 −𝑟 sin 𝜃
sin 𝜃 𝑟 cos 𝜃

= 𝑟 cos2 𝜃 + 𝑟 sin2 𝜃

= 𝑟

∴ 𝑑𝑥𝑑𝑦 = 𝑟 𝑑𝑟𝑑𝜃



CHANGE OF VARIABLES IN DOUBLE INTEGRALS

Let 𝑅 be a simple region in the 𝑥𝑦 −plane and let 𝑆 be a simple region in the 𝑢𝑣

−plane. Let 𝑇 from 𝑆 to 𝑅 be given by

𝑇 𝑢, 𝑣 = 𝑥 𝑢, 𝑣  , 𝑦 𝑢, 𝑣

where 𝑥 𝑢, 𝑣  and 𝑦 𝑢, 𝑣  have continuous first partial derivatives. Assume that 𝑇 is 

one-to-one except possibly on the boundary of 𝑆. If 𝑓 is continuous on 𝑅 and
𝜕 𝑥,𝑦

𝜕 𝑢,𝑣
 is 

nonzero on 𝑆, then

ඵ

𝑅

𝑓 𝑥, 𝑦 𝑑𝐴𝑥𝑦 = ඵ

𝑆

𝑓 𝑥 𝑢, 𝑣 , 𝑦 𝑢, 𝑣
𝜕 𝑥, 𝑦

𝜕 𝑢, 𝑣
 𝑑𝐴𝑢𝑣



CHANGE OF VARIABLES IN DOUBLE INTEGRALS

a) Let 𝑅 be the region bounded by the lines
𝑥 − 𝑦 = 0, 𝑥 − 𝑦 = 1, 𝑥 + 𝑦 = 1, and 𝑥 + 𝑦 = 3

as shown in the figure. Find a transformation 𝑇 from a region 𝑆 to 𝑅 
such that is 𝑆 a rectangular region in the 𝑢𝑣 −plane.

Example

𝑢 = 𝑥 − 𝑦 0 ≤ 𝑢 ≤ 1
𝑣 = 𝑥 + 𝑦 1 ≤ 𝑣 ≤ 3

To find the transformation 𝑇:

𝑢 = 𝑥 − 𝑦
𝑣 = 𝑥 + 𝑦 +

𝑥 =
1

2
𝑣 + 𝑢

𝑢 = 𝑥 − 𝑦
𝑣 = 𝑥 + 𝑦 −

𝑦 =
1

2
𝑣 − 𝑢



CHANGE OF VARIABLES IN DOUBLE INTEGRALS

b) Evaluate ׭𝑅

𝑥−𝑦

𝑥+𝑦
 𝑑𝐴Example

𝑥 =
1

2
𝑣 + 𝑢

𝑦 =
1

2
𝑣 − 𝑢𝐽 𝑢, 𝑣 =

𝜕𝑥

𝜕𝑢

𝜕𝑥

𝜕𝑣
𝜕𝑦

𝜕𝑢

𝜕𝑦

𝜕𝑣

=

1

2

1

2
−1

2

1

2

=
1

2

1

2
−

1

2

−1

2
=

1

2

ඵ

𝑅

𝑥 − 𝑦

𝑥 + 𝑦
 𝑑𝐴 = ඵ

𝑆

𝑢

𝑣
𝐽 𝑢, 𝑣  𝑑𝐴𝑢𝑣

𝑢 = 𝑥 − 𝑦

𝑣 = 𝑥 + 𝑦

=
1

2
න

1

3

න

0

1
𝑢

𝑣
 𝑑𝑢𝑑𝑣

=
1

4
න

1

3
1

𝑣
𝑑𝑣 =

1

4
ln 3



CHANGE OF VARIABLES IN DOUBLE INTEGRALS

Let 𝑅 be the region enclosed by the lines 𝑦 =
1

2
𝑥 and 

𝑦 = 𝑥, and the hyperbolas 𝑦 =
1

𝑥
 and 𝑦 =

2

𝑥
. Evaluate

ඵ

𝑅

𝑒𝑥𝑦 𝑑𝐴

Example

𝑦

𝑥
=

1

2
𝑦

𝑥
= 1

𝑢 =
𝑦

𝑥

1

2
≤ 𝑢 ≤ 1

𝑥𝑦 = 1

𝑥𝑦 = 2
𝑣 = 𝑥𝑦 1 ≤ 𝑣 ≤ 2



CHANGE OF VARIABLES IN DOUBLE INTEGRALS

Let 𝑅 be the region enclosed by the lines 𝑦 =
1

2
𝑥 and 

𝑦 = 𝑥, and the hyperbolas 𝑦 =
1

𝑥
 and 𝑦 =

2

𝑥
. Evaluate

ඵ

𝑅

𝑒𝑥𝑦 𝑑𝐴

Example

𝑢 𝑣 =
𝑦

𝑥
⋅ 𝑥𝑦 = 𝑦2

𝑢

𝑣
=

𝑦/𝑥

𝑥𝑦
= 1/𝑥2

𝑢 =
𝑦

𝑥

1

2
≤ 𝑢 ≤ 1

𝑣 = 𝑥𝑦 1 ≤ 𝑣 ≤ 2

⇒ 𝑦 = 𝑢𝑣

⇒ 𝑥 =
𝑣

𝑢

𝐽 𝑢, 𝑣 =
𝑥𝑢 𝑥𝑣

𝑦𝑢 𝑦𝑣
=

−
1

2

𝑣

𝑢3

1

2

1

𝑢𝑣

1

2

𝑣

𝑢

1

2

𝑢

𝑣

= −
1

4

1

𝑢
−

1

4

1

𝑢
= −

1

2

1

𝑢



CHANGE OF VARIABLES IN DOUBLE INTEGRALS

Let 𝑅 be the region enclosed by the lines 𝑦 =
1

2
𝑥 and 

𝑦 = 𝑥, and the hyperbolas 𝑦 =
1

𝑥
 and 𝑦 =

2

𝑥
. Evaluate

ඵ

𝑅

𝑒𝑥𝑦 𝑑𝐴

Example 𝑢 =
𝑦

𝑥

1

2
≤ 𝑢 ≤ 1

𝑣 = 𝑥𝑦 1 ≤ 𝑣 ≤ 2

𝑦 = 𝑢𝑣

𝑥 =
𝑣

𝑢

ඵ

𝑅

𝑒𝑥𝑦 𝑑𝐴 =
𝐽 𝑢, 𝑣 = −

1

2

1

𝑢ඵ

𝑆

𝑒𝑣 𝐽 𝑢, 𝑣  𝑑𝐴𝑢𝑣
=

1

2
න

1

2

න

1/2

1
1

𝑢
𝑒𝑣𝑑𝑢𝑑𝑣

=
1

2
න

1

2

𝑒𝑣𝑑𝑣 න

1/2

1
1

𝑢
𝑑𝑢 =

1

2
𝑒 𝑒 − 1 ln 2



CHANGE OF VARIABLES IN DOUBLE INTEGRALS

Let 𝑅 be the region bounded by the line 
𝑥 + 2𝑦 = 2𝜋 , 𝑦 − axis, and 𝑥 − axis. 
Evaluate

ඵ

𝑅

sin 𝑥 + 2𝑦 cos 𝑥 − 2𝑦  𝑑𝐴

Example

Since it is not easy to integrate sin 𝑥 + 2𝑦 cos 𝑥 − 2𝑦 , 
we make a change of variables suggested by:

𝑢 = 𝑥 + 2𝑦
𝑣 = 𝑥 − 2𝑦

u

v

x

y

𝑢 = 2𝜋

+

𝑥 =
1

2
𝑢 + 𝑣

𝑢 = 𝑥 + 2𝑦
𝑣 = 𝑥 − 2𝑦 −

𝑦 =
1

4
𝑢 − 𝑣



CHANGE OF VARIABLES IN DOUBLE INTEGRALS

Let 𝑅 be the region bounded by the line 
𝑥 + 2𝑦 = 2𝜋 , 𝑦 − axis, and 𝑥 − axis. 
Evaluate

ඵ

𝑅

sin 𝑥 + 2𝑦 cos 𝑥 − 2𝑦  𝑑𝐴

Example

u

v

x

y

𝑢 = 2𝜋𝑥 =
1

2
𝑢 + 𝑣 𝑦 =

1

4
𝑢 − 𝑣

𝐽 𝑢, 𝑣 =

1

2

1

2
1

4
−

1

4

= −
1

8
−

1

8
= −

1

4



CHANGE OF VARIABLES IN DOUBLE INTEGRALS

Let 𝑅 be the region bounded by the line 
𝑥 + 2𝑦 = 2𝜋 , 𝑦 − axis, and 𝑥 − axis. 
Evaluate

ඵ

𝑅

sin 𝑥 + 2𝑦 cos 𝑥 − 2𝑦  𝑑𝐴

Example

u

v

𝑢 = 2𝜋

= ඵ

𝑆

sin 𝑢 cos 𝑣 𝐽 𝑢, 𝑣  𝑑𝐴𝑢𝑣

Type I Region

=
1

4
න

0

2𝜋

න

−𝑢

𝑢

sin 𝑢 cos 𝑣 𝑑𝑣𝑑𝑢 =
1

4
න

0

2𝜋

sin 𝑢 sin 𝑣 −𝑢
𝑢 𝑑𝑢 =

1

2
න

0

2𝜋

sin2 𝑢 𝑑𝑢 =
𝜋
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Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.8] ×
CENTERS OF GRAVITY USING MULTIPLE INTEGRALS

Course: Calculus (4)
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