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VECTOR FIELDS

• A vector field in a plane is a function that associates with each point 𝑃 

in the plane a unique vector F(𝑃) parallel to the plane.

F 𝑥, 𝑦 = 𝑀 𝑥, 𝑦  i + 𝑁 𝑥, 𝑦  j



VECTORS VIEWED GEOMETRICALLY

A Vector in 2-space or 3-space; 
is an arrow with direction and
length (magnitude).

Initial Point

Terminal Point

v or Ԧ𝑣

Two vectors are equal if they are translations 
of one another.



VECTORS VIEWED GEOMETRICALLY

Because vectors are not affected 
by translation, the initial point of 
a vector v can be moved to any 
convenient point 𝐴 by making an 
appropriate translation.

𝑂

𝑃1 𝑥1, 𝑦1

𝑃2 𝑥2, 𝑦2

𝑃1𝑃2

𝑃1𝑃2

𝑥2 − 𝑥1, 𝑦2 − 𝑦1

= 𝑥2 − 𝑥1, 𝑦2 − 𝑦1𝑃1𝑃2



VECTORS VIEWED GEOMETRICALLY

Example Draw the vector v = 2,1  from the point −1,2 .

End Point =

= −1,2 + 2,1

Initial Point + v

= 1,3



GRAPHICAL REPRESENTATIONS OF VECTOR FIELDS

Example Sketch some vectors in the vector field F 𝑥, 𝑦 = 𝑥 i.

End Point =

= 𝑥, 𝑦 + 𝑥, 0

Initial Point + F

= 2𝑥, 𝑦



GRAPHICAL REPRESENTATIONS OF VECTOR FIELDS

Example Sketch some vectors in the vector field F 𝑥, 𝑦 = −𝑦 i + 𝑥 j.

End Point =

= 𝑥, 𝑦 + −𝑦, 𝑥

Initial Point + F

= 𝑥 − 𝑦, 𝑥 + 𝑦

F = 𝑐 ⇒ −𝑦 2 + 𝑥2 = 𝑐

⇒ 𝑥2 + 𝑦2 = 𝑐2



The set of points in the plane where a 
function 𝑓 𝑥, 𝑦  has a constant value 
𝑓 𝑥, 𝑦 = 𝑐 is called a level curve of 𝑓.

LEVEL CURVES



DIRECTIONAL DERIVATIVES

• To determine the slope at a point on a surface, you will define a 

new type of derivative called a directional derivative.

• To do this is to use a unit vector

u = 𝑢1i + 𝑢2j

that has its initial point at (𝑥0, 𝑦0) 

and points in the desired direction.

𝐷u𝑓 𝑥0, 𝑦0 = 𝑓𝑥 𝑥0, 𝑦0 𝑢1 + 𝑓𝑦 𝑥0, 𝑦0 𝑢2



THE GRADIENT

If ∇𝑓 ≠ 0 at 𝑃, then among all possible directional derivatives of 𝑓 at 𝑃, 

the derivative in the direction of ∇𝑓 at 𝑃 has the largest value. The value 

of this largest directional derivative is ∇𝑓  at 𝑃.



GRADIENT FIELDS

• If 𝑓 𝑥, 𝑦  is a function of two variables, then the gradient of 𝑓 is 

given by

∇𝑓 = 𝑓𝑥 , 𝑓𝑦 = 𝑓𝑥  i + 𝑓𝑦  j

• This formula defines a vector field in 2-space called the gradient 

field of 𝒇.

• At each point in a gradient field where the gradient is nonzero, 

the vector points in the direction in which the rate of increase of 

𝑓 is maximum.



GRADIENT FIELDS

Example Sketch the gradient field of 𝑓 𝑥, 𝑦 = 𝑥 + 𝑦.

End Point =

= 𝑥, 𝑦 + 1,1

Initial Point + ∇𝑓

= 𝑥 + 1, 𝑦 + 1

∇𝑓 = i + j

Draw some level curves.

Note that at each point, ∇𝑓 is normal to 
the level curve of 𝑓 through the point.



CONSERVATIVE FIELDS AND POTENTIAL FUNCTIONS

If F is an arbitrary vector field in 2 −space or 3 −space, we can ask 
whether it is the gradient field of some function 𝑓, and if so, how we can 
find 𝑓.

Definition: A vector field F in 2 −space or 3 −space is said to be 

conservative in a region if it is the gradient field for some function 𝑓 in 

that region, that is, if

F = ∇𝑓

The function 𝑓 is called a potential function for F in the region.



CONSERVATIVE FIELDS AND POTENTIAL FUNCTIONS

The vector field given by F 𝑥, 𝑦 = 2𝑥 i + 𝑦 j is conservative.

To see this, consider the potential function 𝑓 𝑥, 𝑦 = 𝑥2 +
1

2
𝑦2.

Because

∇𝑓 = 2𝑥 i + 𝑦 j = F

it follows that F is conservative.

Example



TEST FOR CONSERVATIVE VECTOR FIELD IN THE PLANE

Let 𝑀 𝑥, 𝑦  and 𝑁 𝑥, 𝑦  have continuous first partial derivatives on an 

open disk 𝑅. The vector field F 𝑥, 𝑦 = 𝑀 i + 𝑁 j is conservative if and 

only if

𝜕𝑀

𝜕𝑦
=

𝜕𝑁

𝜕𝑥

Example Find 𝛼 such that F 𝑥, 𝑦 = 4𝑥2 + 𝛼𝑥𝑦 i + 3𝑦2 + 4𝑥2 j is 
a gradient field (conservative).

𝑀 = 4𝑥2 + 𝛼𝑥𝑦

𝑁 = 3𝑦2 + 4𝑥2

F is a gradient filed ⇔ 𝑀𝑦 = 𝑁𝑥

⇔ 𝛼𝑥 = 8𝑥

⇔ 𝛼 = 8



TEST FOR CONSERVATIVE VECTOR FIELD IN THE PLANE

Example Decide whether the vector field is conservative.

a) F 𝑥, 𝑦 = 𝑥2𝑦 i + 𝑥𝑦 j

𝑀 𝑁

𝜕𝑀

𝜕𝑦
= 𝑥2

𝜕𝑁

𝜕𝑥
= 𝑦≠

F is not conservative.

b) F 𝑥, 𝑦 = 2𝑥 i + 𝑦 j

𝑀 𝑁

𝜕𝑀

𝜕𝑦
= 0

𝜕𝑁

𝜕𝑥
= 0=

F is conservative.



FINDING A POTENTIAL FUNCTION FOR F 𝒙, 𝒚

Example Find a potential function for F 𝑥, 𝑦 = 2𝑥𝑦 i + 𝑥2 − 𝑦  j.

𝑀 𝑁

𝜕𝑀

𝜕𝑦
= 2𝑥

𝜕𝑁

𝜕𝑥
= 2𝑥=

∴ F is conservative.

There exists 𝑓 𝑥, 𝑦  such that F = ∇𝑓.

2𝑥𝑦 i + 𝑥2 − 𝑦  j = 𝑓𝑥  i + 𝑓𝑦  j

𝑓𝑥 = 2𝑥𝑦 ⇒ 𝑓 = න 2𝑥𝑦 𝑑𝑥 = 𝑥2𝑦 + 𝑔 𝑦

𝑓𝑦 = 𝑥2 − 𝑦 ⇒ 𝑥2 + 𝑔′ 𝑦 = 𝑥2 − 𝑦

⇒ 𝑔′ 𝑦 = −𝑦

⇒ 𝑔 𝑦 = −
1

2
𝑦2 + 𝑐 ∴ 𝑓 𝑥, 𝑦 = 𝑥2𝑦 −

1

2
𝑦2 + 𝑐



THE 𝛁 OPERATOR

• The symbol ∇ that appears in the gradient expression ∇𝑓 has not 

been given a meaning of its own.

• It is often convenient to view ∇ as an operator.

∇=
𝜕

𝜕𝑥
 i +

𝜕

𝜕𝑦
 j

∇=
𝜕

𝜕𝑥
 i +

𝜕

𝜕𝑦
 j +

𝜕

𝜕𝑧
 k

• We call it the del operator.

Plane

Space



DIVERGENCE AND CURL

• We will now define two important operations on vector fields: the 

divergence and the curl of the field.

• These names originate in the study of fluid flow.

• Although we will focus only on their computation, seeing their 

physical meaning before is convenient.



DIVERGENCE AND CURL

The divergence relates to the way in which fluid flows toward or away from 

a point.

The field acting 
like a source.

The field acting 
like a sink.

div F 𝑥, 𝑦 > 0

div F 𝑥, 𝑦 < 0

Slow flow in Fast flow out

div F 𝑥, 𝑦 > 0

Fast flow in Slow flow out

div F 𝑥, 𝑦 < 0



DIVERGENCE AND CURL

The curl relates to the rotational properties of the fluid at a point.

Clockwise Rotation

Curl F(𝑥, 𝑦) is negative

Counter-Clockwise Rotation

Curl F(𝑥, 𝑦) is positive



DEFINITION OF CURL OF A VECTOR FIELD

The curl of F 𝑥, 𝑦, 𝑧 = 𝑀 𝑥, 𝑦, 𝑧 i + 𝑁 𝑥, 𝑦, 𝑧 j + 𝑃 𝑥, 𝑦, 𝑧 k is

curl F 𝑥, 𝑦, 𝑧 = ∇ × F =

i j k
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑀 𝑁 𝑃

=
𝜕𝑃

𝜕𝑦
−

𝜕𝑁

𝜕𝑧
i −

𝜕𝑃

𝜕𝑥
−

𝜕𝑀

𝜕𝑧
j +

𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
k



DEFINITION OF CURL OF A VECTOR FIELD

The curl of F 𝑥, 𝑦 = 𝑀 𝑥, 𝑦 i + 𝑁 𝑥, 𝑦 j is

curl F 𝑥, 𝑦 = ∇ × F =

i j k
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑀 𝑁 0

= 0 i − 0 j +
𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
k =

𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
k



DEFINITION OF CURL OF A VECTOR FIELD



DEFINITION OF CURL OF A VECTOR FIELD



DEFINITION OF CURL OF A VECTOR FIELD

curl F = ∇ × F =

i j k
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

2𝑥𝑦 𝑥2 + 𝑧2 2𝑦𝑧

= 2𝑧 − 2𝑧 i − 0 − 0 j + 2𝑥 − 2𝑥 k

Example Find curl F of the vector field
F 𝑥, 𝑦, 𝑧 = 2𝑥𝑦 i + 𝑥2 + 𝑧2  j + 2𝑦𝑧  k

= 0



TEST FOR CONSERVATIVE VECTOR FIELD IN SPACE

Suppose that 𝑀, 𝑁, and 𝑃 have continuous first partial derivatives in an open 
sphere 𝑄 in space. The vector field F 𝑥, 𝑦, 𝑧 = 𝑀i + 𝑁j + 𝑃k is conservative 
if and only if curl F = 0.

𝜕𝑃

𝜕𝑦
−

𝜕𝑁

𝜕𝑧
i −

𝜕𝑃

𝜕𝑥
−

𝜕𝑀

𝜕𝑧
j +

𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
k = 0

𝜕𝑃

𝜕𝑦
=

𝜕𝑁

𝜕𝑧
,

𝜕𝑃

𝜕𝑥
=

𝜕𝑀

𝜕𝑧
,

𝜕𝑁

𝜕𝑥
=

𝜕𝑀

𝜕𝑦

Example The vector field F 𝑥, 𝑦, 𝑧 = 2𝑥𝑦 i + 𝑥2 + 𝑧2  j + 2𝑦𝑧  k in 
the previous example is conservative because curl F = 0.



TEST FOR CONSERVATIVE VECTOR FIELD IN SPACE

Example Show that the vector field
F 𝑥, 𝑦, 𝑧 = 𝑥3𝑦2𝑧 i + 𝑥2𝑧 j + 𝑥2𝑦 k

is not conservative.

𝜕𝑃

𝜕𝑦
= 𝑥2

𝑀 𝑁 𝑃

𝜕𝑁

𝜕𝑧
= 𝑥2

𝜕𝑃

𝜕𝑥
= 2𝑥𝑦

𝜕𝑀

𝜕𝑧
= 𝑥3𝑦2

∴ F is not conservative



FINDING A POTENTIAL FUNCTION FOR F 𝒙, 𝒚, 𝒛

Example Find a potential function
F 𝑥, 𝑦, 𝑧 = 2𝑥𝑦 i + 𝑥2 + 𝑧2  j + 2𝑦𝑧 k

From previous example, you know that the vector field is conservative. If 
𝑓 𝑥, 𝑦, 𝑧  is a function such that F = ∇𝑓, then

𝑓𝑥 𝑓𝑦

𝑓𝑥 = 2𝑥𝑦 ⇒ 𝑓 = න 2𝑥𝑦 𝑑𝑥 = 𝑥2𝑦 + 𝑔 𝑦, 𝑧

But 𝑓𝑦 = 𝑥2 + 𝑧2 ⇒ 𝑥2 + 𝑔𝑦 𝑦, 𝑧 = 𝑥2 + 𝑧2

⇒ 𝑔 𝑦, 𝑧 = න 𝑧2𝑑𝑦 = 𝑧2𝑦 + 𝐾 𝑧

∴ 𝑓 = 𝑥2𝑦 + 𝑧2𝑦 + 𝐾 𝑧



FINDING A POTENTIAL FUNCTION FOR F 𝒙, 𝒚, 𝒛

Example Find a potential function
F 𝑥, 𝑦, 𝑧 = 2𝑥𝑦 i + 𝑥2 + 𝑧2  j + 2𝑦𝑧 k

From previous example, you know that the vector field given by is 
conservative. If 𝑓 𝑥, 𝑦, 𝑧  is a function such that F = ∇𝑓, then

𝑓𝑧

∴ 𝑓 = 𝑥2𝑦 + 𝑧2𝑦 + 𝐾 𝑧

𝑓𝑧 = 2𝑦𝑧 ⇒ 2𝑦𝑧 + 𝐾′ 𝑧 = 2𝑦𝑧 ⇒ 𝐾′ 𝑧 = 0

∴ 𝑓 𝑥, 𝑦, 𝑧 = 𝑥2𝑦 + 𝑧2𝑦 + 𝑐

⇒ 𝐾 𝑧 = 𝑐



DIVERGENCE OF A VECTOR FIELD

• The divergence of F 𝑥, 𝑦 = 𝑀 i + 𝑁 j in the plane is

div F = ∇ ⋅ F 𝑥, 𝑦 =
𝜕𝑀

𝜕𝑥
+

𝜕𝑁

𝜕𝑦

• The divergence of F 𝑥, 𝑦, 𝑧 = 𝑀 i + 𝑁 j + 𝑃 k in the space is

div F = ∇ ⋅ F 𝑥, 𝑦, 𝑧 =
𝜕𝑀

𝜕𝑥
+

𝜕𝑁

𝜕𝑦
+

𝜕𝑃

𝜕𝑧



DIVERGENCE OF A VECTOR FIELD

Example Find the divergence at the point 2,1, −1  for the vector field
F 𝑥, 𝑦, 𝑧 = 𝑥3𝑦2𝑧 i + 𝑥2𝑧 j + 𝑥2𝑦 k

div F =
𝜕

𝜕𝑥
𝑥3𝑦2𝑧 +

𝜕

𝜕𝑦
𝑥2𝑧 +

𝜕

𝜕𝑧
𝑥2𝑦 = 3𝑥2𝑦2𝑧

div F 2,1, −1 = −12

Theorem If F 𝑥, 𝑦, 𝑧 = 𝑀 i + 𝑁 j + 𝑃 k is a vector field and 𝑀, 𝑁, and 
𝑃 have continuous second partial derivatives, then

div curl F = 0



F is 

conservative

F is gradient 

field (F = ∇f)

curl F = 0

?

?

EQUIVALENT STATEMENTS



Chapter: [15]
TOPICS IN VECTOR CALCULUS

Section: [15.2]
LINE INTEGRALS

Course: Calculus (4)



PARAMETRIC CURVES IN 𝟑 −SPACE

A space curve 𝐶 is the set of all ordered triples 𝑥, 𝑦, 𝑧  together with 

their defining parametric equations

𝑥 = 𝑓 𝑡 , 𝑦 = 𝑔 𝑡  and 𝑧 = ℎ 𝑡

Example The Circular Helix

𝑥 = 10 cos 𝑡
𝑦 = 10 sin 𝑡
𝑧 = 𝑡

r 𝑡 = 10 cos 𝑡 i + 10 sin 𝑡 j + 𝑡k
= 10 cos 𝑡 , 10 sin 𝑡  , 𝑡



SMOOTH PARAMETRIZATIONS

• We will say that a curve represented by r(𝑡)  is smoothly 

parametrized by r(𝑡), or that r(𝑡) is a smooth function of 𝑡 if:

✓ r′(𝑡) is continuous, and

✓ r′ 𝑡 ≠ 𝟎 for any allowable value of 𝑡.

• Geometrically, this means that a smoothly parametrized curve 

can have no abrupt (مفاجئ) changes in direction as the parameter 

increases.



SMOOTH PARAMETRIZATIONS

Example Determine whether the vector-valued 
function r 𝑡 = 𝑡2i + 𝑡3j is smooth.

r′ 𝑡 = 2𝑡i + 3𝑡2j

✓ The components are continuous functions, and

✓ they are both equal to zero if 𝑡 = 0.

✓ So, r(𝑡) is NOT a smooth function at 𝑡 = 0.



PIECEWISE SMOOTH PARAMETRIZATION

Example

A curve 𝐶  is piecewise smooth when the interval 𝑎, 𝑏  can be 
partitioned into a finite number of subintervals, on each of which 𝐶 is 
smooth.

Find a piecewise smooth parametrization 
of the graph of 𝐶 shown in the figure.

𝐶1 𝐶2 𝐶3

0 ≤ 𝑡 ≤ 1 1 ≤ 𝑡 ≤ 2 2 ≤ 𝑡 ≤ 3

𝑥 𝑡 = 0

𝑦 𝑡 = 2𝑡

𝑧 𝑡 = 0

𝑥 𝑡 = 𝑡 − 1

𝑦 𝑡 = 2

𝑧 𝑡 = 0

𝑥 𝑡 = 1

𝑦 𝑡 = 2

𝑧 𝑡 = 𝑡 − 2

𝑃

𝑄

1 − 𝑡 𝑃 + 𝑡𝑄

0 ≤ 𝑡 ≤ 1



PIECEWISE SMOOTH PARAMETRIZATION

Example Find a piecewise smooth parametrization 
of the graph of 𝐶 shown in the figure.

𝐶1 𝐶2 𝐶3

0 ≤ 𝑡 ≤ 1 1 ≤ 𝑡 ≤ 2 2 ≤ 𝑡 ≤ 3

𝑥 𝑡 = 0

𝑦 𝑡 = 2𝑡

𝑧 𝑡 = 0

𝑥 𝑡 = 𝑡 − 1

𝑦 𝑡 = 2

𝑧 𝑡 = 0

𝑥 𝑡 = 1

𝑦 𝑡 = 2

𝑧 𝑡 = 𝑡 − 2

𝐶 = ൞

2𝑡 j : 0 ≤ 𝑡 ≤ 1

𝑡 − 1  i + 2 j : 1 ≤ 𝑡 ≤ 2

i + 2 j + 𝑡 − 2  k : 2 ≤ 𝑡 ≤ 3



ARC LENGTH FROM THE VECTOR VIEWPOINT

If 𝐶 is the graph of a smooth vector-valued function r(𝑡), then its arc 
length ℓ from 𝑡 = 𝑎 to 𝑡 = 𝑏 is

ℓ = න

𝑎

𝑏
𝑑r

𝑑𝑡
𝑑𝑡 = න

𝑎

𝑏
𝑑𝑥

𝑑𝑡

2

+
𝑑𝑦

𝑑𝑡

2

+
𝑑𝑧

𝑑𝑡

2

𝑑𝑡

Example Find the arc length of that portion of the circular helix 
r 𝑡 = cos 𝑡 , sin 𝑡 , 𝑡  from 𝑡 = 0 to 𝑡 = 𝜋.



ARC LENGTH FROM THE VECTOR VIEWPOINT

ℓ = න

𝑎

𝑏
𝑑r

𝑑𝑡
𝑑𝑡 = න

𝑎

𝑏
𝑑𝑥

𝑑𝑡

2

+
𝑑𝑦

𝑑𝑡

2

+
𝑑𝑧

𝑑𝑡

2

𝑑𝑡

Example Find the arc length of that portion of the circular helix 
r 𝑡 = cos 𝑡 , sin 𝑡 , 𝑡  from 𝑡 = 0 to 𝑡 = 𝜋.

r′ 𝑡 = − sin 𝑡 , cos 𝑡 , 1

r′ 𝑡 = − sin 𝑡 2 + cos2 𝑡 + 1

= 2

ℓ = න

0

𝜋

r′ 𝑡 𝑑𝑡

= න

0

𝜋

2 𝑑𝑡

= 2 𝜋



LINE INTEGRALS

න

𝑎

𝑏

𝑓 𝑥 𝑑𝑥 Integrate over interval 𝑎, 𝑏

න

𝐶

𝑓 𝑥, 𝑦 𝑑𝑠 Integrate over a piecewise 
smooth curve 𝐶

Line (Curve) Integral



EVALUATION OF A LINE INTEGRAL AS A DEFINITE INTEGRAL

To evaluate a line integral over a plane curve 𝐶 given 
by r 𝑡 = 𝑥 𝑡  i + 𝑦 𝑡  j use the fact that

𝑑𝑠 = r′ 𝑡 𝑑𝑡 = 𝑥′ 𝑡
2

+ 𝑦′ 𝑡
2

 𝑑𝑡

The arc length of 𝐶 between points 𝑃𝑘−1 and 𝑃𝑘  is 
given by

Δ𝑠𝑘 = න

𝑡𝑘−1

𝑡𝑘

r′ 𝑡 𝑑𝑡 = 𝑟′ 𝑡𝑘
∗  Δ𝑡𝑘



EVALUATION OF A LINE INTEGRAL AS A DEFINITE INTEGRAL

Therefore, if 𝐶 is smoothly parametrized by
r 𝑡 = 𝑥 𝑡  i + 𝑦 𝑡  j ; 𝑡 ∈ 𝑎, 𝑏

then

න

𝐶

𝑓 𝑥, 𝑦 𝑑𝑠 = න

𝑎

𝑏

𝑓 𝑥 𝑡 , 𝑦 𝑡 r′ 𝑡 𝑑𝑡

= න

𝑎

𝑏

𝑓 𝑥 𝑡 , 𝑦 𝑡 𝑥′ 𝑡 2 + 𝑦′ 𝑡 2 𝑑𝑡



EVALUATION OF A LINE INTEGRAL AS A DEFINITE INTEGRAL

Similarly, if 𝐶 is a curve in 3 −space that is smoothly parametrized by 
r 𝑡 = 𝑥 𝑡  i + 𝑦 𝑡  j + 𝑧 𝑡  k ; 𝑡 ∈ 𝑎, 𝑏

then

න

𝐶

𝑓 𝑥, 𝑦, 𝑧 𝑑𝑠 = න

𝑎

𝑏

𝑓 𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 r′ 𝑡 𝑑𝑡

= න

𝑎

𝑏

𝑓 𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 𝑥′ 𝑡
2

+ 𝑦′ 𝑡
2

+ 𝑧 𝑡
2

𝑑𝑡

Note: න

𝐶

1 𝑑𝑠 = න

𝑎

𝑏

r′ 𝑡 𝑑𝑡 = length of the curve 𝐶



EVALUATION OF A LINE INTEGRAL AS A DEFINITE INTEGRAL

Example Using the given parametrization, evaluate the line 

integral ׬𝐶
1 + 𝑥𝑦2 𝑑𝑠

𝐶 = 1 − 𝑡 1,2 + 𝑡 0,0 𝑡 ∈ 0,1

= 1 − 𝑡, 2 − 2𝑡 + 0,0

= 1 − 𝑡, 2 − 2𝑡

r 𝑡 = 1 − 𝑡 i + 2 − 2𝑡 j

𝑥 𝑡 = 1 − 𝑡

𝑦 𝑡 = 2 − 2𝑡

r′ 𝑡 = −i − 2j

r′ 𝑡 = 5



EVALUATION OF A LINE INTEGRAL AS A DEFINITE INTEGRAL

Example Using the given parametrization, evaluate the line 

integral ׬𝐶
1 + 𝑥𝑦2 𝑑𝑠

𝑡 ∈ 0,1

𝑥 𝑡 = 1 − 𝑡

𝑦 𝑡 = 2 − 2𝑡

න

𝐶

1 + 𝑥𝑦2 𝑑𝑠 = න

0

1

1 + 1 − 𝑡 2 − 2𝑡 2 r′ 𝑡 𝑑𝑡

r′ 𝑡 = 5= න

0

1

1 + 4 1 − 𝑡 3 5𝑑𝑡

= 2 5



EVALUATION OF A LINE INTEGRAL AS A DEFINITE INTEGRAL

Example Using the given parametrization, evaluate the line 

integral ׬𝐶
1 + 𝑥𝑦2 𝑑𝑠

r′ 𝑡 = 5

𝐶 = 1 − 𝑡 0,0 + 𝑡 1,2 𝑡 ∈ 0,1= 𝑡, 2𝑡

r 𝑡 = 𝑡 i + 2𝑡 j r′ 𝑡 = i + 2j

න

𝐶

1 + 𝑥𝑦2 𝑑𝑠 = න

0

1

1 + 4𝑡3 r′ 𝑡 𝑑𝑡

= න

0

1

1 + 4𝑡3 5𝑑𝑡 = 2 5



EVALUATION OF A LINE INTEGRAL AS A DEFINITE INTEGRAL

NOTE • The integrals in the previous example agree, even though the 

corresponding parametrizations of 𝐶 have opposite orientations.

• This illustrates the important result that the value of a line 

integral of 𝑓 with respect to 𝑠 along 𝐶 does not depend on the 

parametrization of the line segment 𝐶 ; any smooth 

parametrization will produce the same value.

• Later in this section we will see that for line integrals of vector 

functions, the orientation of the curve is important.



EVALUATION OF A LINE INTEGRAL AS A DEFINITE INTEGRAL

Example Evaluate the line integral ׬𝐶
𝑥𝑦 + 𝑧3 𝑑𝑠 from

1,0,0  to −1,0, 𝜋  along the helix 𝐶 that is 
represented by the parametric equations

𝑥 = cos 𝑡 𝑦 = sin 𝑡 𝑧 = 𝑡 𝑡 ∈ 0, 𝜋

r 𝑡 = cos 𝑡 i + sin 𝑡 j + 𝑡k

r′ 𝑡 = − sin 𝑡 2 + cos 𝑡 2 + 1 2 = 2

r′ 𝑡 = − sin 𝑡 i + cos 𝑡 j + k

න

𝐶

𝑥𝑦 + 𝑧3 𝑑𝑠 = න

0

𝜋

cos 𝑡 sin 𝑡 + 𝑡3 2𝑑𝑡 =
2 𝜋4

4



EVALUATING A LINE INTEGRAL OVER A PATH

Let 𝐶  be a path composed of smooth curves 𝐶1, 𝐶2, ⋯ , 𝐶𝑛 . If 𝑓  is 

continuous on 𝐶, then it can be shown that

න

𝐶

𝑓 𝑥, 𝑦 𝑑𝑠 = න

𝐶1

𝑓 𝑥, 𝑦 𝑑𝑠 + න

𝐶2

𝑓 𝑥, 𝑦 𝑑𝑠 + ⋯ + න

𝐶𝑛

𝑓 𝑥, 𝑦 𝑑𝑠

Example Evaluate ׬𝐶
𝑥𝑑𝑠  where 𝐶  is the piecewise 

smooth curve shown in the figure.

𝐶1: 𝑥 = 𝑡 𝑦 = 𝑡 𝑡 ∈ 0,1

𝐶2: 𝑥 = 1 − 𝑡 𝑦 = 1 − 𝑡 2 𝑡 ∈ 0,1



EVALUATING A LINE INTEGRAL OVER A PATH

Example Evaluate ׬𝐶
𝑥𝑑𝑠  where 𝐶  is the piecewise 

smooth curve shown in the figure.

𝐶1: 𝑥 = 𝑡 𝑦 = 𝑡 𝑡 ∈ 0,1

r 𝑡 = 𝑡 i + 𝑡 j

r′ 𝑡 = i + j

r′ 𝑡 = 2

න

𝐶1

𝑥𝑑𝑠 = න

0

1

𝑡 2𝑑𝑡 =
1

2



EVALUATING A LINE INTEGRAL OVER A PATH

Example Evaluate ׬𝐶
𝑥𝑑𝑠  where 𝐶  is the piecewise 

smooth curve shown in the figure.

𝐶1: 𝑥 = 𝑡 𝑦 = 𝑡 𝑡 ∈ 0,1

r 𝑡 = 1 − 𝑡  i + 1 − 𝑡 2 j

r′ 𝑡 = −i − 2 1 − 𝑡 j

r′ 𝑡 = 1 + 4 1 − 𝑡 2

න

𝐶2

𝑥𝑑𝑠 = න

0

1

1 − 𝑡 1 + 4 1 − 𝑡 2𝑑𝑡

= −
1

8
න

5

1

𝑢 𝑑𝑢 =
1

12
5 5 − 1

𝐶2: 𝑥 = 1 − 𝑡 𝑦 = 1 − 𝑡 2 𝑡 ∈ 0,1

Let
𝑢 = 1 + 4 1 − 𝑡 2



EVALUATING A LINE INTEGRAL OVER A PATH

Example Evaluate ׬𝐶
𝑥𝑑𝑠  where 𝐶  is the piecewise 

smooth curve shown in the figure.

𝐶1: 𝑥 = 𝑡 𝑦 = 𝑡 𝑡 ∈ 0,1

∴ න

𝐶

𝑥𝑑𝑠 =

𝐶2: 𝑥 = 1 − 𝑡 𝑦 = 1 − 𝑡 2 𝑡 ∈ 0,1

න

𝐶1

𝑥𝑑𝑠 + න

𝐶2

𝑥𝑑𝑠

=
1

2
+

1

12
5 5 − 1



LINE INTEGRALS OF VECTOR FIELDS

• We can also consider integrating a vector field over a curve in the 

plane.

• One of the most important physical applications of line integrals is 

how to determine the work done by F in moving a particle along a 

curve C.

• The work 𝑊 done by a constant force of magnitude 𝐹 on a point 

that moves a distance 𝑑 in a straight line in the direction of the 

force is 𝑊 = 𝐹 𝑑.



LINE INTEGRALS OF VECTOR FIELDS

• Consider a force field F 𝑥, 𝑦 and a piecewise continuous smooth curve C.

• We wish to compute the work done by this force in moving a particle 

along a smooth curve C.

• We divide C into sub-arcs with lengths Δ𝑠𝑖.

• To determine the work done by the force, 

you need consider only that part of the 

force that is acting in the same direction as 

that in which the object is, T 𝑡 .



LINE INTEGRALS OF VECTOR FIELDS

We call T(𝑡) the unit tangent vector to C at 𝑡, where

T 𝑡 =
r′ 𝑡

r′ 𝑡

This means that at each point on 𝐶, you can 
consider the projection of the force vector F 
onto the unit tangent vector T.

F

T

projTF

projTF =
F ⋅ T

T 2
T

= F ⋅ T  T

FORCE



DEFINITION OF THE LINE INTEGRAL OF A VECTOR FIELD

Let F be a continuous vector field defined on a smooth curve 𝐶 given by 
r 𝑡  where 𝑎 ≤ 𝑡 ≤ 𝑏.

The line integral of F on 𝐶 is given by F ⋅ T 𝑑𝑠 = F ⋅
r′ 𝑡

r′ 𝑡
r′ 𝑡  𝑑𝑡

= F ⋅ r′ 𝑡 𝑑𝑡

= F ⋅ 𝑑r
න

𝐶

F ⋅ T 𝑑𝑠 = න

𝐶

F ⋅ 𝑑r

= න

𝑎

𝑏

F 𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 ⋅ r′ 𝑡  𝑑𝑡



DEFINITION OF THE LINE INTEGRAL OF A VECTOR FIELD

Example Find the work done by the force field

F 𝑥, 𝑦, 𝑧 = −
1

2
𝑥 i −

1

2
𝑦 j +

1

4
 k

on a particle as it moves from the point 1,0,0  to −1,0,3𝜋  
along the helix given by r 𝑡 = cos 𝑡 i + sin 𝑡 j + 𝑡 k.

න

𝐶

F ⋅ 𝑑r = න

𝑎

𝑏

F 𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 ⋅ r′ 𝑡  𝑑𝑡

r 𝑡 = cos 𝑡 i + sin 𝑡 j + 𝑡 k

1 0 0

−1 0 3𝜋

𝑡 = 0
𝑡 = 3𝜋



DEFINITION OF THE LINE INTEGRAL OF A VECTOR FIELD

Example Find the work done by the force field

F 𝑥, 𝑦, 𝑧 = −
1

2
𝑥 i −

1

2
𝑦 j +

1

4
 k

on a particle as it moves from the point 1,0,0  to −1,0,3𝜋  
along the helix given by r 𝑡 = cos 𝑡 i + sin 𝑡 j + 𝑡 k.

න

𝐶

F ⋅ 𝑑r = න

𝑎

𝑏

F 𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 ⋅ r′ 𝑡  𝑑𝑡

r 𝑡 = cos 𝑡 i + sin 𝑡 j + 𝑡 k

𝑡 = 0

𝑡 = 3𝜋

r′ 𝑡 = − sin 𝑡  i + cos 𝑡  j + k

F 𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 = −
1

2
cos 𝑡  i −

1

2
sin 𝑡  j +

1

4
 k



DEFINITION OF THE LINE INTEGRAL OF A VECTOR FIELD

Example Find the work done by the force field

F 𝑥, 𝑦, 𝑧 = −
1

2
𝑥 i −

1

2
𝑦 j +

1

4
 k

on a particle as it moves from the point 1,0,0  to −1,0,3𝜋  
along the helix given by r 𝑡 = cos 𝑡 i + sin 𝑡 j + 𝑡 k.

න

𝐶

F ⋅ 𝑑r =

𝑡 = 0

𝑡 = 3𝜋

න

0

3𝜋

−
1

2
cos 𝑡 , −

1

2
sin 𝑡 ,

1

4
⋅ − sin 𝑡 , cos 𝑡 , 1  𝑑𝑡

= න

0

3𝜋
1

4
𝑑𝑡 =

3𝜋

4



ORIENTATION AND PARAMETRIZATION OF A CURVE

NOTE • For line integrals of vector functions, the orientation of the 

curve 𝐶 is important.

• If the orientation of the curve is reversed, the unit tangent 

vector T 𝑡  is changed to −T 𝑡 , and you obtain

න

−𝐶

F ⋅ 𝑑r = − න

𝐶

F ⋅ 𝑑r



ORIENTATION AND PARAMETRIZATION OF A CURVE

Example Let F 𝑥, 𝑦 = 𝑦 i + 𝑥2 j. Evaluate the line integral ׬𝐶
F ⋅ 𝑑r 

for each parabolic curve shown in the figure.

න

𝐶1

F ⋅ 𝑑r1 = න

0

3

F 𝑥 𝑡 , 𝑦 𝑡 ⋅ r1
′ 𝑡  𝑑𝑡

𝐶1: r1 𝑡 = 4 − 𝑡 i + 4𝑡 − 𝑡2 j 0 ≤ 𝑡 ≤ 3

= න

0

3

4𝑡 − 𝑡2 i + 4 − 𝑡 2 j ⋅ −i + 4 − 2𝑡 j  𝑑𝑡

= න

0

3

−2𝑡3 + 21𝑡2 − 68𝑡 + 64  𝑑𝑡 =
69

2



ORIENTATION AND PARAMETRIZATION OF A CURVE

Example Let F 𝑥, 𝑦 = 𝑦 i + 𝑥2 j. Evaluate the line integral ׬𝐶
F ⋅ 𝑑r 

for each parabolic curve shown in the figure.

න

𝐶2

F ⋅ 𝑑r𝟐 = න

1

4

F 𝑥 𝑡 , 𝑦 𝑡 ⋅ r2
′ 𝑡  𝑑𝑡

𝐶2: r2 𝑡 = 𝑡i + 4𝑡 − 𝑡2 j 1 ≤ 𝑡 ≤ 4

= න

1

4

4𝑡 − 𝑡2 i + 𝑡2 j ⋅ i + 4 − 2𝑡 j  𝑑𝑡

= න

1

4

−2𝑡3 + 3𝑡2 + 4𝑡  𝑑𝑡 = −
69

2



LINE INTEGRALS IN DIFFERENTIAL FORM

• A second commonly used form of line integrals is derived from the 

vector field notation used in Section 15.1.

• If F is a vector field of the form F 𝑥, 𝑦 = 𝑀i + 𝑁j, and 𝐶 is given by 

r 𝑡 = 𝑥 𝑡 i + 𝑦 𝑡 j, then F ⋅ 𝑑r is often written as 𝑀𝑑𝑥 + 𝑁𝑑𝑦.

න

𝐶

F ⋅ 𝑑r = න

𝐶

F ⋅
𝑑r

𝑑𝑡
 𝑑𝑡 = න

𝐶

𝑀i + 𝑁j ⋅ 𝑥′ 𝑡 i + 𝑦′ 𝑡 j  𝑑𝑡

= න

𝐶

𝑀
𝑑𝑥

𝑑𝑡
+ 𝑁

𝑑𝑦

𝑑𝑡
𝑑𝑡 = න

𝐶

𝑀𝑑𝑥 + 𝑁𝑑𝑦



ORIENTATION AND PARAMETRIZATION OF A CURVE

Example Evaluate ׬𝐶
𝑦𝑑𝑥 + 𝑥2𝑑𝑦  where 𝐶 is the parabolic arc given 

by 𝑦 = 4𝑥 − 𝑥2 from 4,0  to 1,3  as shown in the figure.

න

𝐶

𝑦𝑑𝑥 + 𝑥2𝑑𝑦 =

𝑑𝑦 = 4 − 2𝑥 𝑑𝑥

න

4

1

4𝑥 − 𝑥2 𝑑𝑥 + 𝑥2 4 − 2𝑥 𝑑𝑥

= න

4

1

4𝑥 + 3𝑥2 − 2𝑥3 𝑑𝑥

=
69

2



ORIENTATION AND PARAMETRIZATION OF A CURVE

Example Evaluate ׬𝐶
𝑥2𝑦𝑑𝑥 + 𝑥𝑑𝑦 where 𝐶 is the 

triangular path shown in the figure.

න

𝐶1

𝑥2𝑦𝑑𝑥 + 𝑥𝑑𝑦 =

𝐶1: From 0,0  to 1,0 𝑦 = 0 𝑑𝑦 = 0

න

0

1

0𝑑𝑥 = 0

න

𝐶2

𝑥2𝑦𝑑𝑥 + 𝑥𝑑𝑦 =

𝐶2: From 1,0  to 1,2 𝑥 = 1 𝑑𝑥 = 0

න

0

2

1 𝑑𝑦 = 2



ORIENTATION AND PARAMETRIZATION OF A CURVE

Example Evaluate ׬𝐶
𝑥2𝑦𝑑𝑥 + 𝑥𝑑𝑦 where 𝐶 is the 

triangular path shown in the figure.

න

𝐶3

𝑥2𝑦𝑑𝑥 + 𝑥𝑑𝑦 =

𝐶3: From 1,2  to 0,0 𝑦 = 2𝑥 𝑑𝑦 = 2𝑑𝑥

න

1

0

𝑥2 2𝑥 𝑑𝑥 + 𝑥 2𝑑𝑥

= න

1

0

2𝑥3 + 2𝑥 𝑑𝑥 = −
3

2

∴ න

𝐶

𝑥2𝑦𝑑𝑥 + 𝑥𝑑𝑦 = 0 + 2 −
3

2
=

1

2



ORIENTATION AND PARAMETRIZATION OF A CURVE

Example Evaluate ׬𝐶
𝑥2𝑦𝑑𝑥 + 𝑥𝑑𝑦 where 𝐶 is the triangular path shown 

in the figure using parametric equations.

න

𝐶1

𝑥2𝑦𝑑𝑥 + 𝑥𝑑𝑦 =

𝐶1: 𝑥 = 𝑡 𝑦 = 0𝑑𝑥 = 𝑑𝑡 𝑑𝑦 = 0

න

0

1

𝑡2 0 𝑑𝑡 + 𝑡 0 = 0



ORIENTATION AND PARAMETRIZATION OF A CURVE

Example Evaluate ׬𝐶
𝑥2𝑦𝑑𝑥 + 𝑥𝑑𝑦 where 𝐶 is the triangular path shown 

in the figure using parametric equations.

න

𝐶2

𝑥2𝑦𝑑𝑥 + 𝑥𝑑𝑦 =

𝐶2: 𝑥 = 1 𝑦 = 2𝑡𝑑𝑥 = 0 𝑑𝑦 = 2𝑑𝑡

න

0

1

12 2𝑡 0 + 1 2𝑑𝑡 = 2



ORIENTATION AND PARAMETRIZATION OF A CURVE

Example Evaluate ׬𝐶
𝑥2𝑦𝑑𝑥 + 𝑥𝑑𝑦 where 𝐶 is the triangular path shown 

in the figure using parametric equations.

න

𝐶3

𝑥2𝑦𝑑𝑥 + 𝑥𝑑𝑦 =

𝐶3: 𝑥 = 1 − 𝑡 𝑦 = 2 − 2𝑡𝑑𝑥 = −𝑑𝑡 𝑑𝑦 = −2𝑑𝑡

න

0

1

1 − 𝑡 2 2 − 2𝑡 −𝑑𝑡 + 1 − 𝑡 −2𝑑𝑡

= න

0

1

−2 1 − 𝑡 3𝑑𝑡 − න

0

1

2 1 − 𝑡 𝑑𝑡

= −
1

2
− 1 = −

3

2



ORIENTATION AND PARAMETRIZATION OF A CURVE

Example Evaluate ׬𝐶
𝑥2𝑦𝑑𝑥 + 𝑥𝑑𝑦 where 𝐶 is the triangular path shown 

in the figure using parametric equations.

න

𝐶

𝑥2𝑦𝑑𝑥 + 𝑥𝑑𝑦 = න

𝐶1

+ න

𝐶2

+ න

𝐶3

= 0 + 2 −
3

2
=

1

2



Chapter: [15]
TOPICS IN VECTOR CALCULUS

Section: [15.3]
INDEPENDENCE OF PATH; CONSERVATIVE VECTOR FIELDS

Course: Calculus (4)



LINE INTEGRAL OF A CONSERVATIVE VECTOR FIELD

Example Find the work done by the force field F 𝑥, 𝑦 =
1

2
𝑥𝑦i +

1

4
𝑥2j on 

a particle that moves from 0,0  to 1,1  along each path, as 
shown in the figures.

𝐶1 = 1 − 𝑡 0,0 + 𝑡 1,1 = 𝑡, 𝑡

r1 𝑡 = 𝑡i + 𝑡j

න

𝐶1

F ⋅ 𝑑r1 =

r1
′ 𝑡 = i + j

න

0

1

F 𝑥 𝑡 , 𝑦 𝑡 ⋅ r1
′ 𝑡  𝑑𝑡

𝑡 ∈ 0,1

= න

0

1
1

2
𝑡2,

1

4
𝑡2 ⋅ 1,1  𝑑𝑡 = න

0

1
3

4
𝑡2𝑑𝑡 =

1

4



LINE INTEGRAL OF A CONSERVATIVE VECTOR FIELD

Example Find the work done by the force field F 𝑥, 𝑦 =
1

2
𝑥𝑦i +

1

4
𝑥2j on 

a particle that moves from 0,0  to 1,1  along each path, as 
shown in the figures.

𝐶2: 𝑥 = 𝑦2

න

𝐶2

𝑀𝑑𝑥 + 𝑁𝑑𝑦 =න

0

1
1

2
𝑥𝑦𝑑𝑥 +

1

4
𝑥2𝑑𝑦

= න

0

1
1

2
𝑦2 𝑦 2𝑦𝑑𝑦 +

1

4
𝑦4 𝑑𝑦 = න

0

1
5

4
𝑦4𝑑𝑦

=
1

4

𝑑𝑥 = 2𝑦𝑑𝑦



LINE INTEGRAL OF A CONSERVATIVE VECTOR FIELD

Example Find the work done by the force field F 𝑥, 𝑦 =
1

2
𝑥𝑦i +

1

4
𝑥2j on 

a particle that moves from 0,0  to 1,1  along each path, as 
shown in the figures.

𝐶3: 𝑦 = 𝑥3

න

𝐶3

𝑀𝑑𝑥 + 𝑁𝑑𝑦 =න

0

1
1

2
𝑥𝑦𝑑𝑥 +

1

4
𝑥2𝑑𝑦

= න

0

1
1

2
𝑥 𝑥3 𝑑𝑥 +

1

4
𝑥2 3𝑥2𝑑𝑥 = න

0

1
5

4
𝑥4𝑑𝑥

=
1

4

𝑑𝑦 = 3𝑥2𝑑𝑥



LINE INTEGRAL OF A CONSERVATIVE VECTOR FIELD

Example Find the work done by the force field F 𝑥, 𝑦 =
1

2
𝑥𝑦i +

1

4
𝑥2j on 

a particle that moves from 0,0  to 1,1  along each path, as 
shown in the figures.

Note that the force field F 𝑥, 𝑦 =
1

2
𝑥𝑦i +

1

4
𝑥2j is conservative.

𝑀 𝑁

𝜕𝑀

𝜕𝑦
=

𝑥

2

𝜕𝑁

𝜕𝑥
=

So, the work done by the conservative vector field F is the same 
for each path.



LINE INTEGRAL OF A CONSERVATIVE VECTOR FIELD

Example Find the work done by the force field F 𝑥, 𝑦 =
1

2
𝑥𝑦i +

1

4
𝑥2j on 

a particle that moves from 0,0  to 1,1  along each path, as 
shown in the figures.

Since the force field F 𝑥, 𝑦 =
1

2
𝑥𝑦i +

1

4
𝑥2j is conservative, then

𝑀 𝑁F = ∇𝑓 = 𝑓𝑥 , 𝑓𝑦

= 𝑀, 𝑁

𝑓𝑦 = 𝑁 =
1

4
𝑥2 𝑓 = න

1

4
𝑥2𝑑𝑦 =

1

4
𝑥2𝑦 + 𝑔 𝑥

𝑓𝑥 = 𝑀
1

2
𝑥𝑦 + 𝑔′(𝑥) =

1

2
𝑥𝑦 𝑔′(𝑥) = 0

𝑔(𝑥) = 𝑐



LINE INTEGRAL OF A CONSERVATIVE VECTOR FIELD

Example Find the work done by the force field F 𝑥, 𝑦 =
1

2
𝑥𝑦i +

1

4
𝑥2j on 

a particle that moves from 0,0  to 1,1  along each path, as 
shown in the figures.

Since the force field F 𝑥, 𝑦 =
1

2
𝑥𝑦i +

1

4
𝑥2j is conservative, then

𝑀 𝑁F = ∇𝑓 = 𝑓𝑥 , 𝑓𝑦

𝑓 𝑥, 𝑦 =
1

4
𝑥2𝑦 + 𝑐 Potential Function

Question: What is the value of 𝒇 𝟏, 𝟏 − 𝒇 𝟎, 𝟎 ?

=
1

4
12 1 + 𝑐 −

1

4
02 0 + 𝑐 =

1

4



FUNDAMENTAL THEOREM OF LINE INTEGRALS

Let 𝐶 be a piecewise smooth curve lying in an open region 𝑅 and given 

by

r 𝑡 = 𝑥 𝑡 i + 𝑦 𝑡 j , 𝑎 ≤ 𝑡 ≤ 𝑏

If F 𝑥, 𝑦 = 𝑀i + 𝑁j is conservative in 𝑅, and 𝑀 and 𝑁 are continuous 

in 𝑅, then

න

𝐶

F ⋅ 𝑑r = න

𝐶

∇𝑓 ⋅ 𝑑r = 𝑓 𝑥 𝑏 , 𝑦 𝑏 − 𝑓 𝑥 𝑎 , 𝑦 𝑎

where 𝑓 is a potential function of F. That is, F 𝑥, 𝑦 = ∇𝑓 𝑥, 𝑦 .



FUNDAMENTAL THEOREM OF LINE INTEGRALS

Example Evaluate ׬𝐶
F ⋅ 𝑑r  where 𝐶  is a piecewise 

smooth curve from −1,4  to 1,2  as shown 
in the figure, and

F 𝑥, 𝑦 = 2𝑥𝑦 i + 𝑥2 − 𝑦  j

F is conservative

𝑓 𝑥, 𝑦 = 𝑥2𝑦 −
1

2
𝑦2 + 𝑐

From a previous 
example in Section 
15.1

න
𝐶

F ⋅ 𝑑r = න
𝐶

∇𝑓 ⋅ 𝑑r = 𝑓 1,2 − 𝑓 −1,4

= 0 − −4 = 4



FUNDAMENTAL THEOREM OF LINE INTEGRALS

Example Evaluate ׬𝐶
F ⋅ 𝑑r  where 𝐶  is a piecewise 

smooth curve from −1,4  to 1,2  as shown 
in the figure, and

F 𝑥, 𝑦 = 2𝑥𝑦 i + 𝑥2 − 𝑦  j

F is conservative

𝐶∗𝐶∗: r 𝑡 = 2𝑡 − 1 i + 4 − 2𝑡 j 𝑡 ∈ 0,1

F 𝑥 𝑡 , 𝑦 𝑡 = 2 2𝑡 − 1 4 − 2𝑡 i + 2𝑡 − 1 2 − 4 − 2𝑡  j

r′ 𝑡 = 2i − 2j

= −8 𝑡2 + 20 𝑡 − 8 i + 4 𝑡2 − 2 𝑡 − 3  j

F ⋅ 𝑑r = F ⋅ r′ 𝑡 𝑑𝑡 = −24 𝑡2 + 44 𝑡 − 10 



FUNDAMENTAL THEOREM OF LINE INTEGRALS

Example Evaluate ׬𝐶
F ⋅ 𝑑r  where 𝐶  is a piecewise 

smooth curve from −1,4  to 1,2  as shown 
in the figure, and

F 𝑥, 𝑦 = 2𝑥𝑦 i + 𝑥2 − 𝑦  j

F is conservative

𝐶∗

F ⋅ 𝑑r = −24 𝑡2 + 44 𝑡 − 10 

∴ න
𝐶

F ⋅ 𝑑r = න

0

1

−24 𝑡2 + 44 𝑡 − 10 𝑑𝑡 = 4



INDEPENDENCE OF PATH

A region in the plane (or in space) is connected 
when any two points in the region can be joined 
by a piecewise smooth curve lying entirely within 
the region.

If F is continuous on an open connected region, then 
the line integral

න

𝐶

F ⋅ 𝑑r

is independent of path if and only if F is conservative.



F is 

conservative

F is gradient 

field (F = ∇f)

curl F = 0

C׬ F ⋅ dԦr is 

independent of 

path

ර
C

F ⋅ dԦr = 0

EQUIVALENT STATEMENTS



ORIENTATION AND PARAMETRIZATION OF A CURVE

Example We have seen that

න

𝐶

𝑥2𝑦𝑑𝑥 + 𝑥𝑑𝑦 =
1

2

where 𝐶 is the triangular path shown in 
the figure.

∴ F = 𝑥2𝑦i + 𝑥j

≠ 0

is not conservative

is not independent of path

Closed 
Curve



Chapter: [15]
TOPICS IN VECTOR CALCULUS

Section: [15.4]
GREEN’S THEOREM

Course: Calculus (4)



SIMPLE CURVES

• A curve 𝐶 given by r 𝑡 = 𝑥 𝑡 i + 𝑦 𝑡 j where 𝑎 ≤ 𝑡 ≤ 𝑏, is simple 

when it does not cross itself between its endpoints.

• A simple parametric curve may or may not be closed.



SIMPLY CONNECTED REGION

• A connected plane region 𝑅 is simply connected when every simple 

closed curve in 𝑅 encloses only points that are in 𝑅.

• Informally, a simply connected region cannot consist of separate parts 

or holes.



GREEN’S THEOREM

Let 𝑅 be a simply connected region with a piecewise smooth boundary 𝐶, 

oriented counterclockwise. If 𝑀 and 𝑁 have continuous first partial 

derivatives in an open region containing 𝑅, then

ර

𝐶

𝑀𝑑𝑥 + 𝑁𝑑𝑦 = ඵ

𝑅

𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
𝑑𝐴

This theorem states that the value of a double integral over a simply 
connected plane region 𝑅 is determined by the value of a line integral 
around the boundary of 𝑅.



GREEN’S THEOREM

An integral sign with a circle is sometimes used to indicate a line integral 

around a simple closed curve.

ර

To indicate the orientation of the boundary, an arrow can be used.

෇
𝐶

්
C

Counterclockwise

Clockwise



GREEN’S THEOREM

Example Use Green’s Theorem to evaluate the line integral 

ර

𝐶

𝑦3𝑑𝑥 + 𝑥3 + 3𝑥𝑦2 𝑑𝑦

where 𝐶 is the path from 0,0  to 1,1  along the graph of 𝑦 = 𝑥3 
and from 1,1  to 0,0  along the graph of 𝑦 = 𝑥 as shown in the 
figure.

𝑀 = 𝑦3

𝑁 = 𝑥3 + 3𝑥𝑦2

F = 𝑦3i + 𝑥3 + 3𝑥𝑦2 j

𝜕𝑀

𝜕𝑦
≠

𝜕𝑁

𝜕𝑥

Not Conservative



GREEN’S THEOREM

Example

ර

𝐶

𝑦3𝑑𝑥 + 𝑥3 + 3𝑥𝑦2 𝑑𝑦

𝑀 = 𝑦3

𝑁 = 𝑥3 + 3𝑥𝑦2

= ඵ

𝑅

𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
𝑑𝐴

= ඵ

𝑅

3𝑥2 + 3𝑦2 − 3𝑦2 𝑑𝐴

= ඵ

𝑅

3𝑥2𝑑𝐴

Type I

= න

0

1

න

𝑥3

𝑥

3𝑥2𝑑𝑦𝑑𝑥 =
1

4



GREEN’S THEOREM

Example Evaluate

ර

𝐶

tan−1 𝑥 + 𝑦2 𝑑𝑥 + 𝑒𝑦 − 𝑥2 𝑑𝑦

where 𝐶 is the path shown in the figure.

𝑀 = tan−1 𝑥 + 𝑦2

𝑁 = 𝑒𝑦 − 𝑥2

F = tan−1 𝑥 + 𝑦2 i + 𝑒𝑦 − 𝑥2 j

𝜕𝑀

𝜕𝑦
= 2𝑦

Not Conservative

𝜕𝑁

𝜕𝑥
= −2𝑥≠



GREEN’S THEOREM

Example

𝜕𝑀

𝜕𝑦
= 2𝑦

ර

𝐶

tan−1 𝑥 + 𝑦2 𝑑𝑥 + 𝑒𝑦 − 𝑥2 𝑑𝑦 = ඵ

𝑅

𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
𝑑𝐴

𝜕𝑁

𝜕𝑥
= −2𝑥

= ඵ

𝑅

−2𝑥 − 2𝑦 𝑑𝐴

Polar Coordinates= න

0

𝜋

න

1

3

−2𝑟 cos 𝜃 − 2𝑟 sin 𝜃 𝑟𝑑𝑟𝑑𝜃= න

0

𝜋

න

1

3

−2𝑟 cos 𝜃 − 2𝑟 sin 𝜃 𝑟𝑑𝑟𝑑𝜃= න

0

𝜋

න

1

3

−2𝑟 cos 𝜃 − 2𝑟 sin 𝜃 𝑟𝑑𝑟𝑑𝜃= න

0

𝜋

න

1

3

−2𝑟 cos 𝜃 − 2𝑟 sin 𝜃 𝑟𝑑𝑟𝑑𝜃

= −
104

3



LINE INTEGRAL FOR AREA

Another application of Green’s Theorem is in computing 
areas.

Area of 𝑅 = ඵ

𝑅

1 𝑑𝐴
If there is function 𝑀  and 𝑁 

such that
𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
= 1, then

= ඵ

𝑅

𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
 𝑑𝐴

= ර

𝐶

𝑀𝑑𝑥 + 𝑁𝑑𝑦

For example, let
𝜕𝑀

𝜕𝑦
= 0

𝑀 = 𝑐 𝑥

𝜕𝑁

𝜕𝑥
= 1

= 0

Then 𝑁 = 𝑥



LINE INTEGRAL FOR AREA

If 𝑅 is a plane region bounded by a piecewise smooth 
simple closed curve 𝐶  oriented counterclockwise, 
then the area of 𝑅 is given by

𝐴 = ර

𝐶

𝑥𝑑𝑦

= ර

𝐶

−𝑦𝑑𝑥

=
1

2
ර

𝐶

𝑥𝑑𝑦 − 𝑦𝑑𝑥



LINE INTEGRAL FOR AREA

Example Use a line integral to find the area of the ellipse
𝑥2

𝑎2
+

𝑦2

𝑏2
= 1

𝐶: 𝑥 = 𝑎 cos 𝑡 𝑦 = 𝑏 sin 𝑡 0 ≤ 𝑡 ≤ 2𝜋

𝐴 = ර

𝐶

𝑥𝑑𝑦 = න

0

2𝜋

𝑎 cos 𝑡 𝑏 cos 𝑡  𝑑𝑡

=
𝑎𝑏

2
න

0

2𝜋

1 + cos 2𝑡 𝑑𝑡 = 𝑎𝑏𝜋
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