Course: Calculus (4)

Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.1]
DOUBLE INTEGRALS




THE AREA PROBLEM

Given a function f that is continuous and nonnegative on
an interval |a, b], find the area between the graph of f

and the interval [a, b| on the x —axis.
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THE VOLUME PROBLEM st

10 ¢

Given a function f of two variables that is

continuous and nonnegative on a region R in the

xy —plane, find the volume of the solid enclosed

between the surface z = f(x,y) and the region R.

We approximate the volume by using rectangular

parallelepipeds.

Mhox = base area X height
= A4y X f(x{,5])



THE VOLUME PROBLEM st

n m
V = z f(xf» 1*)AAU
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n m
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EVALUATING DOUBLE INTEGRALS

* The partial derivatives of a function f (x, y) are calculated by holding one of the
variables fixed and differentiating with respect to the other variable.
* Let us consider the reverse of this process, partial integration. |,

10 4

b
[ reyax

v’ The partial definite integral with

respect to x.

v Is evaluated by holding y fixed

and integrating with respect to x.



EVALUATING DOUBLE INTEGRALS

* The partial derivatives of a function f (x, y) are calculated by holding one of the
variables fixed and differentiating with respect to the other variable.
* Let us consider the reverse of this process, partial integration.

5-!

10 &4

d
| reyaay

v’ The partial definite integral with

respectto y.

v Is evaluated by holding x fixed

and integrating with respect to y.



EVALUATING DOUBLE INTEGRALS

2
0 0
1 1 3] x
@ [xyiay=x|yray =" = 3
0 0 0

NOTE -+ A partial definite integral with respect to x is a function of y and hence
can be integrated with respect to y.
* A partial definite integral with respect to y can be integrated with respect
to x.
 This two-stage integration process is called iterated (or repeated)
integration.



EVALUATING DOUBLE INTEGRALS
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EVALUATING DOUBLE INTEGRALS

* We introduce the following notation:

* These integrals are called iterated integrals.

. |
[ royaax

- _
jf(x, y)dy

dx



EVALUATING DOUBLE INTEGRALS 0 4

3 4
Example Evaluate ff(éLO—ny)dydx 0 ¢
1 2

[ 4

3 4 3 .
f j(40 — 2xy)dydx = f j(40 — 2xy)dy|dx
1 2 1 _

| 2

3
- j (40y — xy?)]4dx
1

3 3
= f[(160 — 16x) — (80 — 4x)]|dx = f(80 — 12x)dx
1 1

=112



EVALUATING DOUBLE INTEGRALS

4 3

Homework Evaluate ff(40—2xy)dxdy =112
2 1

Fubini’s Theorem

Let R be the rectangle defined by .
R={(x,y): a<x<b,c<y<d)
= |a, b] X [c,d] y
If f(x,y) is continuous on this rectangle, then
b d av
J flx,y)dA = f f(x,y)dydx = j jf(x,y)dxdy ¢
R a c -y




EVALUATING DOUBLE INTEGRALS

Example Use a double integral to find the volume of the solid that is bounded above
by the plane z = 4 — x — y and below by the rectangle R = [0, 1] X [0, 2].

C 2
j(4—x—y)dy dx
0




PROPERTIES OF DOUBLE INTEGRALS
j f cf(x,y)dA =c j f f(x,y)dA (c constant)
R R

U S gLl = U flx,y)dA £ ﬂ g(x,y)dA I
R | )




PROPERTIES OF DOUBLE INTEGRALS

NOTE If R = [a, b] X |c,d] is a rectangular region, and f(x,y) = g(x)h(y), then

[ b

ﬂ flx,y)dA = ﬂg(x)h(y)dA = jg(x)dx_ jd h(y)dy_
R R [IF _

a

1 2
Example ffex“’ dxdy =ffexey dxdy
0 0

2
(f exdx) (f eydy) =’ -1D(e—-1)
0



EXERCISE SET 14.1 QUESTION 33

Homework Evaluate the integral by choosing a convenient order of integration:

% = ﬂ x cos(xy) cos?(mx)dA ; R=[0,7] x[0,7]
R




Course: Calculus (4)

Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.2]
DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS




ITERATED INTEGRALS WITH NONCONSTANT LIMITS OF INTEGRATION

In this section we will see that double integrals over nonrectangular regions can
often be evaluated as iterated integrals

2 'xZ

1 x 1 ] 1 3 X
Xy
Example f jy x dydx —j jyzxdy dx = JT] dx
0 —x . 0 —*

| —X

1
_j x7+x4 g x8+x5 Y13
B RN A VT T 120
0




ITERATED INTEGRALS WITH NONCONSTANT LIMITS OF INTEGRATION

/3 cosy

/3 [cosy
Example f f xsinydxdy = f f xsinydx|dy
0 O 0 0
m/3 5 . COS y
By Substitution _ J X S y] d
lett = cosy 0 0
/3 1/2
%=—smy = J 1cos2 siny d ——lf t? sin dt
Y dt B 2 ySmy ey = 2 ysiny
= — 0 1
sin 'y 1 "
1 t3 7
y=n/3 t=1/2 =—Jt2dt=— _7
6 /7 48
y = O t = 1/2 /




DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Type | Region

is bounded on the left and right by
vertical lines x =a and x =b and is
bounded below and above by continuous
curves y = g;(x) and y = g,(x), where
g1(x) £ g,(x)fora <x <b.

AV
Y= gz(x)/
I( /
| y=gx
| | ¥
a b

Type Il Region

is bounded below and above by
horizontal lines y=c¢ and y=d
and is bounded on the left and right
by continuous curves x = h;(y) and

x = h,(y)satisfying hq(y) < hy(y)
forc<y<d




DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

1) If R is atype I region on which f(x,y) is continuous, then

f f(x,y)dA =jb g](x)f(x,y)dydx
i a g1(x)

2) If Ris atype Il region on which f (x,y) is continuous, then

d hy(y)

|| reeman=[ [ reydxay

R c hi(y)



DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate ff xydA over the region R enclosed betweeny = %x, y = /x,
R

AV

x = 2and x = 4.

Type | Region

£ f xydA = f f xydydx = j | j xydy_ dx




DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate f (2x — y%)dA over the triangular region R enclosed

R

betweenthelinesy=—x+1,y=x+1,andy = 3.

f (2x — y?)dA =f J -(Zx—yz)dxdy

R

Type Il Region
AY
(=2, 3) 31 y=3 (2.3
'y >
y=—x+1 y=x+1
(x=1-y 1 (x=y-1)

\




DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate ﬂ (2x — yz)dA over the triangular region R enclosed
R
between thelinesy =—x+1,y=x+1,andy = 3.

Type | Region
f (2x — y?)dA

R A

(-2,3) 4 3] m=3 (2,3)

J

y=—x+1 y=x+1
x=1-p 1 (x=y-1)

\




DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate f (2x — y%)dA over the triangular region R enclosed

R
betweenthelinesy=—x+1,y=x+1,andy = 3.

_ B B Type | Region
f (2x — y2)dA ﬂ (2x — y2)dA + y (2x — y?)dA

R R

\ e




DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate f fe dxdy

0 y/2—>y=2x

: : . 2
Since there is no elementary antiderivative of e* ,

the integral cannot be evaluated by performing
the x —integration first.

We will try to evaluate this integral by expressing
it as an equivalent iterated integral with the order
of integration reversed.

\ s



DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

\ s

2 1
Example Evaluate f fexzdxdy AV
0 y/2
2 1 1 2x 1
j jexzdxdy =fj exzdydx =j fexzdy dx
0 y/2 0 O i
1
2
— fexzy]oxdx
By Substitution 0
Let t = x? 1 1
\__@f 2xe*” dx =fetdt —e—1
0 0




AREA CALCULATED AS A DOUBLE INTEGRAL

Example areaof R = /f ldA = ff dA
Use a double integral to find the area of the

region R enclosed between the parabola y = %xz
and the liney = 2x. r'
z =1

Cylinder with base R and height 1



AREA CALCULATED AS A DOUBLE INTEGRAL area of R = /f ldA = [f dA

R R

Example Use a double integral to find the area of the

region R enclosed between the parabola y = %xz AY '
and the line y = 2x. g L (4, 8)
y=2x
Area of R = ff dA  (Type Il Region) X=123y
R
8 /2y 8 >
_ [ V2 12
0 y/2 0 x=12y
8
Y) 16
= J2y—=]dy =—
f ( 2) ™ 73 L X
° 0 x 4




AREA CALCULATED AS A DOUBLE INTEGRAL area of R = /f ldA = [f dA

R R
Example Use a double integral to find the area of the
region R enclosed between the parabola y = %xz AY '
and the line y = 2x. g (4, 8)

Area of R = f dA (Type | Region)

2x

:f dydx —f 2/2 dx

0 x2/2 0

(o5 -5

Y >




EXERCISE SET 14.2

9. Let R be the region shown in the accompanying figure.
Fill in the missing limits of integration.

] ]
@ [ [ Fx, v) dA = f [ (e, v) dy dx
] ]
K ] ]
(b) f f . v) dA = fD fD e, vy dx dy
R

Y >




Course: Calculus (4)

Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.3]
DOUBLE INTEGRALS IN POLAR COORDINATES




REVIEW OF POLAR COORDINATES

Rectangular
Coordinates A

origin

Polar
Coordinates

>
Polar Axis



REVIEW OF POLAR COORDINATES

From Rectangular

To Polar

From Polar
To Rectangular

cos 6 =

=

| =

, Sin@ =

r\

X
J

~
T cos @

rsinHJ

RIS



SIMPLE POLAR REGIONS

 Some double integrals are easier to evaluate if the region of integration is expressed
in polar coordinates.

* This is usually true if the region is bounded by any curve whose equation is simpler
in polar coordinates than in rectangular coordinates.

 Example: Consider the quarter-disk x? + y? = 4 in the first quadrant shown below.

Polar
Coordinates

Rectangular
Coordinates

0<x<?2

0<y<+4-—x?

0<<r<?2

0<0<m/2




SIMPLE POLAR REGIONS

* Double integrals whose integrands involve x? + y? also tend to be easier to evaluate
in polar coordinates because this sum simplifies to 7% when the conversion formulas

x =rcosf andy = rsin 8 are applied.
 The figure below shows a region R in a polar coordinate system that is enclosed

between two rays, 8 = a and 6 = 8, and two polar curves, r = r,(6) and r = 1,(0).
* |If the functions r;(8) and r,(6) are continuous and their graphs do not cross, then
the region R is called a simple polar region.

0=p 0=p0

B=a+2r




DOUBLE INTEGRALS IN POLAR COORDINATES

NOTE

Theorem

A polar rectangle is a simple polar region
for which the bounding polar curves are
circular arcs.

If R is a simple polar region whose
boundaries are therays@ = aand 8 = f3
and the curves r = r;(0) and r = ,(6),
and if f(r, 8) is continuous on R, then

B 12(0)
j f(T»Q)dA=j j f(r,0) rdrdd

R a 11(6)




DOUBLE INTEGRALS IN POLAR COORDINATES

Example Find the volume of the solid bounded by the cylinder x? + y? = 4 and
the planey + z = 4.




DOUBLE INTEGRALS IN POLAR COORDINATES

Example Find the volume of the solid bounded by the cylinder x? + y? = 4 and
the planey + z = 4.

V= j (4 —vy)dA =f f(4—rsin9)rdrd9
R

271'

[ 2

f(4r —1r2sin @) dr

0

2 8
(r ——r sm@)] do =j (8—§sin0
0

0
27T
(89 + —cos 0)] = 16m

do

2T

0

—2

)as

AY
yz\/4—X2
7 X
yz—\/4—X2




DOUBLE INTEGRALS IN POLAR COORDINATES
1vV1—x2
Example Evaluate f f (xZ +y2)3/2dydx

1V1—x2
f f (2 +y2)* 2dydx = j f (r2)%/2rdrdg
-1 0

T

T 1
=Jfr4drd0 = f—d@
0 O

v S




DOUBLE INTEGRALS IN POLAR COORDINATES

1

Example Evaluate ff dA where R is the region in the
1+ x2 + y?

R

first quadrant bounded by y = 0,y = x, x* + y? = 1 and x? + y* = 4.

1 1
ff1+x2+y2dA —f f1+r2 rdrd@
R

/4 2 ]
r
f dr|do
1

:f 1+ 72

0




DOUBLE INTEGRALS IN POLAR COORDINATES

Example Evaluate ff

first quadrant bounded by y = 0, y = x, x% + y? = 1 and x? + y? = 4.

1
A =
ff1+x2+y2d f
R

|

/4

2
1]
2

1

dA

1+ x? 4 y?
R

1
2

2T
14 r2

where R is the region in the

rdrd@

] /4
1
dr|do =j
0




DOUBLE INTEGRALS IN POLAR COORDINATES

Example Use a double-integral to show that the area of the region R shown is 97”.
Arc of a circle of
Area of R = U dA = f J rdrd@ A radius 3 (centered
at origin)
R
~
y=-vix \| &




DOUBLE INTEGRALS IN POLAR COORDINATES

Example Use a double-integral to show that the area of the region R shown is 97”.
3
Arc of a circle of
Areaof R = ﬂ dA = f jrdrd@ 9g=—C"_1 5 o  radius 3 (centered
, 3 at origin)
R 0 J
: : v
2t/3[ 3 21/3
7"2 ; y = —V/3x K
= j f rdr|df = j ) do 5
-/3 |o | —1/3 0
21/ 3 21/3
= f 240 =-0| =T V3
B 2 _2 _7 tan9=X—_3x=—\/§
—-1/3 —1/3 X X



DOUBLE INTEGRALS IN POLAR COORDINATES

co

Example Evaluate fe‘xzdle
0

0 2

I = fe‘xzdx =
0

I
3
3

o

>.<[\)

o

‘<N

Qu

S

Q

<

I

\:
\x
o

|
)
+

‘<N

<

S

Q

<



DOUBLE INTEGRALS IN POLAR COORDINATES

co

Example Evaluate fe‘xzdle
0

je‘(xzﬂ’z)dxdy =j je"”zrdrdﬁ
0

2|
2

re " dr|df By substitution. Let t = r?.

I
O\i o*i OS8

0
00 ] /2 o /2
1 —1 1
e tdtlde = | —et| dOo = | =dO =
2 2
0 0 0 0




Course: Calculus (4)

Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.4]
SURFACE AREA; PARAMETRIC SURFACES




SURFACE AREA FOR SURFACES OF THE FORM z

* Consider a surface of the form z = f(x,y)
defined over a region R in the xy —plane.

* We will assume that f has continuous first
partial derivatives at the interior points of R.

e The surface area of that portion of the
surface z = f(x,y) that lies above the
rectangle R in the xy —plane is given by

s=[f (52) +(%) +10a

R




SURFACE AREA FOR SURFACES OF THEFORM z = f(x,y)

Example
Find the surface area of that portion of the

surface z=+V4 —x2 that lies above the

rectangle R in the xy —plane whose coordinates

satisfy0 < x < 1land0 <y < 4.

1 4 2
S = jf ( X >+02+1d dx
OOV 2\/4—36'2 y

1 4 1 4
X 1 dvd —jf *
_jfwél—xz-l_ yax = 4 — x2
00 00

\

-

0z\° N 0z
dx dy

2
) +1as




SURFACE AREA FOR SURFACES OF THEFORM z = f(x,y)

Example 2 2
o 0z 0z .y
Find the surface area of that portion of the B ﬂ\‘ ax) © dy T
R
surface z =+v4 —x?% that lies above the
AZ
le R in th —pl h i
rectangle R in the xy —plane whose coordinates . By B i
satisfy0 < x < 1land0 <y < 4. s |
1 4 1 | I
8 : :l
S = ff dydx :f dx y
4 — x? ’ 4 — x2 | |4 >
0 0 0 R )/




SURFACE AREA FOR SURFACES OF THEFORM z = f(x,y)

Example 2 2
S = 92) 4 (%2) 4144
Find the surface area of the portion of the paraboloid - ﬂ \ dx T dy T
R

z = x* + y? below the plane z = 1.

AZ

5 = g JZOZ+ (2y)? + 1dA

[\

IS
|
_—k___ e —

= g\/zt(xz +y2)+ 1 dA

z =1
|
|
|
l
|
I
:l y

2m 1 By Substitution:

=fj\/4-7‘2+17‘d7‘d9\/ Lett:4r2+1

0 O

NA



SURFACE AREA FOR SURFACES OF THEFORM z = f(x,y)

Example 2 2
o 0z 0z .y
Find the surface area of the portion of the paraboloid = ﬂ N ax) © dy T
R

z = x* + y? below the plane z = 1.

AZ

27T'51 ] 27'[1 5
5=j f—\/fdt d9=J—\/t3] do
8 12
0o |1 | 0 1

N
|
__k___ - —
e

1
12 do = g (5\/§ — 1)77,'

z =1
|
|
l
|
|
|
:l y

2
jn5x/§—1
0

N



PARAMETRIC REPRESENTATION OF SURFACES

We have seen that curves in 2-space can be represented by two equations

involving one parameter, say

x=x(t) , y=y({) , as<t<b

Example The position P(x,y) of a particle
moving in the xy —plane is given by
the equations and parameter interval

x=+t , y=t , t=0

We try to identify the path by
eliminating t between the equations:

y
A

y=t=(D) =x

Starts at
=20



PARAMETRIC REPRESENTATION OF SURFACES

Example The counter-clockwise orientation parametric equations of the
circle x2 + y = a® are
Y x=acost , y=asint , 0<t<2nm

_T| x?4yr=1
=3

el P(cost, sint) :
x? + y* = a? cos’t + a® sin*t = a°.
£= T ! [ =

=0 > X
0 (1,0)
GeoGebra:
Curve(3cos(t), 3sin(t), t, 0, 2pi)




PARAMETRIC REPRESENTATION OF SURFACES

Curves in 3-space can be represented by three
equations involving one parameter, say
x=x(t) , y=y@t) , z=z(t) , a<t<b 15

Example Describe the parametric curve
represented by the equations

x = 10cost o 3 =
y = 10sint sy
Z=1

GeoGebra:
Curve(1lOcos(t), 10sin(t), t, t, 0, 6m)



PARAMETRIC REPRESENTATION OF SURFACES

Surfaces in 3-space can be represented parametrically by three
equations involving two parameters, say

x=xuv) , y=yuwv) , z=z(uv) ,

parametrize this surface is to take

X=1U
Y=
z=4—u*— v’
GeoGebra:
1) 4-x"2-y"2 , x"2+y"2<=4
2) Surface(u, v, 4-u*-v?*, u,-2,2, v,-2,2)




PARAMETRIC REPRESENTATION OF SURFACES

Example Consider the paraboloid z = 4 — x? — y?. Another way to
parametrize this surface is to take

X =1rcosf

y =71sinf

z=4—r7r?
GeoGebra:

Surface(r cos(B), r sin(B), 4 - r*, r, 0, 2, 6, 0, 2m)



PARAMETRIC REPRESENTATION OF SURFACES

Example Find parametric equations for the portion of the right
circular cylinder x% 4+ z% = 9 for which 0 <y < 5 in terms
of the parameters u and v.

X =3cosu
y =V
Z =3sinu

GeoGebra:
Surface(3cos(u), v, 3sin(u), u,0,2m, v,0,5)



REPRESENTING SURFACES OF REVOLUTION PARAMETRICALLY

Suppose that we want to find parametric equations for the surface
generated by revolving the plane curve y = f(x) about the x —axis for
example. Then the surface can be represented parametrically as

X=1u y = f(u)cosv z = f(u)sinv

Example Find parametric equations for the surface
generated by revolving the curve y =+/x
about the x —axis.

X =1u
y =ucosv
z = \usinv

O<u<i4
O<v<2rm




REPRESENTING SURFACES OF REVOLUTION PARAMETRICALLY

Example Find parametric equations for the surface generated by
revolving the curve y = y/u about the x —axis.

O<u<i4

X =1U = \/UCOS V Z =+A/UuSsinv
y =vu vu 0<v<2nm

GeoGebra:
Step [1] F(x) = sqrt(x)
Step [2] Surface(u, f(u)cos(v), f(u)sin(v), u,0,4, v,0, 2m)

GeoGebra:
Step [1] F(x) = sqrt(x)
Step [2] Surface(f, 2m, xAxis)



Course: Calculus (4)

Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.5]
Triple Integrals




EVALUATING TRIPLE INTEGRALS OVER RECTANGULAR BOXES

Let G be the rectangular box defined by the inequalities
a<x<b , c<y<d , k<z<?¥

If f is continuous on the region G, then
b d ¢

Uf flxy,z)dV = ffjf(x,y,z)dzdydx
G ac k

Six orders of integration are possible for

the iterated integral:

dxdydz, dydzdx, dzdxdy
dxdzdy, dzdydx, dydxdz



EVALUATING TRIPLE INTEGRALS OVER RECTANGULAR BOXES

Example Evaluate the triple integral fff 12xy?z3dV over the rectangular box

G =[-1,2] x[0,3] x [0,2] )

[ oo |
-

fff 12xy?z3dV = 12
G

| o\w O\w

IPLSN

xdx

l

-1

y*dy

2 2 3
lexyZZdedydx = ff
0 “10 |

48xy*dydx = j432xdx = 648

, ]
fz3dz

110

2
j 12xy?z3dz| dydx
0

= 643



PROPERTIES OF TRIPLE INTEGRALS

jﬂ cf(xy,2)dV = c jﬂ f(x,y,z)dV where cis a constant.

fo (fig)deLﬂdeijGUng

If the region G is subdivided into two subregions G; and

G-, then
[[] rav = [[f rav + [[] ra
G Gy G2

Gy




EVALUATING TRIPLE INTEGRALS OVER MORE GENERAL REGIONS

1 y./1-y?
Example Evaluate jf j z dzdxdy
00 O

1 y.1-y? 1 yl 1-y2 1 yl
ff f zdzdxdyszEZzl dxdy =jj§(1—y2)dxdy
00 0 00 0 0 0
1 y 1
= f§(1 —yz)x] dy = | (1 —y*)ydy
0 0 0



EVALUATING TRIPLE INTEGRALS OVER MORE GENERAL REGIONS

AZ
Let G be a simple xy —solid with upper surface z ———
= g,(x,y) and lower surface z = g,(x,y), and let G
R be the projection of G on the xy —plane. If
. . I Z :gl(x:'y)
f(x,v,z) is continuous on G, then | )
l 4
|

E

I gZ(xry)

gf f(x,y,z)dV = lf f f(x,y,z)dz_ dA A

_g1(X,y)




EVALUATING TRIPLE INTEGRALS OVER MORE GENERAL REGIONS

Example Let G be the wedge in the first octant that is cut from the cylindrical solid

y2+Z2 S 1bythe planesy:xandx:O. Evaluate = 2+ 2 1
— = y Z -
N /==
ﬂjZdV :ff f zdz|dA y =X x=0
) ol &
i >
R 1

e 1
_ 2.2 _ |l 24 2 %
_U > ]O dA ﬂz(l y?)dA N
i | R

1y1

1
- | |-y dxdy ==
ffz( yi)dxdy =g
00




VOLUME CALCULATED AS A TRIPLE INTEGRAL

NOTE Volume of G = fﬂ av
G

Example Use a triple integral to find the volume of the solid
within the cylinder x? + y? =9 and between the

A<

C xX+z=>5
xr 4 y? =
1 %=1
e >
'x/ X+ y*=9
A)
y =N9 — x?

planesz =1and x + z = 5.
5-x ]
VolumeofG=fﬂdV =ff j dz|dA =jf(4—x)dA
G R |1 | R
21T 3
=j f(4—rcos€)rdrd9 = 361 -3
0 0

Cylindrical Coordinates




Course: Calculus (4)

Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.6] X
TRIPLE INTEGRALS IN CYLINDRICAL AND SPHERICAL
COORDINATES
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CHANGE OF VARIABLE IN A SINGLE INTEGRAL

In many instances it is convenient to make a substitution, or change of variable, in
an integral to evaluate it.

If f is continuous and x = g(u) has a continuous derivative and dx = g'(u)du,

then

b d d
| readx = [ fga)g'@du = | £(g@)

2 o .
For example, to evaluate fo V4 — x?dx we use the substitution x = 2 sin 6.

/2 /2

2
f\/4—x2dx =f (2cosB)(2cosB)do =4J cos’0df =1
0

0 0



CHANGE OF VARIABLE IN A SINGLE INTEGRAL

* In this section we will discuss a general method for evaluating double
integrals by substitution.

* The polar coordinate substitution is a special case of a more general
substitution method for double integrals, a method that pictures changes
in variables as transformations of regions.

* We will consider parametric equations of the form

x=x(uv) , y=w,v)
* Parametric equations of this type associate points in the xy —plane with

points in the uv —plane.



TRANSFORMATIONS OF THE PLANE

If we think of the pair of numbers (u, v) as an input, then the two equations, in
combination, produce a unique output (x,y), and hence define a function T
that associates points in the xy —plane with points in the uv —plane.

This function is described by the formula T (u, v) = (x(u, v),y(u, v)).

We call T a transformation from the uv —plane to the xy —plane.

AU AY

\ &
Y =




TRANSFORMATIONS OF THE PLANE

 These equations, which can often be obtained by solving for u and v in terms of x
and y, define a transformation from the xy —plane to the uv —plane that maps
the image of (u, v) under T back into (u, v). This transformation is denoted by T~

and is called the inverse of T'.

Because there are four variables in-
volved, a three-dimensional figure is
not very useful for describing the trans-
formation geometrically. The idea here
is to use the two planes to get the four
dimensions needed.



TRANSFORMATIONS OF THE PLANE

* One way to visualize the geometric effect of a transformation T is to determine
the images in the xy —plane of the vertical and horizontal lines in the uv —plane.
* Sets of points in the xy —plane that are images of horizontal lines (v constant)
are called constant v —curves, and sets of points that are images of vertical lines

(u constant) are called constant u —curves.

AU AY
A Constant v-curve
//
/’
1
1
U - ‘( X
> <
Constant u-curve




TRANSFORMATIONS OF THE PLANE

Example LetT be the transformation from the uv —plane to the xy —plane defined

by the equations

) L y=s-v)
x=7@w+v) , y=5@-v

a) Find T'(1,3).
Solution

Substitutingu = 1 and v = 3 in the equations yields T (1, 3) = (1, —1).



TRANSFORMATIONS OF THE PLANE

Example LetT be the transformation from the uv —plane to the xy —plane defined
by the equations

1 1
x=Z(u+V) : y=§(u—v)
b) Sketch the constant v —curves correspondingtov = -2,-1,0,1, 2.
c) Sketch the constant u —curves correspondingtou = -2,—-1,0,1, 2.

Solution In these parts it will be convenient to express the transformation
equations with u and v as functions of x and y.

dx =u+v dx =u+v
2y =u—v + 2y =Uu—v —

u=2x+y V=2X—Y



TRANSFORMATIONS OF THE PLANE

Example LetT be the transformation from the uv —plane to the xy —plane defined
by the equations

1 1
x=Z(u+V) : y=§(u—v)
b) Sketch the constant v —curves correspondingtov = -2,-1,0,1, 2.
c) Sketch the constant u —curves correspondingtou = -2,—-1,0,1, 2.

Solution In these parts it will be convenient to express the transformation
equations with u and v as functions of x and y.

The constant v —curves u=2x+y

V=2X—Y
—2=2x—-y 0=2x—vy

—1=2x—y 1=2x—y
2=2x—Yy



TRANSFORMATIONS OF THE PLANE

Example LetT be the transformation from the uv —plane to the xy —plane defined
by the equations

1 1
x=Z(u+V) : y=§(u—v)
b) Sketch the constant v —curves correspondingtov = -2,-1,0,1, 2.
c) Sketch the constant u —curves correspondingtou = -2,—-1,0,1, 2.

Solution In these parts it will be convenient to express the transformation
equations with u and v as functions of x and y.

The constant u —curves u=2x+y

V=2X—Y
—2=2x+Yy 0=2x+y

—1=2x+y 1=2x+y
2=2x+Yy



TRANSFORMATIONS OF THE PLANE

Example LetT be the transformation from the uv —plane to the xy —plane defined
by the equations

1 1
x=—u+v) , =—-Uu—-v
J v y=su-v)
b) Sketch the constant v —curves correspondingtov = -2,-1,0,1, 2.
c) Sketch the constant u —curves correspondingtou = -2,—-1,0,1, 2.
AU y
Solution N A
.:’4 u=2x+y
. S TR v=2xey
¢
0
—4 | —4




TRANSFORMATIONS OF THE PLANE

Example LetT be the transformation from the uv —plane to the xy —plane defined
by the equations

x=%(u+v) , y=%(u—v)
d) Sketch the image under T of the square region in the uv —plane bounded by the
linesu=—-2,u=2,v=-2,andv = 2.
Solution t 4 NOTE
! 2 ! Square Area = 16
- /\A Diamond Area = 4
> P

: 1
: dxdy = 2 dudv




JACOBIANS IN TWO VARIABLES

If x = g(u,v) and y = h(u, v), then the Jacobian of x and y with respect to u
and v, denoted by d(x, v)/d(u, v), is

Jx ox
vy = Q%Y) _ jouovi_ 9xay 9y 9x
o, v) dy 9y u dv  ou v

du v

Example Inthe previous example, x = i(u +v)andy = %(u — v). Then

Ju,v) =

N = ] =
NI




JACOBIANS IN TWO VARIABLES 0

A T(r,0)=(rcos 6, rsin 0)

Example Find the Jacobian for the change of variables g{____ 0=p .
defined by
x=rcosf and y=rsinf r=da S r=b
a.-____T =0 T
J(r,0) = cosf —rsinf ; -

sin@ rcosé@

= rcos? 0 +rsin? 6 A
= r

s dxdy = rdrdf




CHANGE OF VARIABLES IN DOUBLE INTEGRALS

Let R be a simple region in the xy —plane and let S be a simple region in the uv

—plane. Let T from S to R be given by

T(u,v) = (x(u, v),y(u, v))

where x(u, v) and y(u, v) have continuous first partial derivatives. Assume that T is

d(x,y) .
o0(u,v) 'S

one-to-one except possibly on the boundary of S. If f is continuous on R and

nonzero on S, then

d(x,y)
d(u,v)

f F(x,y)dAy, = f £ (xCu, v, y (W, ) dAyy

R S




CHANGE OF VARIABLES IN DOUBLE INTEGRALS

Example a) Let R be the region bounded by the lines
x—y=0 x—-y=1 x+y=1 and x+y=3
as shown in the figure. Find a transformation T from a region S to R
such that is S a rectangular region in the uv —plane.

AY
—y=0
U=X—Y 0<u<l Y
v=x+y 1<v<3 x—y=1
x+y=3
To find the transformation T':
u=x-—-y u=x-—Yy x+y=1
v:x-|—y -+ U=X+y — A
1 u=1 u=23
1 v =1
= — ==\rv—-u
X 2(v+u) y 2( ) S
v =0

Y =




CHANGE OF VARIABLES IN DOUBLE INTEGRALS

x-y AL,
Example b) Evaluate [f, oy dA y————
1
dx Ox 1 1 xzz(v+u)
_auav_ii_ll_l‘_l_l 1
el BB 100 06 ke
ou JOv 2 2
31
X —7y u u
da=[[ L == || =
[| 52 aa= [[2y@nlane =5 [ % auav
R S 10
3
—1f1d _11 3
4] v v—4n
1



CHANGE OF VARIABLES IN DOUBLE INTEGRALS

Example Let R be the region enclosed by the lines y = %x and

y = x, and the hyperbolas y = iand y = % Evaluate

ff e*Y dA
R

y 1
7 — 1
x 2 u=X —<u<1
y X 2 —
_=1 v =
X S
xy =1
Y v =xy 1<v<?2 v=1
Xy = 2

>

le u=1



CHANGE OF VARIABLES IN DOUBLE INTEGRALS

Example Let R be the region enclosed by the lines y = %x and

y = x, and the hyperbolas y = iand y = % Evaluate

ffexyd/l Y
Uv =
R

_lill ;xy

| 2Nw 2y
1 [v 1 [u
A
11 11

|

= 1<
IA
<
IA
p—

= N =

=

IA
IA
N



CHANGE OF VARIABLES IN DOUBLE INTEGRALS

Example Let R be the region enclosed by the lines y = %x and

y = x, and the hyperbolas y = iand y = % Evaluate

ffexyd/l
R
2 1
17 (1,
jj eV dA = jf eV U(qu)ldAuv :Ef fae dudv
R S 1

1/2

2

1
fe”dv f du —Ee(e—l)an
1

111/2

|
N | =

1
u=X —<uc<l
X 2
v=xy 1<v<2
Yy =\uv
_\/?
- Nu
11
](UV)——EZ



CHANGE OF VARIABLES IN DOUBLE INTEGRALS
Example Let R be the region bounded by the line

X+ 2y =2m, y—axis, and x — axis.
Evaluate

ﬂ sin(x + 2y) cos(x — 2y) dA
R

Since it is not easy to integrate sin(x + 2y) cos(x — 2y),
we make a change of variables suggested by:

u=x+2y u=x-+2y
v=x-—2y + v=x—2y —

x=%(u+v) y=%(u—v)

u =2

> u



CHANGE OF VARIABLES IN DOUBLE INTEGRALS
Example Let R be the region bounded by the line

X+ 2y =2m, y—axis, and x — axis.
Evaluate

ﬂ sin(x + 2y) cos(x — 2y) dA
R

—lu+r) y=—(u-v)
x =5t y=gu-v
1 1
5 3 1 1 1
u,v) = — =
4 4

u =2

> u



CHANGE OF VARIABLES IN DOUBLE INTEGRALS AV

Example Let R be the region bounded by the line
X+ 2y =2m, y—axis, and x — axis.
Evaluate

u=2r

r ﬂ sin(x + 2y) cos(x — 2y) dA
R
Type | Region
= jf sin(u) cos(v) |J(u,v)| dA,,
i 2T U 1 2m 1 21
= ZJ f sin(u) cos(v) dvdu = ZJ [sin(u) sin(v) ]2, du= Ej sin®(w) du = g
0 -u 0 0



Course: Calculus (4)
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CENTERS OF GRAVITY USING MULTIPLE INTEGRALS
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