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Before Starting

This book is meant to be an active companion during the process of learning how to use Mathematica.
The main body of the text will certainly provide insights into how Mathematica works, but the examples
should be retyped as a starting point for individual exploration. Each chapter contains discussion, tips, and
a description of Mathematica functionality, along with actual examples that serve as starting points. Each
chapter ends with additional exercises to emphasize comprehension, which can be used as an assignment
to students or simply to work through on your own.

No matter what format this book is viewed in, it is recommended that readers have Mathematica on the
desktop or Mathematica Online immediately accessible to type the examples and work through the exer-
cises. It is recommended that as readers work through the book, they save a new file for each chapter in
Wolfram Notebook format (.nb), either locally or in the Wolfram Cloud, for future reference.

All new Mathematica students should work through chapters one through twelve (at least) to obtain the
necessary basis of how to use Mathematica for solving mathematical problems in different mathematical
subjects. These chapters will be of value to intermediate Mathematica users by filling in gaps in knowledge
that can result from using Mathematica only for a narrowly defined set of tasks, or by broadening the
horizons of users who may have learned Mathematica from an older version.

There is a lot more to Wolfram Language, like dealing with the vast majority of options of commands and
using new commands for topics and areas that we have missed, than we have been able to cover in this book.

If you have understood what is in this book, and can do its exercises, then you can now consider yourself a
Wolfram Language programmer! There will always be more you can learn, but you are ready to start using
what you know to do real programming.

As a mathematician, there will probably be something you want to solve or program every day. With a
traditional computer language it would take too long to actually do it. But with the Wolfram Language,
and with all its built-in knowledge and automation, anyone who knows the language can write very useful
programs even in a matter of minutes. The first step in creating a program for something is to see how to
think about the thing in computational terms. It might be something where computers have long been used.
It might be something that is only now conceivable for computers as a result of the Wolfram Language.
Whatever it is, try to imagine a Wolfram Language function for doing it. What input would the function
get? What output would it generate? What might the function be called? Do not at first think about
how you would write the code. Just think about what the function should do. And only after you have
understood that, start writing the code.

3
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1 Introduction

1.1 What Is the Wolfram Language?

The Wolfram Language is a computer language. It gives you a way to communicate with computers, in
particular so you can tell them what to do. There are many computer languages, such as C++, Java,
Python and JavaScript. The Wolfram Language is unique in that it’s knowledge based. That means that
it already knows a lot, so you have to tell it much less to get it to do things you want.

It’s designed to make it as easy as possible to describe what you want, making use of huge amounts
of knowledge that are built into the language. And the crucial thing is that when you use the Wolfram
Language to ask for something, the computer immediately knows what you mean, and then can actually
do what you want.

You can make things that are visual, textual, interactive or whatever. You can do analyses or figure
things out. You can create apps and programs and websites. You can take a very wide variety of ideas and
implement them-on your computer, on the web, on a phone, on tiny embedded devices and more.

1.2 Wolfram Cloud

The Wolfram Open Cloud gives anyone a way to do “casual” programming whenever they want-with access
to all the core computation, interface, deployment and knowledge capabilities of the Wolfram Language.
If you want to get more serious-about computation, deployments or storage-you’ll need to have an actual
subscription for Wolfram Cloud. With the introductory Wolfram Cloud plan, you get 200 MB of cloud
storage and temporary file storage and deployments (each file and deployment expires after 60 days). For
more information, visit support.wolfram.com.

To start using your Wolfram Cloud product: in a browser,
go to wolframcloud.com. Its homepage appears.

To create a new account, click sign up for free. Enter your
email address, first name, last name, and password, and
agree to the terms of service and privacy policy.

To access your Wolfram Cloud product, click Sign in if you
have an account. Its login screen appears. Enter your Wol-
fram ID and password, then select Sign in. The product’s
starting page appears. Enjoy with Mathematica

1.3 What is Mathematica?

Mathematica is a tool for technical computing based on the Wolfram Language. It contains an extensive
knowledge base for working with a very broad range of tasks, including solving equations, programming,
importing and exporting data, visualizing functions and data, and much more.

Although Mathematica is a very large and powerful system, you can get up and running with it in just
a few minutes and become fairly proficient by learning some basic concepts about how it is organized, the
syntax of its commands, and how to get help when you are stuck. This course will guide you through these
first steps and provide you with the foundation you need to incorporate Mathematica into your work and/or
teaching.

Calculations can often be written in several different styles, with advantages and disadvantages in each
scenario. This book focuses on conventions and shortcuts in the Wolfram Language to make calculations
shorter, clearer, or easier to understand.

1.4 The Structure of Mathematica

The basic parts of the Mathematica system:

1. Mathematica kernel the part that actually performs computations.

2. Mathematica front end the part that handles interaction with the user.

The most common way to work on Mathematica is to use interactive documents known as notebooks.
Notebooks mix Mathematica input and output with text, graphics, palettes, and other material. You can
use notebooks either for doing ongoing computations, or as a means of presenting or publishing your results.
You should realize that notebooks are part of the “front end” to Mathematica. The Mathematica kernel
which actually performs computations may be run either on the same computer as the front end, or on
another computer connected via some kind of network or line. In most cases, the kernel is not even started
until you actually do a calculation with Mathematica.

4
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1.5 Common Kinds of Interfaces to Mathematica

1. Notebook interface you interact with Mathematica by creating interactive documents.

2. Text-based interface you interact with your computer primarily by typing text on the keyboard. You
may be able to start Mathematica with a text-based interface by double-clicking on a Mathematica
Kernel icon.

3. MathLink interface communication with other programs. An important aspect of Mathematica is that
it can interact not only with human users but also with other programs. This is achieved primarily
through MathLink, which is a standardized protocol for two-way communication between external
programs and the Mathematica kernel.

1.6 Notebook Interfaces

If you use your computer via a purely graphical interface, you will typically double-click the Mathematica
icon to startMathematica. In a “notebook” interface, you interact withMathematica by creating interactive
documents. The notebook front end includes many menus and graphical tools for creating and reading
notebook documents and for sending and receiving material from the Mathematica kernel. A notebook
mixing text, graphics, and Mathematica input and output.

When Mathematica is first started, it displays an empty notebook with a blinking cursor. You can start
typing right away. Mathematica by default will interpret your text as input. You enter Mathematica
input into the notebook, then press Shift + Enter together to make Mathematica process your input. If
your keyboard has a numeric keypad, you can use its Enter key instead of Shift + Enter . After you send
Mathematica input from your notebook, Mathematica will label your input with In[n]:=. It labels the
corresponding output Out[n]=. Labels are added automatically.

The output is placed below the input. By default, input/output pairs are grouped using rectangular cell
brackets displayed in the right margin. In addition to the standard textual input, Mathematica supports the
use of generalized, non-textual input such as graphics and user interface controls, freely mixed with textual
input. To exit Mathematica, you typically choose the Exit menu item in the notebook interface.

Important Notes When you input a command in Mathematica, make sure you do the following:

1. Use upper and lower case characters exactly as we do. Mathematica is very “case sensitive”. If you
use the wrong capitalization, you may not get the desired result.

2. Use exactly the type of brackets we show. There are three types of brackets: square brackets [ ],
parentheses ( ), and curly braces { }. Each has its own meaning in Mathematica. If you use the
wrong one, Mathematica may not do what you expect.

3. Your output might appear in a slightly different from ours in some examples. We explain why in the
discussion of each example.

4. If your Mathematica notebook contains a lot of output, especially if graphical output is involved, it
can become very large when saved to your disk. Consider choosing Delete All Output from the Cell
menu before saving your notebook to disk. Your saved file will then be much smaller, and it will be
easier to transmit electronically to others using Mathematica.

5. You can stop Mathematica in the middle of a computation by choosing Abort Evaluation under the
Evaluation menu.

5
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1.7 Editing Cells and Text

1. Start a new cell in a notebook:
Move the mouse to the new location which is between or outside existing cells. Wait for the cursor
to change to the horizontal insertion shape. Click the mouse. A horizontal line will appear between
cells. Start typing.

2. Delete a cell:
Click the cell bracket to select the cell. The bracket will be highlighted. Choose either the Cut or
Clear command from the Edit menu, or hit the Delete key.

3. Make a copy of a cell in a new location:
Click the cell bracket to select the cell. The bracket will be highlighted. Choose the Copy command
from the Edit menu. Move the mouse to the new location. Wait for the cursor to change to the
horizontal insertion shape. Click the mouse. A horizontal line will appear between cells. Choose the
Paste command from the Edit menu.

4. Move a cell to a new location:
Save procedures as above, except use the Cut command instead of the Copy command.

5. Cut, copy, or paste the text of a cell within the same or another cell:
Handle this the same way that you manipulate text in any word processor. (Use the mouse to select,
and then use one of the Cut, Copy or Paste commands.)

6. Change the font, size, or style of an entire cell:
Click the cell bracket to select the cell. From the Format menu select the appropriate font, size, and
style.

7. Change the font, size, or style of some (or all) of the text within the cell:

(a) Select the text with the mouse.

(b) From the Format menu select the appropriate font, size, and style.

8. Change the default font, size, or style of all the cells of a given type in a notebook:

(a) Start with the menu selection Format→Edit Stylesheet to see the Style Definitions in use with
your notebook.

(b) Select a cell style, such as Input, from the pull-down menu.

(c) It appears in the stylesheet window. Click on its grouping bracket.

(d) Make a format change such as Format→Size→ 16. All Input cells in your notebook now appear
in 16 point type.

1.8 Palettes

Palettes are specially-prepared types of notebooks that provide graphical shortcuts for entering commands
and expressions for those who like visual menus. You open one of them by using the Palettes Menu.
There are several predefined palettes available, depending on the specific version of Mathematica you have.
For example, The Basic Math Assistant palette lets you enter expressions involving integrals, roots, and
fractions in a more pleasing, Mathematical way. It also provides buttons to enter Greek symbols and some
special characters directly.

Many of the buttons on the Basic Math Assistant palette, as well as the other Assistant palettes available
from the Palettes menu, provide command templates when they are clicked. For example, navigating to
the 2D tab of the Basic Commands section and clicking the Plot button yields the following.

Plot[ function , { var , min , max } ]

6
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Such a template provides the appropriate syntax for the command name and only requires the user to enter
the remaining arguments before evaluating the command. The arguments can be entered with the keyboard
(and Tab can be used to jump between the placeholders) or by clicking buttons in the palette.

You can use the CreatePalette command to construct your own custom palette, which is handy if
you find yourself doing the same operations and typesetting constructions over and over again.

1.9 Important Resources

Stephen Wolfram Book Online Complete text, with full runnable examples and automatically graded
exercises.
wolfram.com/language/elementary-introduction/2nd-ed/

Wolfram Language Home Page Broad collection of resources about the Wolfram Language.
wolfram.com/language/

Wolfram Documentation Center Documentation on all functions in the Wolfram Language, with exten-
sive examples.
reference.wolfram.com/language/

Wolfram Programming Lab Online and desktop access to the Wolfram Language, with educational Ex-
plorations.
wolfram.com/programming-lab/

Wolfram Challenges Dynamic collection of online Wolfram Language programming challenges.
challenges.wolfram.com
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2 Mathematica as a Calculator

2.1 Commands for Basic Arithmetic

Mathematica works much like a calculator for basic arithmetic. Just use the +, -, *, and / keys on the
keyboard for addition, subtraction, multiplication, and division. As an alternative to typing *, you can
multiply two numbers by leaving a space between them (the × symbol will automatically be inserted when
you leave a space between two numbers). You can raise a number to a power using the ^ key. Use the dot
. to type a decimal point.

Example 2.1. Calculate:

1)
25.5

5

In[ ]: 25.5 / 5

Out[ ]: 5.1

2) 4+ 25

In[ ]: 4 + 2^5

Out[ ]: 36

3)
23

5
− 3

5
+ 5 (23)

In[ ]: 23/5 - 3/5 + 5 * 2^3

Out[ ]: 44

Did you notice that when you entered the expressions in Example (2.1), Mathematica was actively coloring
parts of your input as you typed? Mathematica uses this coloring aid scheme to tell the user whether the
input is complete and syntactically correct.

2.2 Precedence

Mathematica follows the laws of precedence of multiplication over addition and so on, just as you do by
hand. Precedence of common operators is generally defined so that higher-level operations are performed
first. For simple expressions, operations are typically ordered from highest to lowest in the order:

1. Parentheses.

2. Factorial.

3. Exponentiation, from right to left.

4. Multiplication and Division, from left to right.

5. Addition and Subtraction, from left to right.

Note Use parentheses ( ) to group terms in expressions. Do not use square brackets [ ] or curly braces
{ }, they mean something different.

Example 2.2. In Mathematica, the expression
3× 5

4− 2
− 2

1+ 5
is entered as follows.

In[ ]: (3 * 5) / (4 - 2) - 2 / (1 + 5)

Out[ ]:
43

6

Note that, Mathematica normally gives you an exact (symbolic) value for every expression.

2.3 Built-in Constants

The Mathematical constants used most often are already built into Mathematica. The table below shows
a few of these. Notice that all names begin with a capital letter.

π Ratio of a circle’s circumference to its diameter Pi

e Natural exponential E

i Imaginary number I

◦ Degree to radian conversion multiplier Degree

∞ Positive infinity Infinity

Once again, you will see some coloring aids as you type the names of built-in constants. When entering
Degree, for example, the D will be colored black (it means something on its own), then the characters will
be colored blue until you type the final e, at which point the entire name will be colored black. That’s
because none of the names De, Deg, Degr, or Degre is known. Also, use parentheses in expressions to
clarify what you mean. This helps avoid mistakes. For example, you might think that E^2Pi means e2π,
but it doesn’t! It is actually e2 × π because the exponentiation is done before the multiplication of 2 and
π. To get e2π, you should write E^(2Pi).

8
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Note It is possible to enter each of these constants, or many other symbols, directly from the keyboard,
as well. You can type

Esc + p + i + Esc for π

Esc + e + e + Esc for e

Esc + i + n + t + Esc for
∫

Ctrl + / for ■
■

Ctrl + 6 for ■■

Ctrl + 2 for
√
■

Ctrl + 2 + 5 for ■
√
■

2.4 Built-in Functions

Mathematica has many built-in functions. These are the ones you will probably use the most.

Natural logarithm ln x Log[x]

Logarithm to base a loga x Log[a,x]

Exponential ex Exp[x]

Absolute value |x| Abs[x], RealAbs[x]
Square root

√
x Sqrt[x]

Trigonometric sin x, cos x, · · · Sin[x], Cos[x],..

Inverse trigonometric sin−1 x, cos−1 x, · · · ArcSin[x],..

Hyperbolic sinh x, cosh x, · · · Sinh[x], Cosh[x],..

Inverse hyperbolic sinh−1 x, cosh−1 x, · · · ArcSinh[x],..

Notes

1. The names of Mathematica’s built-in functions begin with an upper-case letter, and each uses square
brackets for the argument(s) of the function.

2. Mathematica uses radian measure for trigonometric functions.

Example 2.3. Evaluate:

1) sin

(
2π

3

)
In[ ]: Sin[2 Pi / 3]

Out[ ]:

√
3

2

2) log4 (1024)

In[ ]: Log[4, 1024]

Out[ ]: 5

3) cos (120◦)

In[ ]: Cos[120 Degree]

Out[ ]: −1

2

4)
√
2+

√
8

In[ ]: Sqrt[2] + Sqrt[8]

Out[ ]: 3
√
2

5) e3 ln 5

In[ ]: Exp[3 Log[5]]

Out[ ]: 125

6) tan−1(−∞)

In[ ]: ArcTan[-Infinity]

Out[ ]: −π

2

To evaluate the real-valued cube root of a real number x, use the CubeRoot[x] function. We evaluate the
value of 3

√
−2.46038 as follows.

In[ ]: CubeRoot[-2.46038]

Out[ ]: −1.35

In general, to evaluate the real-valued nth root of a real number x, use the built-in function Surd[x,n].

Example 2.4. Evaluate 8

√
390625

6561
.

In[ ]: Surd[390625/6561, 8]

Out[ ]:
5

3

9
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Notes

1. Log2[x] gives the base-2 logarithm of x. Also, Log10[x] gives the base-10 logarithm of x.

2. You can add a comment to any expression by enclosing it within the symbol pairs (* and *). For
example:

In[ ]: 27*3 (* This multiplies 27 and 3. *)

Out[ ]: 81

Mathematica does not try to evaluate the phrase “This multiplies 27 and 3.” when it evaluates your
input. The phrase is for your use only. Mathematica reminds you of this by coloring comments gray.

3. To do a computation, but do not print its output, you have to end your command by semicolon ; .

2.5 Numerical and Scientific Notations

Mathematica normally gives you an exact (symbolic) value for every expression, for example

In[ ]: (3 + 9) * (4 - 8) / 1247 * 67

Out[ ]: −3216

1247

You can force Mathematica to give you an answer that looks like the decimal answer you would get on a
calculator by using the function N with square brackets around an expression. If we attempt to give a result
with n−digit precision for an expression (expr) we use N[expr,n]. For example,

In[ ]: N[(3 + 9)*(4 - 8)/1247*67]

Out[ ]: −2.57899

Example 2.5. Find the 45−digits precision of π.

In[ ]: N[Pi, 45]

Out[ ]: 3.14159265358979323846264338327950288419716940

Example 2.6. Find the numerical value of log2

(√
2+ 7

√
123

1+ sin
(

π
13

)) using 16−digits of precision.

In[ ]: N[Log2[(Sqrt[2] + Surd[123, 7])/(1 + Sin[Pi/13])], 16]

Out[ ]: 1.457204671921001

Mathematica uses standard scientific notation to display results when the numbers either get very large or
very small. For example,

In[ ]: N[1234567890]

Out[ ]: 1.23457× 109

In[ ]: N[1234567890,2]

Out[ ]: 1.23× 109

In[ ]: N[0.000003492836]

Out[ ]: 3.49284× 10−6

Note The command IntegerPart[x] gives the integer part of x while FractionalPart[x] gives the
fractional part of x. For example

In[ ]: IntegerPart[N[Pi, 10]]

Out[ ]: 3

In[ ]: FractionalPart[N[Pi, 10]]

Out[ ]: 0.141592654

2.6 Prefix and Postfix Forms for Built-in Functions

There are three ways to write expressions in Mathematica.

f[x,y] Standard form for f[x,y] N[Sqrt[2]] 1.41421
f@x Prefix form for f[x] N@Sqrt[2] 1.41421
x//f Postfix form for f[x] Sqrt[2]//N 1.41421

You should notice that // has very low precedence. If you put //f at the end of any expression containing
arithmetic or logical operators, the f is applied to the whole expression. So, for example, x+y//f means
f[x+y], not x+f[y]. While the prefix form @ has a much higher precedence. f@x+y is equivalent to
f[x]+y, not f[x+y]. You can write f[x+y] in prefix form as f@(x+y).

10
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2.7 Mathematica Help

In order to get a quick description of a command, use ?Command. For example, to get quick info about the
function N[] just type ?N.

If you need more explanation use ??Command. If you need even more, use Mathematica’s Document Center
in the Help Menu and search for the command. Mathematica comes with an excellent Help which contains
explanations and many nice examples demonstrating how to use each of the functions available in this
software.

Using the Input Assistant The Input Assistant helps you automatically complete code, discover functions
and options, and reduce oversights and typographical errors while coding.

As you type, a list of possible functions and variables (both system- and user-defined) is displayed after
a user-defined delay. The list is refined automatically as you type additional characters.

Completions can be inserted using the keyboard or the mouse. Select a completion with the mouse pointer
or arrow keys. Press Enter or Tab , or click to insert the completion.

Access documentation for a function or variable by clicking the document icon � next to the function
name. The documentation will open in a new window.

Function Templates describe common formatting for specified functions. Function templates can be
accessed via code completion. If an inserted function has associated templates, a new button will display
after inserting the completion.

Press Tab or Enter , or click the displayed down arrow icon to access a list of templates for the current
function. Alternatively, pressing Ctrl + Shift + K after fully typing a function name will access the template
list.

Inserted function templates are fully editable text. Variables that require completion are represented by a
yellow placeholder. The currently selected placeholder is highlighted in blue and you can use the Tab key
to advance to the next placeholder. Typing any character will replace the placeholder with that character.
You must replace each placeholder to successfully evaluate your input.

11
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Note The Input Assistant feature set has many other components such as:

1. Option templates: View and insert options related to your current function.

2. Dynamic highlighting: Highlight code as you type to more easily identify which part of the code
you are working in.

3. String completion: Autocomplete string arguments inside functions.

4. Color chooser: Choose a specific RGB color from an autocomplete interface.

Wolfram Predictive Interface Once you finish a computation, the Suggestions Bar provides immediate
access to possible next steps optimized for your results. Clicking suggested actions will perform the action
on the output.

2.8 Exercises

1. Compute a 20 decimal place approximation to e, the base of the natural logarithm.
Ans. 2.7182818284590452354

2. Calculate

(a)

∣∣∣∣∣ log2(128) + 6
√
16777216

cos
(
sin−1

(
1
2

)) ∣∣∣∣∣ (b) tan
(π
5

)

Ans. (a)
46√
3

(b)
√
5− 2

√
5

3. Compute the common logarithm (base 10) of 25. What is its numerical approximation?
Ans. 1.50515

4. What happens if you try to subtract ∞ from ∞? What happens if you compute
1

0
?

Ans. Indeterminate, ComplexInfinity

5. Can Mathematica calculate the expression 29941 − 1 easily?
Ans. Yes

6. Show that

√
3
√
64
(
22 +

(
1
2

)2)− 1 = 4.

7. Add parentheses to 4− 2 ∗ 3+ 4 to make 14.

8. Try to find the numerical value of sin2
(π
5

)
.

Ans. 0.345492

9. Use the help to read about the command FunctionExpand, and use it to prove that sin (24◦) =

1

8

√
3
(√

5 + 1
)
− 1

4

√
1

2

(
5−

√
5
)
.

10. Find the rational number with smallest denominator that approximates the value of π with error
(tolerance) 0.001.
Hint: see the command Rationalize.

Ans.
201

64

12
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3 Variables and Functions

3.1 Rules for Names

You are free to make up the names of the variables you use, as long as you use only letters and numbers
and obey these rules:

1. Names cannot begin with a number.

2. Names cannot contain special characters like @, -, , &, %, $,!,· · · ,etc.

3. You cannot use names that conflict with the names that are predefined in Mathematica. For example,
you cannot name one of your own variables Sin.

Notice that because of the first rule above, Mathematica will automatically “do the right thing” with an
expression such as 2x. Since this is not an acceptable name, Mathematica will interpret it as “2” times
“x”. All of the following are examples of legitimate names that you can use for variables:

a, m, pI, A, area, perimeter, ABBA, good4you, classOf2016

Mathematica distinguishes uppercase and lowercase characters. For example, the names Batman, batman,
and batMan are all different. One convention we will use throughout the remainder of the text is that all
of the variable names we define will begin with a lowercase letter. You will know that the names belong to
us, since all of Mathematica’s predefined names start with an uppercase letter.

3.2 Immediate Assignment

You can define a name by assigning any value to it. You can then use the value whenever you want later
in a computation. You do this using the equal sign =, which is the symbol for immediate assignment. For
example:

In[ ]: a = 3

Out[ ]: 3

The name “a” can also be called a symbol or a variable. Once you have assigned a value to a variable, you
can recall it by using it directly in an expression:

In[ ]: N@Sqrt[2/a]

Out[ ]: 0.816497

You may want to know how Mathematica keeps track of all the symbols and variables that you define. Say
we assign the name mySum to the sum of x and 3 times y.

In[ ]: mySum = x + 3 y

Out[ ]: x+ 3y

In this case, Mathematica simply repeated our definition because x and y do not yet have an associated
value. Now suppose we assign the value 2 to x and the value 5 to y, and then reevaluate mySum:

In[ ]: x = 2; y = 5; mySum

Out[ ]: 17

WhenMathematica reevaluated mySum this time, it replaced x and y by their respective values, and simplified
the resulting expression.

Note Mathematica will interpret spaces between letters as multiplication, but it will not put a × sign on
the screen. If you are not looking carefully, you may not notice the difference between the expression x y

and xy. The former means x times y, while the latter is the name of a single variable called xy.

Clearing Symbols You tell Mathematica to forget about the assignment using the Clear command:

In[ ]: Clear[a]

Out[ ]: a

You can also Clear assignments for many names at the same time in one statement Clear[mySum, x,

y, X, Y, A, B]. You can use the command

In[ ]: Clear["Global’ *"]

to clear all the variable and function names you have created so far in your Mathematica session.
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3.3 Functions

Mathematica has many built−in functions such as N, Sqrt, Sin and Log. You can add your own functions
as well.

Defining Functions To define a function f(x) in Mathematica, you use the syntax:

f[x ] := formula in terms of the variable x

This syntax may look a little awkward, but you should notice:

� The underscore character immediately following the variable on the left, x_, tells Mathematica that
x is the variable of the function.

� The colon−equal sign := is a delayed assignment command. It behaves differently from =. The basic
difference between these forms is when the expression at rhs is evaluated. lhs=rhs is an immediate
assignment, in which rhs is evaluated at the time when the assignment is made. lhs:=rhs, on the
other hand, is a delayed assignment, in which rhs is not evaluated when the assignment is made, but
is instead evaluated each time the value of lhs is requested.

� After you type the x_, Mathematica visually identifies occurrences of the variable name in the formula
by setting them in italic type. On some systems, the variable will also appear in a different color, like
the green color.

Example 3.1. Define the function f(x) =
x2 + 4

x− 1
inMathematica, and then evaluate the value of f(3), f(−1.2),

and f(1).

In[ ]: f[x ] := (x^2 + 4)/(x - 1)

In[ ]: f[3]

Out[ ]:
13

2

In[ ]: f[-1.2]

Out[ ]: −2.47273
In[ ]: f[1]

Out[ ]: ComplexInfinity

Functions of Several Variables Functions with more than one variable are defined using a similar syntax,
as illustrated in the following examples.

Example 3.2. Define a function that computes the average speed of a moving object passes a distance 40
(km) in a time 34 (min).

In[ ]: speed[distance , time ] := distance / time

In[ ]: N@speed[40, 34]

Out[ ]: 1.17647 (* 1.17647 kilometers per minute. *)

In[ ]: N@speed[40, 34/60]

Out[ ]: 70.5882 (* 70.5882 kilometers per hour. *)

Example 3.3. Heron’s formula states that the area of a triangle whose sides have lengths a, b, and c is

A =
√
s(s− a)(s− b)(s− c) where s is the semi-perimeter of the triangle; that is, s =

a+ b+ c

2
. Let

△ABC be the triangle with sides a = 4, b = 13 and c = 15, find its area.

In[ ]: TriangleArea[a , b , c ] := (

s = (a + b + c)/2;

Sqrt[s (s - a) (s - b) (s - c)]

)

In[ ]: TriangleArea[4, 13, 15]

Out[ ]: 24

Piecewise Functions A new command named Piecewise has been introduced in Mathematica 6 specif-
ically for dealing with functions of split definition. Its syntax has either of these two forms, each of which
pairs together values and conditions:

Piecewise[{ {val1, cond1} , {val2, cond2} , · · ·}]

Piecewise[{ {val1, cond1} , {val2, cond2} , · · ·}, default value]

14
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Example 3.4. Let g(x) =


1− x : 0 < x ≤ 2

x ln x : 2 < x ≤ 5

ex : x ≤ 0 or x > 5

. Find the values of g(1), g(5), and g(−4).

In[ ]: g[x ]:=Piecewise[{{1-x, 0<x<=2}, {x Log[x], 2<x<=5}}, Exp[x]]

In[ ]: g[1]

Out[ ]: 0

In[ ]: g[5]

Out[ ]: 5 ln 5

In[ ]: g[-4]

Out[ ]: e−4

Use Esc + p + w + Esc to enter { and Ctrl + , and then Ctrl + Enter for each additional piecewise case.

3.4 Transformation (Substitution) Rule

You can substitute values into any symbolic expression without having to assign values to the variables
explicitly. The substitution symbol “/.” is made using the slash and period symbols, with no space in
between. It is used in the form:

expression /.
{
list of transformations using ->, separated by commas

}
For example, to substitute x = 2 and y = 5 into the expression x2 − 2xy:

In[ ]: x^2 - 2*x*y /.{x->2, y->5}
Out[ ]: −16

The arrow symbol -> is formed by entering the minus sign and greater than sign together, with no spaces
in between. (As soon as you finish typing these two signs, Mathematica will automatically change them
to a very spiffy looking →) The arrow symbol -> represents a transformation rule. We may use it many
times throughout the lectures. The primary advantage of using the transformation command is that the
value you substitute into a variable is temporary and is not assigned to the variable. It is not remembered
by Mathematica.

Example 3.5. The roots of a quadratic function f(x) = ax2 + bx+ c are given by the quadratic formula

r1 =
−b+

√
b2 − 4ac

2a
and r2 =

−b−
√
b2 − 4ac

2a

Let f(x) = x2 + x− 6. Find the larger root of f.

In[ ]: (-b + Sqrt[b^2 - 4 a c])/(2 a) /. {a -> 1, b -> 1, c -> -6}
Out[ ]: 2

Note You can use /. to replace heads of expressions:

In[ ]: Sin[x] /. Sin -> Cos

Out[ ]: cos(x)

3.5 Anonymous Functions

Sometimes we need to “define a function as we go” and use it on the spot. Mathematica enables us to
define a function without giving it a name (nor any reference to any specific variables) use it, and then
move on! These functions are called anonymous or pure functions. Obviously if we need to use a specific
function frequently, then the best way is to give it a name and define it as we did before. Here is an
anonymous function equivalent to f(x) = x2 + 4.

In[ ]: (#^2+4)&

The expression (#^2+4)& defines a nameless function. As usual we can plug in data in place of #. The
symbol & determines where the definition of the function is completed. For example, we find the value of
f(x) = x2 + 4 when x = 5 using the pure function form as follows

In[ ]: (#^2+4)&[5]

Out[ ]: 29

Also, the value of g(x) =
√
x sin(x) when x =

π2

16
in numerical form is

In[ ]: (Sqrt[#] Sin[#])&[Pi^2/16] //N

Out[ ]: 0.454328
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Anonymous functions can handle several variables. Here is an example of an anonymous function for
f(x, y) =

√
x2 + y2.

In[ ]: Sqrt[#1^2+#2^2]&[3,4]

Out[ ]: 5

As you might guess, #1 and #2 refer to the first and second variables in the function.

3.6 Functions with Conditions

Everything in Mathematica is an expression and each expression has a pattern. One can search for a specific
pattern and change it to another pattern. This is called pattern matching programming.

The Wolfram Language provides a general mechanism for specifying constraints on patterns. All you
need to do is to put /;condition at the end of a pattern to signify that it applies only when the specified
condition is True. For example, this gives a definition for f that applies only when its argument x is positive:

In[ ]: f[x /; x > 0] := x^2

In[ ]: f[5]

Out[ ]: 25

In[ ]: f[-4]

Out[ ]: f[−4]

In general, you can put /;condition at the end of any := definition to tell the Wolfram Language that
the definition applies only when the specified condition holds.

In[ ]: f2[x ] := x^2 /; x > 0

In[ ]: f2[5]

Out[ ]: 25

In[ ]: f2[-4]

Out[ ]: f2[−4]

There is a collection of functions built into the Wolfram Language for testing the properties of expressions.
Some of these functions are: Positive, Negative, NonPositive and NonNegative. Using the function
Positive, and the question mark "?" as a pattern test, we can define:

In[ ]: f3[x ?Positive] := x^2

In[ ]: f3[5]

Out[ ]: 25

In[ ]: f3[-4]

Out[ ]: f3[−4]

Note that the condition expr /;test can be shortened to expr ?test

Types of Numbers Four underlying types of numbers are built into the Wolfram System: Integer, Ra-
tional, Real and Complex. For example, the following function applies only if its argument is a positive
integer.

In[ ]: f4[x Integer?Positive] := x^2

In[ ]: f4[5]

Out[ ]: 25

In[ ]: f4[1/5]

Out[ ]: f4[1/5]

In[ ]: f4[-4]

Out[ ]: f4[−4]

There is another collection of functions built into the Wolfram Language for testing the properties of
expressions. The most useful of these functions are: EvenQ[x], OddQ[x] and PrimeQ[x].

Example 3.6. Define the Collatz function f(x) =

{x

2
: x is even

3x+ 1 : x is odd
.

In[ ]: f[x Integer?EvenQ] := x/2

f[x Integer?OddQ] := 3 x + 1

3.7 Recursion

Many important and classical problems in mathematics and computer science are defined, or have solutions
in terms of recursive definitions like the factorial function. A function is defined using recursion if in its
definition, it makes calls to itself. The classic example is the factorial function which can be defined
recursively as follows.
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In[ ]: f[0] = 1; f[1] = 1;

In[ ]: f[n Integer?Positive] := n f[n - 1]

In[ ]: f[5]

Out[ ]: 120

Fibonacci Numbers Recursive definitions of Mathematical quantities were used by mathematicians for
centuries before computers even existed. One famous example is the definition of a special sequence of
numbers first studied in the Middle Ages by the Italian mathematician Leonardo Fibonacci.

The Fibonacci numbers are generated as follows: start with two 1s, then add them to generate the third
number in the sequence; and generally, each new number in the sequence is created by adding the previous
two numbers you have written down.

1 1 2 3 5 8 13 21 · · ·
F1 F2 F3 F4 F5 F6 F7 F8 · · ·

The simplest way to define these numbers is with recursion.

F (1) = 1

F (2) = 1

F (3) = F (n− 1) + F (n− 2), for n > 2

In this form, we can translate the definition directly into Mathematica.

In[ ]: f[1] = 1; f[2] = 1;

In[ ]: f[n Integer] := f[n - 1] + f[n - 2] /; n > 2

In[ ]: f[7]

Out[ ]: 13

In[ ]: f[15]

Out[ ]: 610

3.8 Exercises

1. The arc length of a segment of a parabola ABC of an ellipse with semi−minor axes a and b is given
approximately by:

LABC =
1

2

√
b2 + 16a2 +

b2

8a
ln

[
4a+

√
b2 + 16a2

b

]
Determine LABC if a = 11 cm and b = 9 cm.

Ans. 24.5637

2. Define the two functions f(x) = x2 − 1 and g(x) = x3.

(a) Evaluate: f
(
g(x)

)
, g
(
2f(3)− 13

)
, f
(
f(f(0.5)))

)
.

Ans. x6 − 1 , 27 , −0.808594
(b) What will the following functions do?

Compose[f, g, x]

ComposeList[{g, f}, x]

3. In the triangle shown a = 5.3 cm, γ = 32◦, and b = 6 cm. Define α, β, and c as variables, and then:

(a) Calculate the length c by using the Law of Cosines:

c2 = a2 + b2 − 2ab cos γ.

Ans. 3.18656

(b) Calculate the angles α and β (in degrees) using the Law of Cosines.
Ans. α = 61.8095◦ , β = 86.1905◦
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4. Define the function g(x) =

{
x sin(πx) : −π ≤ x ≤ π

1− x : otherwise
, then evaluate the value of g(−5), g(6),

g(π), and g(1.8).
Ans. 6,−5, π sin (π2) ,−1.05801

5. For each of the following sequences of numbers, see if you can deduce the pattern and write a
Mathematica function to compute the general term.

(a) 2 3 6 18 108 1944 209952 · · ·
a1 a2 a3 a4 a5 a6 a7 · · ·

(b) 0 1 −1 2 −3 5 −8 13 −21 · · ·
b1 b2 b3 b4 b5 b6 b7 b8 b9 · · ·

(c) 0 1 2 3 6 11 20 37 · · ·
c1 c2 c3 c4 c5 c6 c7 c8 · · ·

3.9 Project

1. One way to speed up the computation of the Fibonacci numbers, is to use a different algorithm. A
much more efficient algorithm is based on the following identities.

F1 = 1

F2 = 1

F2n = 2Fn−1Fn + F 2
n , for n ≥ 1

F2n+1 = F 2
n+1 + F 2

n , for n ≥ 1

Program a Fibonacci number generating function using these identities.

2. ReplaceRepeated: A transformation (substitution) rule (/.) is applied only once to each part of
an expression. For example, the product of x and y below is replaced by the sum of x and y, but this
is only done for the first such occurrence that matches.

In[ ]: a b c d /. x y -> x + y

Out[ ]: a+ bcd

In order to apply one or more transformation rules repeatedly to an expression until the expression
no longer changes, ReplaceRepeated (//.) is used. Using ReplaceRepeated, the rule is applied
repeatedly until the expression no longer changes. For example,

In[ ]: a b c d //. x y -> x + y

Out[ ]: a+ b+ c+ d

3. Write rules for a function log (note lowercase) that encapsulate the following identities:

(a) log(ab) = log(a) + log(b)

(b) log(a/b) = log(a)− log(b)

(c) log(an) = n log(a)

4. Read about the command Input, then write a code that asks the user to enter the temperature in
Fahrenheit (F) and print its corresponding Celsius (C) value using the command Print. The formula

of conversion is C =
F − 32

1.8
.
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4 Lists

4.1 What is a List?

A list in Mathematica is an expression whose elements are separated by commas and enclosed in { curly
braces }. The elements of a list can be of any type, and need not be all of the same type. For example:

{2, 5, 7, 10, -3, -25}

{"good", 17, {23, 89}}

Lists are important structures in Mathematica. Many of Mathematica’s inputs and outputs are expressed
using lists.

Lists respect order, so that {1,2} is not the same as {2,1} in Mathematica. Also, a list can contain a
copy of the same object several times, so {1,2,1} is defer from {1,2}.

One of the nice features of Mathematica is that it often allows us to perform operations simultaneously
on each element of a list with a natural syntax, especially when the elements of the list are numerical.

Example 4.1. For the list of the first five positive integers do the following.

1. add 6 to each element.

In[ ]: {1, 2, 3, 4, 5} + 6

Out[ ]: {7, 8, 9, 10, 11}

2. multiply each element by −3.

In[ ]: -3 * {1, 2, 3, 4, 5}
Out[ ]: {−3,−6,−9,−12,−15}

3. rise each element to the power 5.

In[ ]: {1, 2, 3, 4, 5}^5
Out[ ]: {1, 32, 243, 1024, 3125}

4. divide 120 by each element.

In[ ]: 120 / {1, 2, 3, 4, 5}
Out[ ]: {120, 60, 40, 30, 24}

If two lists have the same number of elements, we can add, subtract, multiply and divide them together
element by element. For example

In[ ]: {1, 2, 3} + {3, 1, 4}
Out[ ]: {4, 3, 7}
In[ ]: {3, 4}^{2, 3}
Out[ ]: {9, 64}
In[ ]: {1, 2, 3} * {3, 1, 4}
Out[ ]: {3, 2, 12}

4.2 Functions Producing Lists

Mathematica provides us with commands for which the output is a list. These commands have a nature of
repetition and replace loops in procedural programming.

Range

Range[imax]

generates the list {1,2,...,imax}

Range[imin,imax]

generates the list {imin,...,imax}

Range[imin,imax,di]

uses step di

Table

Table[expr,{i, imax}]
generates a list of the values of expr when i runs from 1 to imax

Table[expr,{i, imin, imax}]
starts with i = imin

Table[expr,{i, imin, imax, di}]
uses step di

Table[expr,{i, {i1, i2, ...}}]
uses the successive values i1, i2,...
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Table[expr, n]

generates a list of n copies of expr.

Example 4.2. Produce the list of

1. the first ten integers

In[ ]: Range[10]

In[ ]: Table[i,{i, 10}]
Out[ ]: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

2. the first 10 even integers

In[ ]: Range[2,20,2]

In[ ]: 2*Range[10]

In[ ]: Table[2i,{i, 10}]
Out[ ]: {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}

3. the reciprocal of the first 10 odd integers

In[ ]: 1/Range[1,20,2]

In[ ]: Table[1/(2 i - 1), {i, 10}]

Out[ ]:

{
1,

1

3
,
1

5
,
1

7
,
1

9
,
1

11
,
1

13
,
1

15
,
1

17
,
1
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}

4.3 Displaying Lists

The default output form of a list, like its input form, uses the curly brace notation.

{1,2,3}

Several formatting functions are available for displaying lists in different forms. For example, TableForm is
useful for displaying nested lists (multi-dimensional data) in a simple rectangular array.

In[ ]: TableForm[{1,2,3}]
Out[ ]: 1

2

3

In[ ]: {{"A","B","C"},{1,2,3}} // TableForm

Out[ ]: A B C

1 2 3

Another useful function for displaying nested lists is Grid. It contains numerous options specifically for
formatting tabular data.

In[ ]: Grid[{{"A","B","C"},{1,2,3}}]
Out[ ]: A B C

1 2 3

4.4 Working with Elements of a List

Mathematica lets you work with the elements of a list directly. You can do this using either the Part

command, or - as a shortcut - the double square brackets [[ ]] notation. For example, suppose we’re
given the following definition of a list:

In[ ]: mylist = {"good",17,{23,89}};

Then

In[ ]: mylist[[2]]

Out[ ]: 17

In[ ]: Part[mylist,3]

Out[ ]: {23, 89}
In[ ]: mylist[[3,2]]

Out[ ]: 89

Example 4.3. Consider the list of the 26-English letters from "a" to "z". You can use the command
CharacterRange to generate such list.

In[ ]: letters = CharacterRange["a", "z"]

Out[ ]: {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}
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1. Obtain the second element from the end of the list letters.

In[ ]: letters[[-2]]

Out[ ]: y

2. Pick out the 3rd, 10th, and the last characters in the list letters.

In[ ]: letters[[{3, 10, -1}]]
Out[ ]: {c, j, z}

3. Find all the characters from the 11th character to the 21th character in the list letters.

In[ ]: letters[[11 ;; 21]]

Out[ ]: {k, l, m, n, o, p, q, r, s, t, u}

4.5 Pseudorandom Numbers

The Wolfram Language has several different random number functions to generate random numbers in
various ranges, domains, and distributions. Three functions for generating pseudorandom numbers that
are distributed uniformly over a range of values: RandomReal, RandomInteger, RandomComplex. In this
section, we are interested in random integers.

RandomInteger[] pseudorandomly gives 0 or 1.

RandomInteger[imax] gives a pseudorandom integer in

the range {0,· · · ,imax}.
RandomInteger[{imin,imax}] gives a pseudorandom integer in

the range {imin, imax}.
RandomInteger[{imin,imax},n] gives a list of n pseudorandom

integers in the range {imin,
imax}.

Example 4.4. Pick four random integers between −3 and 9.

In[ ]: RandomInteger[{-3, 9}, 4]

Out[ ]: {3,−2, 7, 5}
Each time you ask, you get another random numbers:

In[ ]: RandomInteger[{-3, 9}, 4]

Out[ ]: {−1, 0,−2, 8}

Note The sequences that you get from RandomInteger are in fact produced by applying a definite
Mathematical algorithm, starting from a particular “seed”. If you want to make sure that you always
get the same sequence of pseudorandom numbers, you can explicitly give a seed for the pseudorandom
generator, using SeedRandom[s] with the integer s.

If you reseed the pseudorandom generator with the same seed, you get the same sequence of pseudo-
random numbers:

In[ ]: SeedRandom[143]; RandomInteger[100, 5]

Out[ ]: {14, 22, 92, 70, 91}

Putting both the Seed and the RandomInteger commands in the same input cell (or the same line of code)
resulting the same sequence of generated random numbers permanently. But, what if the Seed command
is in an input cell, while the RandomInteger is in the following input cell? In this case, the sequence of
random numbers will be changed each time you execute the line that contains the random command. The
results of this series of executions repeat themselves each time you open the file or re-execute the line that
contains the Seed.

Random Samples Additional functions are available for generating random samples from lists, with or
without replacement. For example, RandomChoice selects elements from a list with replacement. That can
be a list of numbers or any arbitrary expressions.

In[ ]: RandomChoice[{"A", "B", "C"}, 5]

Out[ ]: {B, A, B, C, A}
RandomSample, on the other hand, selects without replacement and so its output is limited by the size
of the list from which you are selecting. For example, this generates 6 random numbers from the first 10
integers.

In[ ]: RandomSample[Range[10], 6]

Out[ ]: {2, 1, 10, 6, 5, 8}
Weights can be assigned in both RandomChoice and RandomSample. This chooses ten 0’s and 1’s, with a
25% chance of a 0 being chosen and a 75% chance of a 1.

In[ ]: RandomChoice[{0.25, 0.75} -> {0, 1}, 10]

Out[ ]: {0, 1, 1, 0, 1, 1, 0, 1, 1, 1}
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4.6 Useful Functions

We will list many of the commands we additionally use to manipulate lists and their elements. All of the
following examples will be demonstrated using the list newlist generated by 25 random integers between
0 and 10 using seed = 5:

In[ ]: SeedRandom[5]; newlist = RandomInteger[10, 25]

Out[ ]: {0, 0, 3, 3, 4, 5, 1, 9, 1, 0, 10, 5, 1, 8, 0, 5, 9, 5, 3, 7, 3, 5, 8, 6, 7}

� Length reports the number of elements in a list.

In[ ]: Length[newlist]

Out[ ]: 25

� Sort will arrange the elements of the list in the natural increasing order of the elements.

In[ ]: newlist//Sort

Out[ ]: {0, 0, 0, 0, 1, 1, 1, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 6, 7, 7, 8, 8, 9, 9, 10}

� Reverse will reverses the order of the elements in a list.

In[ ]: Reverse@Sort@newlist

Out[ ]: {10, 9, 9, 8, 8, 7, 7, 6, 5, 5, 5, 5, 5, 4, 3, 3, 3, 3, 1, 1, 1, 0, 0, 0, 0}

� Count will show how many times a particular item appears in a list.

In[ ]: Count[newlist, 3]

Out[ ]: 4

� Total gives the total (sum) of the elements in list.

In[ ]: Total@newlist

Out[ ]: 108

4.7 Listable Functions

There are times when we would like to apply a function to all the elements of a list. Suppose f is a
function and {a,b,c} is a list. We want to be able to “push” the function f inside the list and get
{f[a],f[b],f[c]}. Many of Mathematica’s built−in functions have the property that they simply “go
inside” a list. A function with this property is said to be listable. For example, All the arithmetic functions
are listable, also Sqrt is a listable function.

In[ ]: Sqrt@{1, 4, 9}
Out[ ]: {1, 2, 3}

Should all operations and commands be listable ? The answer is clearly “no.” The simplest example of a
command that should not be listable is the Reverse command.

In[ ]: Reverse[{{1, 2}, {9, 10}}]
Out[ ]: {{9, 10}, {1, 2}}

Indeed, if Reverse were listable, the output above would instead have be treated as {{2, 1}, {10, 9}}.
The Reverse command should not be listable because it acts on the structure of the list as a whole. It is
not designed to act individually on each element of a list. This observation brings us to the Map command.

Map The Map command can be used to force listability of any command/function and allow it to act on
each element of a list. This command has the form:

Map[ function name , list ]

As an example,

In[ ]: Map[Reverse, {{1, 2}, {9, 10}}]
Out[ ]: {{2, 1}, {10, 9}}

The equivalent shorthand to apply a function to a list is /@ as follows

In[ ]: Reverse/@{{1, 2}, {9, 10}}
Out[ ]: {{2, 1}, {10, 9}}

Example 4.5. Consider the list

newlist = {0,0,3,3,4,5,1,9,1,0,10,5,1,8,0,5,9,5,3,7,3,5,8,6,7}.

Suppose we want to count how many times the numbers 6 and 3 appear in the list, we will get unexpected
answer using Count:
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In[ ]: Count[newlist, {6, 3}]
Out[ ]: 0

This is because Count searches inside the list newlist for an expression like {6, 3} which does not exist.
The correct way to do the job is as follows:

In[ ]: Count[newlist, #] & /@ {6, 3}
Out[ ]: {4, 1}

4.8 Nested Loops

Let f(x) be a function defined on a variable x. There are times when one needs to apply the function f to
itself several times, i.e., f

(
· · · f(f(x)) · · ·

)
. Mathematica provides a command to do exactly this:

Nest[f, expr, n]

gives an expression with f applied n times to expr.

For example,

In[ ]: Nest[f, x, 4]

Out[ ]: f(f(f(f(x))))

If one wants to keep track of each step, the command NestList is available

In[ ]: NestList[f, x, 4]

Out[ ]: {x, f(x), f(f(x)), f(f(f(x))), f(f(f(f(x))))}

Here is a nice example:

In[ ]: NestList[Sqrt[6 + #] &, Sqrt[6], 3]

Out[ ]:

√
6,

√√
6+ 6,

√√√
6+ 6+ 6,

√√√√
6+ 6+ 6+ 6


Sometimes we want to start with expr, then repeatedly applies a function f until applying test to the result
no longer yields True. This is can be done using NestWhile or NestWhileList. For example, we want to
keep dividing an integer by 2 until the result is no longer an even number:

In[ ]: NestWhile[#/2 &, 123456, EvenQ]

Out[ ]: 1929

In[ ]: NestWhileList[#/2 &, 123456, EvenQ]

Out[ ]: {123456, 61728, 30864, 15432, 7716, 3858, 1929}

Example 4.6. Recall that the Collatz function, for any integer n, returns 3n+1 for odd n, and n/2 for even
n. We investigated the Collatz function earlier in Example 3.6 of Chapter 3. The Collatz Conjecture is the
statement that, for any initial positive integer n, the iterates of the Collatz function always reach the cycle
4, 2, 1, · · ·. Create the function ColzSeq[n] that lists the iterates of the auxiliary Collatz function.

In[ ]: colz[n Integer?EvenQ] := n/2;

In[ ]: colz[n Integer?OddQ] := 3 n + 1;

In[ ]: ColzSeq[n Integer?Positive] := NestWhileList[colz, n, #>1 &]

Out[ ]: {7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1}

Example 4.7. A point p is a fixed point of a function f if p belongs to both the domain and the codomain
of f, and f(p) = p. For example, p = 2 is a fixed point of f(x) = x2 − 3x+ 4, because f(2) = 2.

1. Create the function fixedpoint[p0,n] that approximates the fixed point giving the results of ap-
plying f repeatedly n-times, starting with p0.

In[ ]: f[x ] := x^2 - 3 x + 4;

In[ ]: fixedpoint[p0 , n ] := Nest[f, p0, n]

In[ ]: fixedpoint[1, 3]

Out[ ]: 2

2. Modify on the fixedpoint[p0,n] to generate a list giving the results of applying f repeatedly until
successive results are within an error err.

In[ ]: f[x ] := x^2 - 3 x + 4;

In[ ]: fixedpoint[p0 , err ] := NestWhileList[f,p0,Abs[#1-#2]>err&,2]

In[ ]: fixedpoint[1.15, 0.01]

Out[ ]: {1.15, 1.8725, 1.88876, 1.90113, 1.91091}
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4.9 Vectors

Vectors in Mathematica are represented by lists. There is no need to specify if a particular vector is a row
vector or column vector; this makes things easier for the user and keeps the focus on the result instead of
Mathematical bookkeeping.

Vectors can be constructed explicitly or programmatically. To define a vector manually, just create a
list. For example, the vectors v = (2, 3) and u = (−1, 1, 2) are entered as

In[ ]: v = {2, 3}
Out[ ]: {2, 3}
In[ ]: u = {-1, 1, 2}
Out[ ]: {−1, 1, 2}

To define a vector programmatically, use Table.

In[ ]: Table[i^2, {i, 1, 10}]
Out[ ]: {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

There is also a function, Array, that constructs a vector from a function. Table can do this as well, but
it requires specification for the iterator, while Array assumes the iterator and only requires its bound. For
example,

In[ ]: f[x ] := x^2;

In[ ]: Array[f, 10]

Out[ ]: {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

or, you may use the pure function as follows.

In[ ]: Array[#^2 &, 10]

Out[ ]: {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

Mathematical operations like addition +, subtraction -, multiplication *, division /, and exponentiation
^ can operate on vectors of the same length. The operations are applied element-wise, so the operation
is performed on the first two elements of the vector, then the operation is performed on the second two
elements of the vector, and so on.

Example 4.8. Let u = (2, 3, 7) and v = (7, 1, 5). Find 5u− 2v

In[ ]: u = {2, 3, 7};v = {7, 1, 5};
In[ ]: 5 u - 2 v

Out[ ]: {−4, 13, 25}

The Dot Product You compute the dot product of two vectors using the Dot command:

In[ ]: Dot[{1, 2, 3},{-4, 7, 0}]
Out[ ]: 10

Sometimes new users expect the multiplication of two vectors to give the dot product instead of performing
element-wise multiplication.

The Cross Product To compute a cross product of two vectors in R3 (also known as the vector product),
you use the Cross command.

In[ ]: Cross[{1, 2, 3},{-4, 7, 0}]
Out[ ]: {−21,−12, 15}

Length and Angle of Vectors The length, or the norm, of the vector u = (a1, a2, · · · , an) is

∥u∥ =
√
a21 + a22 + · · ·+ a2n

In Mathematica, we use the command Norm to find the vector length. For example,

In[ ]: Norm[{1, 2, 1}]
Out[ ]:

√
6

Also the angle between two vectors u and v can be found using the command VectorAngle. For example,

In[ ]: VectorAngle[{1, 1}, {1, 0}]

Out[ ]:
π

4

In[ ]: VectorAngle[{1, 1, 0}, {1, 0, 2}]

Out[ ]: cos−1

(
1√
10

)
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4.10 Matrices

Like vectors, matrices can be comprised of any sort of expression: symbols, numbers, strings, and images,
and even mixtures thereof. Matrices are constructed by creating nested lists. Small matrices can be
manually entered by typing, and the simplest method is to create a nested list in one-dimensional format
using list notation by entering each row as a list, beginning with the first row. That is, a matrix is entered
in the form:

{ list of row 1 , list of row 2 , ... }

For example, the matrix

[
3 −4 7

−1 0 5

]
is entered in Mathematica as follows:

In[ ]: {{3, -4, 7}, {-1, 0, 5}}

We can use MatrixForm to display the result in two-dimensional format.

In[ ]: {{3, -4, 7}, {-1, 0, 5}} // MatrixForm

Out[ ]:

(
3 −4 7
−1 0 5

)
Matrices can also be entered with palettes like the Basic Math Assistant. The Basic Commands section
of the palette has a tab for matrix commands, including a button that will paste an empty 2× 2 matrix
into a notebook. There are buttons to add rows and columns to newly created matrices, providing users
with an interactive way to construct a template for a larger matrix. For example, clicking the matrix button
to create a 2× 2 matrix template and then clicking the Add Row and Add Column buttons once each will
create a blank 3× 3 matrix template as seen in the following figure.

Programmatic creation of matrices can be accomplished using functions like Table and Array as shown in
the following examples.

Example 4.9. Define a 3× 4 matrix
(
aij
)
where aij = i+ j.

In[ ]: Table[i + j, {i, 3}, {j, 4}] // MatrixForm

Out[ ]:

 2 3 4 5
3 4 5 6
4 5 6 7


In[ ]: Array[#1 + #2 &, {3, 4}] // MatrixForm

Out[ ]:

 2 3 4 5
3 4 5 6
4 5 6 7



Example 4.10. Write a code that generates the matrix


1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

.
In[ ]: Table[j + 5 (i - 1), {i, 1, 5}, {j, 1, 5}]
In[ ]: Array[#2 + 5 (#1 - 1) &, {5, 5}]
In[ ]: Partition[Range[25], 5]

Note that the command Partition[list, n] partitions a list into nonoverlapping sublists of length n.
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4.11 Special Types of Matrices

There are special commands in Mathematica for matrices with special structures like identity matrices,
constant matrices, and the triangular matrices (upper, lower, and diagonal).

1. The command ConstantArray[c, n] generates a list (vector) of n copies of the element c. While
ConstantArray[c, {m, n}] generates an m× n array of nested lists containing copies of the element
c. For example,

In[ ]: ConstantArray[3, 10]

Out[ ]: {3, 3, 3, 3, 3, 3, 3, 3, 3, 3}
In[ ]: ConstantArray[10, {2, 3}] // MatrixForm

Out[ ]:

(
10 10 10
10 10 10

)
2. The identity matrix, or a unit matrix, of size n is the n× n square matrix with ones on the main

diagonal and zeros elsewhere. IdentityMatrix[n] gives the n× n identity matrix. For example,

In[ ]: IdentityMatrix[2] // MatrixForm

Out[ ]:

(
1 0
0 1

)
3. A diagonal matrix is a matrix (usually a square matrix) in which the off-diagonal elements are all zero.

The main diagonal entries themselves may or may not be zero. The command DiagonalMatrix[list]
gives a matrix with the elements of list on the leading diagonal, and 0 elsewhere. For example, the
diagonal matrix of the first 4 positive even integrs is

In[ ]: DiagonalMatrix[2 Range[4]] // MatrixForm

Out[ ]:


2 0 0 0
0 4 0 0
0 0 6 0
0 0 0 8


4. A triangular matrix is a special kind of square matrix. A square matrix is called lower triangular if

all the entries above the main diagonal are zero. Similarly, a square matrix is called upper triangular
if all the entries below the main diagonal are zero. A triangular matrix is one that is either lower
triangular or upper triangular. A matrix that is both upper and lower triangular is called a diagonal
matrix.

Example 4.11. Construct the 3× 3 upper triangular matrix whose elements follow the rule aij ={
2i− j : i ≤ j

0 : i > j
.

In[ ]: a[i , j ] := 2i-j /; i<=j

In[ ]: a[i , j ] := 0

In[ ]: Table[a[i,j], {i, 3}, {j, 3}] // MatrixForm

Out[ ]:

 1 0 −1
0 2 1
0 0 3


To generate the lower triangular matrix, just change the inequality sings in aij.

In[ ]: a[i , j ] := 2i-j /; i>=j

In[ ]: a[i , j ] := 0

In[ ]: Table[a[i,j], {i, 3}, {j, 3}] // MatrixForm

Out[ ]:

 1 0 0
3 2 0
5 4 3


4.12 Basic Matrix Operations

Mathematica can do addition, subtraction, scalar multiplication, and matrix multiplication with the opera-
tors +, -, *, and ., respectively, in addition to many other matrix computations like the determinant, the
transpose, and the inverse. To see how Mathematica operates with these computations, let

A =

[
1 2
3 4

]
B =

[
5 6
7 8

]
F =

 1 2
3 4
5 6

 G =

 1 2 3
4 5 6
7 8 9


and define them in Mathematica as a two-dimensional lists as follows. Care must be taken, however, not
to use //MatrixForm in the definition of the matrix. This command is for display purposes only.
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In[ ]: A = {{1, 2}, {3, 6}};
In[ ]: B = {{5, 6}, {7, 8}};
In[ ]: F = {{1, 2}, {3, 4}, {5, 6}};
In[ ]: G = {{1, 2, 3}, {4, 5, 6}}, {7, 8, 9}};

Then,

1. In[ ]: A + B

Out[ ]:

(
6 8
10 14

)
Addition, here, is defined since A and B have the same size. If we add the matrix A to G then the
result is undefined since they are different in size.

In[ ]: A + G

Out[ ]: Objects of unequal length and cannot be combined

2. In[ ]: 3 B - 2 A

Out[ ]:

(
13 14
15 12

)

3. In[ ]: A B // MatrixForm

Out[ ]:

(
5 12
21 48

)
Be careful ! This command evaluates the product as element by element product, not the ordinary
(dot) product you have learned in Linear Algebra class. To perform the ordinary product, we use the
command Dot as follows.

In[ ]: Dot[A, B] // MatrixForm

Out[ ]:

(
19 22
57 66

)
Note that the dot product above is defined since the number of columns of the first matrix A equals
the number of rows in the second matrix B. This case is not satisfied when try to evaluate A · F for
example.

In[ ]: Dot[A, F] // MatrixForm

Out[ ]: {{1,2},{3,6}} and {{1,2},{3,4},{5,6}} have incompatible shapes.

What if you like to find A5? If we use the command A^5, this will rise each element of A to the power
5 as follows.

In[ ]: A^5

Out[ ]:

(
1 32
243 7776

)
The command MatrixPower[A,n] gives the nth matrix power of the matrix A by the mean of ordinary
product.

In[ ]: MatrixPower[A, 5]

Out[ ]:

(
2401 4802
7203 14406

)
4. The transpose of an m× n matrix C is another matrix of size n× m denoted by CT and created by

writing the rows of C as columns of CT in the same order. For example, GT is

In[ ]: Transpose[G] // MatrixForm

Out[ ]:

 1 4 7
2 5 8
3 6 9


5. The determinant is a useful value that can be computed from the elements of a square matrix. It can

be computed in Mathematica with the function Det. For example,

In[ ]: Det /@ {A, B, G}
Out[ ]: {0,−2, 0}

6. An n× n square matrix A is called invertible (also nonsingular) if there exists an n× n square matrix
B such that AB = BA = In where In denotes the n× n identity matrix and the multiplication used is
ordinary matrix multiplication. If this is the case, then the matrix B is uniquely determined by A and
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is called the inverse of A, denoted by A−1. The inverse can be computed in Mathematica with the
function Inverse. For example,

In[ ]: Inverse[B] // MatrixForm

Out[ ]:

(
−4 3
7
2 − 5

2

)
A square matrix that is not invertible is called singular . A square matrix is singular if and only if its
determinant is 0. We have seen that Det[G] = 0, so that G is singular matrix.

In[ ]: Inverse[G]

Out[ ]: Matrix {{1,2,3},{4,5,6},{7,8,9}} is singular

7. The trace of an n× n square matrix A is defined to be the sum of the elements on the main diagonal.
The command Tr[C] finds the trace of the square matrix C.

In[ ]: Tr /@ {A, B, G}
Out[ ]: {7, 13, 15}

8. The solution of the eigenvalue problem is one of the major areas for matrix computations. For an
n× n matrix C, the eigenvalues are the n roots of its characteristic polynomial p(λ) = det (λIn − C).
For each eigenvalue λ there exists at least one corresponding vector x that satisfies Cx = λx and it is
called an eigenvector. Mathematica has various functions for computing eigenvalues and eigenvectors.

The command Eigenvalues[C] gives a list of the eigenvalues of the square matrix C. Also, the com-
mand Eigenvectors[C] gives a list of the eigenvectors of the square matrix C. You can find a list of
the eigenvalues and eigenvectors of the square matrix C in one command, which is Eigensystem[C].
The characteristic polynomial for the matrix C with respect to the variable x can be found using
CharacteristicPolynomial[C, x]. Note that the characteristic polynomial has the determinant
and the trace of the matrix as coefficients.

In[ ]: Eigenvalues[B]

Out[ ]:

{
1

2

(√
177+ 13

)
,
1

2

(
13−

√
177
)}

In[ ]: Eigenvectors[B]

Out[ ]:

(
1
14

(√
177− 3

)
1

1
14

(
−
√
177− 3

)
1

)
In[ ]: Eigensystem[B]

Out[ ]:

(
1
2

(√
177 + 13

)
1
2

(
13−

√
177
){

1
14

(√
177− 3

)
, 1
} {

1
14

(
−
√
177− 3

)
, 1
} )

In[ ]: CharacteristicPolynomial[B, x]

Out[ ]: x2 − 13x− 2

4.13 Exercises

1. Produce the following lists:

(a) The square of the reciprocal of the first 12 integers

(b) The tuples that contains n, n2, n3 from n = 1 to n = 6

2. Sort the list in exercise (1a) in ascending order.

3. Find the total of the elements in the list in exercise (1a), and write your answer in numerical form
using 50 decimal digits.
Ans. 1.5649766384209024901665594306286946979587672228365

4. Find the value of sin x when x =
{
π,

π

2
,
π

3
,
π

4
,
π

5
,
π

6

}
.

Ans.

{
0, 1,

√
3
2
, 1√

2
,

√
5
8
−

√
5
8
, 1
2

}
5. For the list { {1,2}, {3,4}, {5,6}, {7,8}, {9,10} }

(a) reverse its elements,

(b) reverse the interior sub-lists only,

(c) reverse the list and each of its interior elements.

6. Which of the following functions is listable?

(a) Length

(b) Total
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(c) Piecewise functions

7. How to generate a list such as follows using Mathematica?

{{1},{1,2},{1,2,3},{1,2,3,4},{1,2,3,4,5}}

8. Generate list of 30 integers between −5 and 5 using seed va1ue equals 372.

� Count the number of 0’s.
Ans. 4

� Find a way to count all those elements of the list which are not 1’s. Read more about Except.
Ans. 27

9. When Newton’s method is used to compute
√
R ; R > 0 (by solving the equation x2 = R), the

sequence of iterates is defined by

xn+1 =
1

2

(
xn +

R

xn

)
Write a code to generate a list giving the results of applying Newton’s formula repeatedly to approx-
imate

√
2 until successive results are within an error 0.0001 with at most 10-steps.

Ans. {0.5, 2.25, 1.56944, 1.42189, 1.41423, 1.41421}

10. Use the built-in functions FixedPoint and FixedPointList to resolve the parts in Example 4.7.

11. Consider the 5× 5 tridiagonal matrix A =


2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2


(a) Use ToeplitzMatrix to write a code that generates such matrix.

(b) Find the determinant of the matrix A.
Ans. 6

(c) Find the matrix A−2

Ans.


55/36 −20/9 9/4 −16/9 35/36
−20/9 34/9 −4 29/9 −16/9
9/4 −4 19

4 −4 9/4
−16/9 29/9 −4 34/9 −20/9
35/36 −16/9 9/4 −20/9 55/36


(d) A symmetric matrix is a square matrix that is equal to its transpose. Show that A is symmetric.

12. The Hilbert matrix is a square matrix whose element aij is
1

i+ j− 1
. Construct the Hilbert matrix

of order 5.

13. Find a unit vector having the same direction as v = (1,−2, 2,−3).
Hint: see the command Normalize.
Ans.

(
1/3

√
2,−

√
2/3,

√
2/3,−1/

√
2
)

14. The vector projection of a vector a on (or onto) a nonzero vector b (also known as the vector
component of a in the direction of b) is the orthogonal projection of a onto a straight line parallel to

b. It is a vector parallel to b, defined as a · b

|b|
where the operator · denotes a dot product, and |b|

is the length of |b|. Find the projection of the vector a = (1, 2, 3) onto the vector b = (1,−2, 5).
Hint: see the command Projection.
Ans. (2/5,−4/5, 2)

15. Show that for any 2× 2 matrix A =

[
a b

c d

]
, where a, b, c, d ∈ R, the following statement is hold:

pA(x) = x2 − tr(A) + det(A),

where pA(x) is the characteristic polynomial of the matrix A.

16. The Cayley-Hamilton theorem, says that every square matrix satisfies its characteristic equation.

Verify the Cayley-Hamilton theorem for the matrix of A =

[
1 2
3 4

]
.

17. Consider the following data:

data = {13,15,15,8,16,20,28,19,18,15,21,23,30,17,10,16,15,16,20,15}

UseMathematica documentation to find for data the: Mean, Median, Variance, and StandardDeviation.
Ans. 35/2, 16, 529/19, 23/

√
19

18. Consider the following data: data={{3,4},{6,6},{-1,5},{2,9},{4,0},{1,3}}. Find the regres-
sion line equation that best fits the data.
Hint: see the command Fit

Ans. 4.79661− 0.118644x
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4.14 Project

Write a code that compresses a list by dividing it into runs of occurrences of a single element, and returns
a list of the runs, each represented as a pair containing the element and the length of its run. So the
following list,

{9, 9, 9, 9, 9, 1, 5, 5, 5, 1, 1, 1, 1, 2, 2}

should produce the following encoding.

{{9, 5}, {1, 1}, {5, 3}, {1, 4}, {2, 2}}

The following are some helpful functions in your code:

� Split: splits list into sublists consisting of runs of identical elements.

� Tally: tallies the elements in list, listing all distinct elements together with their multiplicities.

� First: gives the first element in list.
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5 Logic and Set Theory

5.1 Being Logical

InMathematical logic, statements can have a value of True or False. These are called Boolean expressions.
This helps us to “make a decision” and write programs based on the value of a statement. We have seen
==, which compares the left-hand side with the right-hand side. For example

In[ ]: 3^2+4^2==5^2

Out[ ]: True

In[ ]: 3-4==1

Out[ ]: False

Other logical relations are

� x != y which is True if and only if x and y have different values.

� x < y which is True if and only if x is numerically less than y.

� x > y which is True if and only if x is numerically greater than y.

� x <= y which is True if and only if x is numerically less or equal to y.

� x >= y which is True if and only if x is numerically greater or equal to y.

For example,

In[ ]: 3^2+4^2>=5^2

Out[ ]: True

In[ ]: Sqrt[49]!=7

Out[ ]: False

In[ ]: E > Pi

Out[ ]: False

Note In logical expressions, ! means the negation (∼). If we type in Mathematica 3! this means the
factorial of 3 which equals 6. We can express the factorial function of an expr using the Mathematica
built-in function Factorial[expr].

In[ ]: 310! != Factorial[310]

Out[ ]: False

5.2 Truth Tables

One can combine logical statements with the usual Boolean operations And (∧), Or (∨) or the equivalent
shortcuts &&, ||. In general, for two statements A and B, the statement A ∧ B is false if one of A or B is
false and A ∨ B is true if one of them is true. In order to produce all possible combinations of true and false
cases, we use the command BooleanTable as the following example shows.

In[ ]: BooleanTable[{p, q, p&&q}] /.{True->T, False->F} //Grid

Out[ ]:

T T T
T F F
F T F
F F F

In[ ]: BooleanTable[{p, q, p||q}] /.{True->T, False->F} //Grid

Out[ ]:

T T T
T F T
F T T
F F F

In logic, a tautology is a formula that is true in every possible interpretation. TautologyQ[bf] gives True
if all combinations of values of variables make the Boolean function bf yield True.

In[ ]: BooleanTable[(a||b) || (!a && !b)]

Out[ ]: {True, True, True, True}
In[ ]: TautologyQ[(a||b) || (!a && !b)]

Out[ ]: True
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5.3 Element “∈”
InMathematica, for a variable, one can specify certain domains. This means that the variable takes its values
from a specific type of data. The domains available are Algebraics, Booleans, Complexes, Integers,
Primes, Rationals and Reals. One of the fundamental theorems in number theory is to show that π is
not a rational number, i.e., is not of the form m/n, where m and n ̸= 0 are integers. Look at the following
examples:

In[ ]: Element[Pi, Rationals]

Out[ ]: False

In[ ]: Element[Sqrt[25], Integers]

Out[ ]: True

In[ ]: IntegerQ[Sqrt[25]]

Out[ ]: True

In[ ]: Element[131, Primes]

Out[ ]: True

In[ ]: PrimeQ[131]

Out[ ]: True

5.4 Handling Sets

Now it has been agreed among mathematicians that any mathematics starts by considering sets, i.e.,
collections of objects. As we mentioned, the difference between Mathematical sets and lists in Mathematica
is that lists respect order and repetition, which is to say one can have several copies of one object in a list.
Sets are not sensitive about repeated objects, e.g., the set {a, b} is the same as the set {a, b, b, a}.
There is no concept of sets in Mathematica and if necessary one considers a list as a set. If one wants to
get rid of duplication in a list, one can use

In[ ]: DeleteDuplicates[{a, b, b, a}]
Out[ ]: {a, b}

Considering two sets, the natural operations between them are union and intersection. Mathematica pro-
vides Union to collect all elements from different lists into one list (after removing all the duplication)
and Intersection for collecting common elements (again discarding repeated elements). The following
examples show how these commands work.

In[ ]: U = {1, 2, 3, 4, 5, 7};
In[ ]: A = {1, 4, 7, 3};
In[ ]: B = {5, 4, 3, 2}
In[ ]: Union[A,B]

Out[ ]: {1, 2, 3, 4, 5, 7}
In[ ]: Intersection[A,B]

Out[ ]: {3, 4}
In[ ]: Complement[U,A]

Out[ ]: {2, 5}

The command Complement[U,A] will give the elements of the universal set U which are not in the set A.
In mathematics, the power set (or powerset) of any set S, written P(S), is the set of all subsets of S,

including the empty set and S itself. For example, the powerset of the set {1, 3, 2} is

In[ ]: Subsets[{1, 3, 2}]
Out[ ]: {{}, {1}, {3}, {2}, {1, 3}, {1, 2}, {3, 2}, {1, 3, 2}}

To check up a set is a subset of a powerset, we use the function SubsetQ[A,B], which yields True if B is
a subset of A, and False otherwise.

In[ ]: SubsetQ[{1, 2, 3}, {3, 1}]
Out[ ]: True

In mathematics, two sets are said to be disjoint if they have no element in common. For example,

In[ ]: DisjointQ[{2, 4, 6}, {1, 3, 5}]
Out[ ]: True

5.5 Quantifiers

In a statement like x4 + x2 > 0, Mathematica treats the variable x as having a definite, though unspecified,
value. Sometimes, however, it is useful to be able to make statements about whole collections of possible
values for x. You can do this using quantifiers ∀ ForAll and ∃ Exists. In most cases, the quantifiers can
be simplified by the Resolve function. The command Reslove[expr ] attempts to resolve expr into a
form that eliminates ForAll and Exists quantifiers. For example, the following is true.
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In[ ]: Resolve@Exists[x, x^2 + x^4 > 0]

Out[ ]: True

But, the following is false since x = 0 does not satisfy the statement.

In[ ]: Resolve@ForAll[x, x^2 + x^4 > 0]

Out[ ]: False

Example 5.1. Decide whether the statement is True or False.

1. There exists a natural number n such that n2 > 2n.

In[ ]: Resolve[Exists[n, n^2 > 2^n]]

Out[ ]: True

2. For all natural numbers n, if n ≥ 5, then n2 < 2n.

In[ ]: Resolve[ForAll[n, n>=5, n^2 < 2^n], Integers]

Out[ ]: True

3. The equation x2 + x = 1 has a negative real number solution.

In[ ]: Resolve[Exists[x, x<0, x^2+x==1], Reals]

Out[ ]: True

4. For all x ∈ R and x < 1, x3 − x ≤ 0.

In[ ]: Resolve[ForAll[x, x<1, x^3-x<=0], Reals]

Out[ ]: False

5. There exists boolean statements p and q such that (p ∨ q)∧ ∼ q is true.

In[ ]: Resolve[Exists[{p,q}, (p||q) && !q], Booleans]

Out[ ]: True

6. Every integer is either even or odd.
∀n ∈ Z,∃m ∈ Z such that n = 2m or n = 2m+ 1

In[ ]: Resolve[ForAll[n, Exists[m, n==2 m || n==2m+1]], Integers]

Out[ ]: True

5.6 Exercises

1. Construct the truth table for the statement p ∨ (q ∧ r).

2. Show that the statement (p ∧ q) ∨ (∼ p∨ ∼ q) is a tautology.

3. A contradiction is a formula that is false in every possible interpretation. Show that the statement
(p∧ ∼ q) ⇔ (p ⇒ q) is a contradiction.
Hint: use Mathematica’s help to read about the commands Equivalent (⇔) and Implies (⇒).

4. Let U =
{
1, 2, 3, 4, 5, 6, 7

}
, A =

{
2, 5, 7

}
, and B =

{
3, 4, 6, 7

}
.

(a) Determine whether A, and the complement of B are disjoint or not.

(b) Evaluate A ∪ B, B ∩ A, and P(A) ∩ P(B).

(c) Show that A ⊆ A ∪ B and A ∩ B ⊆ A.

5. Let F be the set that contains 10 elements. Read more about the command Subsets to answer the
following questions:

(a) How many subsets of F are there contains at most 7 elements?
Ans. 968

(b) How many subsets of F are there contains at exactly 7 elements?
Ans. 120

(c) How many subsets of F are there contains between 3 and 7 elements?
Ans. 912

6. Which of the following are true?

(a) ∃x ∈ R such that 3x = x2.

(b) ∃x ∈ R such that 3x = x.

(c) ∀x ∈ R, x2 + 4x+ 5 ≥ 0.

(d) ∀x ∈ N, ∃y ∈ N such that x = 3y or x = 3y + 1 or x = 3y + 2.

(e) −1

2
≤ (x+ y)(1− xy)

(1 + x2) (1 + y2)
≤ 1

2
for all x, y ∈ R.
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5.7 Project

Create a function TruthTable[expr, vars ] that takes a logical expression such as p ∧ q and outputs a
truth table similar to the following.

a b a ∧ b
T T T
T F F
F T F
F F F

You can create a list of truth values using Tuples. For example,

Tuples[{True, False}, 2]

{{True, True}, {True, False}, {False, True}, {False, False}}

You will also find it helpful to consider threading rules over the tuples using MapThread or Thread.
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6 Number Theory

6.1 Primes

A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1
and itself. A natural number greater than 1 that is not a prime number is called a composite number. For
example, 5 is prime because 1 and 5 are its only positive integer factors, whereas 6 is composite because
it has the divisors 2 and 3 in addition to 1 and 6. Either the built-in function PrimeQ or CompositeQ will
help you to determine whether an integer is prime or composite.

� PrimeQ[expr] yields True if expr is a prime number, and yields False otherwise.

� CompositeQ[expr] yields False if expr is a prime number, and yields True otherwise.

For example, the number 13 is prime while 10100 + 1 is composite since

In[ ]: PrimeQ[13]

Out[ ]: True

In[ ]: CompositeQ[13]

Out[ ]: False

In[ ]: PrimeQ[10^100+1]

Out[ ]: False

In[ ]: CompositeQ[10^100+1]

Out[ ]: True

Example 6.1. Prove that for every integer n > 2, the number 22
n−1 + 1 is not a prime number.

In[ ]: Resolve[ForAll[n, n>2, !PrimeQ[2^(2^n-1)+1]], Integers]

Out[ ]: True

The first few primes are 2, 3, 5, 7, 11, 13, · · ·. The first prime is 2, the second is 3, the sixth is 13, and so
on. In Mathematica, Prime[n] gives the nth prime number. For example,

In[ ]: Prime[1]

Out[ ]: 2

In[ ]: Prime[6]

Out[ ]: 13

In[ ]: Prime[2016]

Out[ ]: 17519

Prime[n] is listable function, that is it can find the primes at many orders or positions. For example,

In[ ]: Prime[{1,6,2016}]
Out[ ]: {2, 13, 17519}

Example 6.2. Find the first 10 primes.

In[ ]: Prime[Range[10]]

Out[ ]: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}

To find a prime number above a certain value n, you may use NextPrime[n]. If you would the kth prime
above n you should use NextPrime[n,k]. For example,

In[ ]: NextPrime[4]

Out[ ]: 5

In[ ]: NextPrime[4,3]

Out[ ]: 11

If k is negative in NextPrime[n,k], then the result is the kth prime previous to n.

In[ ]: NextPrime[88,-5]

Out[ ]: 67

The number of primes less than or equal to x is evaluated using PrimePi[x]. For example, there are 25
primes less that or equal to 100 since

In[ ]: PrimePi[100]

Out[ ]: 25

Example 6.3. How many 3−digit prime numbers are there?

In[ ]: PrimePi[999] - PrimePi[100]

Out[ ]: 143
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6.2 Integer Factorization

In number theory, the prime factors of a positive integer are the prime numbers that divide that integer
exactly. The prime factorization of a positive integer is a list of the integer’s prime factors, together with
their multiplicities; the process of determining these factors is called integer factorization. The fundamental
theorem of arithmetic says that every positive integer has a single unique prime factorization. To shorten
prime factorizations, factors are often expressed in powers (multiplicities). For example, 360 = 23 × 32 × 5.
In Mathematica, we use

In[ ]: FactorInteger[360]

Out[ ]: {{2, 3}, {3, 2}, {5, 1}}
The list of all integers that divides a number n can be evaluated using Divisors[n]. For example,

In[ ]: Divisors[10]

Out[ ]: {1, 2, 5, 10}
In[ ]: Divisors[13]

Out[ ]: {1, 13}
Example 6.4. How many divisors are there for 13!.

In[ ]: Length@Divisors[13!]

Out[ ]: 1584

Example 6.5. How many integers are there divide both 1545 and 1230.

In[ ]: Intersection[Divisors[1545], Divisors[1230]] // Length

Out[ ]: 4

Sometimes, you need to know the highest power k of b such that bk divides n. To do this, use the
Mathematica function IntegerExponent[n,b]. For example, the highest power of 2 that divides 360 is
3.

In[ ]: IntegerExponent[360,2]

Out[ ]: 3

Example 6.6. With how many zeros will 130! end ?

In[ ]: IntegerExponent[130!,10]

Out[ ]: 32

The command IntegerLength[n] in Mathematica gives the number of digits in the base 10 representation
of the integer n. Also, DigitCount[n,b] gives a list of the numbers of 1, 2, ..., b-1, 0 digits in the
base-b representation of n.

Example 6.7. How many digits are there for 130! ?

In[ ]: IntegerLength[130!]

Out[ ]: 220

and they are distributed as follows:

14 1’s, 21 2’s, 14 3’s, 23 4’s, 24 5’s,
16 6’s, 20 7’s, 15 8’s, 22 9’s, 51 0’s,

since

In[ ]: DigitCount[130!]

Out[ ]: {14, 21, 14, 23, 24, 16, 20, 15, 22, 51}

Example 6.8. Find only the number of 0’s, 5’s and 9’s do appear in 168371921.

In[ ]: DigitCount[16837^1921, 10, #] & /@ {0, 5, 9}
Out[ ]: {822, 790, 821}

6.3 Digits in Numbers

In this section we learn how to convert between numbers and lists. To obtain a list of the decimal digits in
the integer n, you may use IntegerDigits[n]. To construct an integer from the list of its decimal digits
use FromDigits[list].

Example 6.9. Reverse the integer 365435296161.

In[ ]: FromDigits[Reverse[IntegerDigits[365435296161]]]

Out[ ]: 161692534563

In[ ]: IntegerReverse[365435296161]

Out[ ]: 161692534563

Example 6.10. Find the sum of the digits of 1980!.

In[ ]: Total@IntegerDigits[1980!]

Out[ ]: 23418
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6.4 Fibonacci Sequence

As we have seen in Chapter 3, the sequence 1, 1, 2, 3, 5, 8, 13, 21, · · · is called Fibonacci sequence. By
definition, the first two numbers in the Fibonacci sequence are 1 and 1, and each subsequent number is the
sum of the previous two. The Mathematica function Fibonacci[n] gives the nth Fibonacci number.

In[ ]: Fibonacci[7]

Out[ ]: 13

Fibonacci[n] is listable function, so you can find, for example, the first 14 Fibonacci numbers as follows.

In[ ]: Fibonacci[Range[14]]

Out[ ]: {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377}

Example 6.11. Find the sum of the first 100 Fibonacci numbers.

In[ ]: Total@Fibonacci[Range[100]]

Out[ ]: 927372692193078999175

Example 6.12. Determine whether the 13th Fibonacci number is prime.

In[ ]: PrimeQ[Fibonacci[13]]

Out[ ]: True

6.5 Number Theoretic Functions

In mathematics, the remainder is the amount “left over” after performing some computation. In arithmetic,
the remainder is the integer “left over” after dividing one integer by another to produce an integer quotient
(integer division). In computing, the modulo operation finds the remainder after division of one number by
another (sometimes called modulus).

Given two positive numbers, a (the dividend) and n (the divisor), a modulo n (abbreviated as a mod n)
is the remainder of the Euclidean division of a by n. For instance, the expression “5 mod 2” would evaluate
to 1 because 5 divided by 2 leaves a quotient of 2 and a remainder of 1, while “9 mod 3” would evaluate
to 0 because the division of 9 by 3 has a quotient of 3 and leaves a remainder of 0; there is nothing to
subtract from 9 after multiplying 3 times 3.

Quotient and Remainder In Mathematica, if we divide a by n, then the quotient is evaluated using
Quotient[a, n] and the remainder (modulus) is Mod[a, n]. For example,

In[ ]: Quotient[5, 2]

Out[ ]: 2

In[ ]: Mod[5, 2]

Out[ ]: 1

In[ ]: QuotientRemainder[5, 2]

Out[ ]: {2, 1}
In[ ]: QuotientRemainder[9, 3]

Out[ ]: {3, 0}

If the remainder is 0 when we divide a by n, then we say that a is divisible by n. To test whether m is
divisible by n you may use Divisible[m,n] which yields True if m is divisible by n, and yields False if it
is not. For example,

In[ ]: Divisible[5, 2]

Out[ ]: False

In[ ]: Divisible[130!, 1210]

Out[ ]: True

In[ ]: Mod[130!, 1210]

Out[ ]: 0

GCD and LCM In mathematics, the greatest common divisor (gcd) of two or more integers, when at
least one of them is not zero, is the largest positive integer that divides the numbers without a remainder.
For example, the GCD of 8 and 12 is 4.

In[ ]: GCD[8, 12]

Out[ ]: 4

The least common multiple of two or more integers is the smallest positive integer that is divisible by all
of them. Since division of integers by zero is undefined, this definition has meaning only if the integers are
different from zero. For example, the LCM of 8 and 12 is 24.

37



Feras Awad @2024 6 NUMBER THEORY

In[ ]: LCM[8, 12]

Out[ ]: 24

Example 6.13. Find the GCD and LCM for the numbers 2145, 1716, 9918.

In[ ]: GCD[2145, 1716, 9918]

Out[ ]: 3

In[ ]: LCM[2145, 1716, 9918]

Out[ ]: 14182740

In number theory, two integers a and b are said to be relatively prime, mutually prime, or coprime if the
only positive integer that evenly divides both of them is 1. That is, the only common positive factor of the
two numbers is 1. This is equivalent to their greatest common divisor being 1. For example, 8, 9, and 11
are relatively prime since

In[ ]: CoprimeQ[8, 9, 11]

Out[ ]: True

The function CoprimeQ[n1, n2, ...] yields True if all pairs of the ni are relatively prime, and yields
False otherwise. For example, 6, 9, and 11 are not relatively prime since 3 divides 6 and 9.

In[ ]: CoprimeQ[6, 9, 11]

Out[ ]: False

6.6 Selecting from Lists

So far we have been able to create a list of data by using functions producing lists. The next step is to
be able to choose, from a list, certain data which fit a specific description. This can be achieved using the
command Select. The structure of Select is as follows.

Select[list, crit]

picks out all elements ei of list for which crit[ei] is True.

Select[list, crit, n]

picks out the first n elements for which crit[ei] is True.

Example 6.14. From the first 25 Fibonacci numbers, find the even numbers? find the prime numbers?

In[ ]: Select[Fibonacci[Range[25]], EvenQ]

Out[ ]: {2, 8, 34, 144, 610, 2584, 10946, 46368}
In[ ]: Select[Fibonacci[Range[25]], PrimeQ[#] &]

Out[ ]: {2, 3, 5, 13, 89, 233, 1597, 28657}

Example 6.15. How many 3-digits integer has at least 30 divisors?

In[ ]: Length@Select[Range[100, 999], Length[Divisors[#]] >= 30 &]

Out[ ]: 2

Example 6.16. An integer p is called prime-palindromic if it is prime and the number when we reverse the
digits of p is also prime (for example 941). How many prime-palindromic numbers are there up to 1000.

In[ ]: list = Prime[Range[PrimePi[1000]]];

In[ ]: crit[x ] := PrimeQ[IntegerReverse[x]];

In[ ]: Select[list, crit] // Length

Out[ ]: 56

Example 6.17. Notice that 122 = 144 and 212 = 441, i.e., the numbers and their squares are reverses of
each other. Find all the numbers up to 100 with this property.

In[ ]: Select[Range[100],IntegerReverse[#]^2==IntegerReverse[#^2]&]

Out[ ]: {1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 30, 31, 100}

Example 6.18. Twin primes are pairs of primes of the form (p, q) such that q=p+2. For example, (3,5)
and (41,43) are twin primes. How many twin primes are there up to 429?

In[ ]: Select[Prime[Range[PrimePi[429]]], PrimeQ[#+2]&] //Length

Out[ ]: 22

Example 6.19. A number is called a Harshad number if it is divisible by the sum of its digits (e.g., 12 is
Harshad as it is divisible by 1+2=3). Find all 2-digit Harshad numbers.
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In[ ]: Select[Range[10,99], Divisible[#,Total@IntegerDigits[#]]&]

In[ ]: Select[Range[10,99], Mod[#,Total@IntegerDigits[#]]==0&]

Out[ ]: {10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54,
60, 63, 70, 72, 80, 81, 84, 90}

6.7 Exercises

1. Find the 12th prime number?
Ans. 37

2. Determine whether 25 − 1 is prime or composite? What is the prime number next to 25 − 1? What
is the 5th prime number next to 25 − 1? What is the 5th prime number previous to 25 − 1?
Ans. Prime, 37, 53, 13

3. How many primes are there less than 1000? How many 6-digit primes are there?
Ans. 168, 68906

4. Factor the integer 12345. Write all its divisors. How many are there?
Ans. 3× 5× 823, {1, 3, 5, 15, 823, 2469, 4115, 12345}, 8

5. Find the least common multiple and the greatest common divisor of the integers 16, 24, 524.
Ans. 4, 6288

6. Find the quotient and reminder when 13! is divided by 2256.
Ans. 2760204, 576

7. How many positive integers are there divides both 12! and the 36th Fibonacci number, but not
2100 − 1.
Ans. 18

8. Find the sum of the first 100 primes. Find the sum of the first 123 even integers.
Ans. 24133, 15252

9. Show that among the first 500 Fibonacci numbers, 18 of them are prime. Which of the first 10
Fibonacci number is not prime?

10. We call repunits the numbers that contain only the digit 1 in their writing, namely numbers of the
form 111 · · · 11.

(a) We know that 11 is a prime repunit number. One wonders what is the next prime repunit. Find
all such numbers up to 500 digits of ones.

(b) Find the smallest repunit divisible by 19.
Ans. 111111111111111111

11. The sum of two positive integers is 5432 and their least common multiple is 223020. Find the
numbers.
Ans. 1652, 3780

12. Find the smallest positive multiple of 99999 that contains no 9’s amongst its digits.
Ans. 11112

13. A Dudeney number is a positive integer that is a perfect cube such that the sum of its decimal digits
is equal to the cube root of the number. For example,

4913 = 173 where 17 = 4+ 9+ 1+ 3

Find all 5 digits Dudeney numbers.
Ans. 17576, 19683

14. (a) A palindromic number is a number that remains the same when its digits are reversed. The
command PalindromeQ[n] returns True if the integer n is identical to IntegerReverse[n],
and False otherwise. From the first 100 primes, how many of them is palindromic?

(b) Show that: All 4-digits palindromic numbers are composite. Hint: You may use the command
AllTrue.

(c) Show that: All 4-digits palindromic numbers are divisible by 11.

15. A number is perfect if it is equal to the sum of its proper divisors. For example, 6 = 1+ 2+ 3

is perfect, while 18 ̸= 1+ 2+ 3+ 6+ 9 is not. You may use the command PerfectNumberQ to
test whether a number is perfect or not. For example, PerfectNumberQ[6] returns True, while
PerfectNumberQ[18] returns False.
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(a) Write a program to find all the perfect numbers up to 10000.

(b) Use the command PerfectNumber to find the first 7 perfect numbers.

16. A partition of a positive integer n, also called an integer partition, is a way of writing n as a sum of
positive integers. Two sums that differ only in the order of their summands are considered the same
partition. For example, 4 can be partitioned in five distinct ways:

4 = 4

= 3 + 1

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1

Use the command IntegerPartitions to answer the following questions.

(a) Give a list of all possible ways to partition the integer 5 into smaller integers ?

(b) Partitions 5 into at most 3 integers ?

(c) Partitions 5 into exactly 3 integers ?

(d) Find all partitions of 5 that involve only 1 and 3 ?

(e) How many ways are there to make change for 156 JOD with the paper coins 1, 5, 10, 20, and
50 with exactly 10 paper coins?

17. In mathematics, a Mersenne prime is a prime number of the form Mn = 2n − 1 for some integer
n. In order for Mn to be prime, n must itself be prime. This is true since for composite n with
factors a and b, n = ab. Therefore, 2n − 1 can be written as 2ab − 1, which always has the factors
(2a − 1) and (2b − 1). The first five Mersenne primes are Mn = 3, 7, 31, 127, 8191 corresponding to
n = 2, 3, 5, 7, 13.

(a) In Mathematica, the command MersennePrimeExponentQ[n] returns True if n is a Mersenne
prime exponent, and False otherwise. Using this command, find all Mersenne prime exponents
smaller than 10000.

(b) The command MersennePrimeExponent[n] gives the nth Mersenne prime exponent. What is
the 40th Mersenne prime exponent? How many digits are there in the 40th Mersenne prime
number?
Ans. 20996011, 8

18. Goldbach’s conjecture is one of the oldest and best-known unsolved problems in number theory and
all of mathematics. It states:

Every even integer greater than 2 can be expressed as the sum of two primes.

The expression of a given even number as a sum of two primes is called a Goldbach partition of that
number. The following are examples of Goldbach partitions for some even numbers:

6=3+ 3

8=3+ 5

10=3+ 7 = 5+ 5

Write a code using Mathematica to find all possible Goldbach partitions given any even integer n > 2,
then use it to find all Goldbach partitions for n = 430.
Hint: Is is useful to use the command IntegerPartitions.

19. How does the Apply command function in Mathematica, and how can it be utilized, alongside other
commands, to express the prime factorization of a number such as 12, as 22 · 31?

6.8 Project

1. In mathematics, the look-and-say sequence is the sequence of integers beginning as follows:

1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, · · ·

To generate a member of the sequence from the previous member, read off the digits of the previous
member, counting the number of digits in groups of the same digit. For example:

1 is read off as “one 1” or 11.
11 is read off as “two 1s” or 21.
21 is read off as “one 2, one 1” or 1211.
1211 is read off as “one 1, one 2, two 1s” or 111221.
111221 is read off as “three 1s, two 2s, one 1” or 312211.

The look-and-say sequence was analyzed by John Conway after he was introduced to it by one of
his students at a party. Write a Mathematica code to generate the look-and-say sequence given a
starting digit d from 0 to 9 with a length n. Project 4.14 in Chapter 4 is helpful for your code.
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2. A PRIME PENCIL: TRUNCATABLE PRIMES
In number theory, a left-truncatable prime is a prime number which contains no 0, and if the leading
(“left”) digit is successively removed, then all resulting numbers are prime. For example, 9137, since
9137, 137, 37 and 7 are all prime. Write a Mathematica code to find the largest left-truncatable
prime.

The idea of recursion in Section 3.7 from Chapter 3 is helpful in your code. In addition, you may
need the following built-in command: Prepend.
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7 Computer Algebra and Solving Equations

The Wolfram Language has a variety of commands for algebraic manipulation operations like expansion
and factoring of polynomials, addition of fractions with unlike denominators, and collection of terms with
like variables. These commands have names that describe exactly what they do, making it intuitive for new
users to find the right commands for their needs.

7.1 Working with Polynomials and Powers

One of the abilities of Mathematica is to handle symbolic computations, i.e., Mathematica can comfortably
work with symbols. For example, the Expand command does exactly what its name says it does:

In[ ]: Expand [(x-2)(x-3)(x+1)^2]

Out[ ]: x4 − 3x3 − 3x2 + 7x+ 6

Mathematica can also do the inverse of this task, namely factorize an expression:

In[ ]: Factor[x^2 + 2 x + 1]

Out[ ]: (1+ x)2

While expansion of an algebraic expression is a simple and routine procedure, the factorization of algebraic
expressions is often quite challenging. My favorite example is this one.

In[ ]: Factor[x^10 + x^5 + 1]

Out[ ]:
(
1+ x+ x2

) (
1− x+ x3 − x4 + x5 − x7 + x8

)
Factor only works completely if all the roots are rational.

In[ ]: Factor[x^2 - 2]

Out[ ]: −2+ x2

Factor will not use complex numbers in its answer x2 + 1 unless one of the coefficients is complex, so it
won’t write x2 + 1 = (x− i)(x+ i).

In[ ]: Factor[x^2 + 1]

Out[ ]: 1+ x2

Setting Factor[poly,Extension->All] will extend the domain of coefficients to include any irrational
or complex numbers.

In[ ]: Factor[x^2 + 2, Extension -> All]

Out[ ]:
(
x− i

√
2
)(

x+ i
√
2
)

In[ ]: Factor[2 + 2 Sqrt[2] x + x^2, Extension -> All]

Out[ ]:
(
x+

√
2
)2

Expand and Factor do a nice job even when you use numerical coefficients.

In[ ]: Expand[(x - 1.25) (2 x - 0.5)]

Out[ ]: 0.625− 3.x+ 2x2

In[ ]: Factor[0.625 - 3 x + 2 x^2]

Out[ ]: 2.(−1.25+ x)(−0.25+ x)

The Expand and Factor commands also work for polynomials with more than one variable.

In[ ]: Expand[(2 x - 5 y + 3 z)^2]

Out[ ]: 4x2 − 20xy+ 25y2 + 12xz− 30yz+ 9z2

In[ ]: Factor[4 x^2 - 20 x y + 25 y^2 + 12 x z - 30 y z + 9 z^2]

Out[ ]: (2x− 5y+ 3z)2

The Simplify command produces an expression that is the shortest to write out. More often than not,
this will agree with what you think of as “simplest”. For example, x2 − 2x+ 1 = (x− 1)2 is factored when
you Simplify it:

In[ ]: Simplify[x^2 - 2 x + 1]

Out[ ]: (−1+ x)2

However, if we ask Mathematica to simplify x3 + 2x2 − 2x− 1,

In[ ]: Simplify[x^3 + 2 x^2 - 2 x - 1]

Out[ ]: −1− 2x+ 2x2 + x3
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Mathematica returns the expression, even though x3 + 2x2 − 2x− 1 can be factored as (x− 1) (x2 + 3x+ 1).
Mathematica thinks that writing this cubic polynomial directly with 4 terms is simpler than factoring it
into two expressions with a total of 5 terms. The Expand and Simplify commands can’t help much when

expressions have fractional powers (i.e. roots). For example, you might think that
√
x2 = (x2)

1/2
= x, but

Mathematica doesn’t agree:

In[ ]: Simplify[Sqrt[x^2]]

Out[ ]:
√
x2

The reason for the apparent failure should be clear:
√
x2 = x only if x ≥ 0. Sometimes the reason that

Mathematica does not simplify expressions is that it treats x as a complex number. The Simplify command
supports an Assumptions option with which we can force Mathematica to treat x, say, as a nonnegative real
number, or simply a real number. Here’s what happens with the example above when including appropriate
assumptions:

In[ ]: Simplify[Sqrt[x^2], Assumptions -> x >= 0]

Out[ ]: x

In[ ]: Simplify[Sqrt[x^2], Assumptions -> Element[x, Reals]]

Out[ ]: Abs[x]

In[ ]: Simplify[(x^6)^(1/3), Assumptions -> Element[x, Reals]]

Out[ ]: x2

7.2 Working with Rational Functions

A rational function is an expression of the form
P(x)

Q(x)
, where P and Q are polynomials of a single variable

x. The following are three common algebraic operations involving rational functions. Combining terms
over a common denominator can be achieved with the Together command. For example, to combine

2

3x+ 1
+

5x

x+ 2
:

In[ ]: Together[2/(3 x + 1) + 5 x/(x + 2)]

Out[ ]:
4+ 7x+ 15x2

(2+ x)(1+ 3x)

Splitting up a rational function into its partial fraction decomposition can be done with the Apart command.

For example, to decompose
11x2 − 17x

(x− 1)2(2x+ 1)

In[ ]: Apart[(11 x^2 - 17 x)/((x - 1)^2 (2 x + 1))]

Out[ ]: − 2

(−1+ x)2
+

3

−1+ x
+

5

1+ 2x

The Apart command also does long division. The quotient
x5 − 2x2 + 6x+ 1

x2 + x+ 1
is found with:

In[ ]: Apart[(x^5 - 2 x^2 + 6 x + 1)/(x^2 + x + 1)]

Out[ ]: −1− x2 + x3 +
2+ 7x

1+ x+ x2

7.3 Working with Transcendental Functions

The Simplify command has reasonable success working many basic identities involving the trigonometric
and hyperbolic functions, such as

In[ ]: Simplify[Sin[x]^2 + Cos[x]^2]

Out[ ]: 1

In[ ]: Simplify[Sin[x/2] Cos[x/2]]

Out[ ]:
Sin[x]

2

In[ ]: Simplify[Cosh[x]^2 - Sinh[x]^2]

Out[ ]: 1

The TrigExpand and TrigReduce commands provide alternate methods of working with trigonometric
functions, performing the jobs suggested by their names as follows.

TrigExpand[expr ] Splits up sums and integer multiples that ap-
pear in arguments of trigonometric functions,
and then expands out products of trigonomet-
ric functions into sums of powers, using trigono-
metric identities when possible.
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For example:

In[ ]: TrigExpand[Sin[2 x]]

Out[ ]: 2Cos[x]Sin[x]

In[ ]: TrigExpand[Cos[x + y]]

Out[ ]: Cos[x]Cos[y]− Sin[x]Sin[y]

In[ ]: TrigExpand[Sin[2 x] Cos[3 x]]

Out[ ]: −Sin[x]

2
+

5

2
Cos[x]4Sin[x]− 5Cos[x]2Sin[x]3 +

Sin[x]5

2

TrigReduce[expr ] Given a trigonometric polynomial, TrigReduce
typically yields a linear expression involving
trigonometric functions with more complicated
arguments.

For example:

In[ ]: TrigReduce[2 Cos[x]^2]

Out[ ]: 1+ Cos[2x]

In[ ]: TrigReduce[2 Sin[x] Cos[y]]

Out[ ]: Sin[x− y] + Sin[x+ y]

In[ ]: TrigReduce[Sin[2 x] Cos[3 x]]

Out[ ]:
1

2
(−Sin[x] + Sin[5x])

The FullSimplify Command You may (and we usually do) prefer to use FullSimplify when working
with transcendental functions. Think of this command as a “full-strength” version of Simplify. It uses a
wider variety of expression simplification possibilities than Simplify (although it could take a long time with
complicated expressions).

Example 7.1. Find the exact value of
√
2+

√
3−

√
2
√
6+ 5.

In[ ]: FullSimplify[Sqrt[2] + Sqrt[3] - Sqrt[5+2Sqrt[6]]]

Out[ ]: 0

7.4 Equations and Their Solutions

Many commands are available for equation solving, from solving over specific domains to returning general
solutions to finding roots of equations. For new users, becoming familiar with just a few of the most
common commands is sufficient to solve many different types of problems.

Solving equations and finding roots for different types of equations and relations are one of the main
endeavors of mathematics. For polynomials with one variable of the form anx

n + an−1x
n−1 + · · ·+ a1x+ a0,

it has been proved that there is no formula for finding the roots when n ≥ 5 (in fact, when n = 3 or n = 4,
the formulas are not that pretty!). This forces us to find numerical ways to estimate the roots of the
equations.

Using Wolfram Mathematica we have several commands at our disposal. There are different kinds of
equations and they require different commands to find the roots.

The Solve Command for an Equation Mathematica’s Solve command will solve an equation for an
unknown variable. You use it in the form:

Solve[ an equation , variable(s) to solve for ]

For example,

In[ ]: Solve[2 x + 5 == 9, x]

Out[ ]: {{x → 2}}

Notice that:

� Equations in Mathematica are written using the double-equal sign “==”.

� The output of Solve will always have an outer layer of curly braces { }.

� Inside the outer layer of curly braces, you’ll see substitution rules with the familiar “→” syntax.

You can check that x=2 is the correct solution to the above equation:

In[ ]: 2 x + 5 == 9 /. {x -> 2}
Out[ ]: True
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This means that after the substitution x=2, it is True that the left-hand side of the equation equals the
right-hand side.

It may be useful to start by counting the number of roots before calculating these roots, if any. The
command CountRoots[poly, x] gives the number of real roots of the polynomial poly in x.

In[ ]: CountRoots[6 x^3 + 36 x^2 - 78 x - 252, x]

Out[ ]: 3

To count complex roots of a polynomial you have to specify a rectangular interval for the polynomial. For
example,

In[ ]: CountRoots[x^2 + 5, {x, -3 I, 3 I}]
Out[ ]: 2

Here are a few more examples involving the Solve command.

Example 7.2. Equations can have more than one solution. We can see numerical approximations of the
solutions using the N command.

In[ ]: Solve[x^2 - 3 x + 1 == 0, x]

Out[ ]:

{{
x → 1

2
(3−

√
5)

}
,

{
x → 1

2
(3+

√
5))

}}
In[ ]: N@Solve[x^2 - 3 x + 1 == 0, x]

Out[ ]: {{x → 0.381966}, {x → 2.61803}}

Example 7.3. Here, two of the solutions are complex, with i standing for the familiar
√
−1.

In[ ]: Solve[x^3 + x^2 == -3 x, x]

Out[ ]:

{
{x → 0} ,

{
x → 1

2
(−1− i

√
11)

}
,

{
x → 1

2
(−1+ i

√
11)

}}
Example 7.4. If the equation involves other variables, Mathematica will treat them as constants (or
parameters, depending on your use).

In[ ]: Solve[y^2 - a*y == 2 a, y]

Out[ ]:

{{
y → 1

2
(a−

√
a
√
8+ a)

}
,

{
y → 1

2
(a+

√
a
√
8+ a)

}}
Note The Solve command works very well for equations involving polynomials. However, it doesn’t have
much success with trigonometric, exponential, logarithmic, or hyperbolic functions.

The Solve Command for a System of Equations Solve can also be used to solve a system of equations.
In general, it is used in this form:

Solve[{ eqn 1, eqn 2, ...} , { var 1, var 2, ...}]

Example 7.5. Solve the system

{
3x+ 8y = 5

5x+ 2y = 7
.

In[ ]: Solve[{3 x + 8 y == 5, 5 x + 2 y == 7}, {x, y}]

Out[ ]:

{{
x → 23

17
, y → 2

17

}}

Example 7.6. Solve the system

{
2xy + y2 = −4

x+ y = 2
.

In[ ]: Solve[{2 x y + y^2 == -4, x + y == 2}, {x, y}]

Out[ ]:
{
{x → 2

√
2, y → 2(1−

√
2)}, {x → −2

√
2, y → 2(1+

√
2)}
}

Two sets of solutions are obtained.

Example 7.7. Solve the system

{
x+ y = 0

x+ y = 1

In[ ]: Solve[{x + y == 0, x + y == 1}, {x, y}]
Out[ ]: {}

There are no solutions to this system of equations.
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Example 7.8. Solve the system

{
2x− y + z = 2

x+ y + z = 3

In[ ]: Solve[{2 x - y + z == 2, x + y + z == 3}, {x, y, z}]

Out[ ]:

{{
y → 1

2
+

x

2
, z → 5

2
− 3x

2

}}
The above command produced the warning message Solve::svars:

Equations may not give solutions for all solve variables. >> It alerts you to the fact
that you supplied only two equations, so one of the three variables (here, it’s x) will be treated as a
constant (or parameter) in the solution.

Equations and Numerical Solutions There are some equations, however, for which it is mathematically
impossible to find explicit formulas for the solutions. The Wolfram Language uses Root objects to represent
the solutions in this case.

In[ ]: Solve[2 - 4 x + x^5 == 0, x]

Out[ ]:

Even though you cannot get explicit formulas, you can still evaluate the solutions numerically.

In[ ]: Solve[2 - 4 x + x^5 == 0, x] // N

Out[ ]: {{x → −1.51851}, {x → 0.508499}, {x → 1.2436},
{x → −0.116792− 1.43845I}, {x → −0.116792+ 1.43845I}}

Or, you can use NSolve. The NSolve command uses efficient numerical techniques to approximate roots
of polynomials and a few other simple functions. It has the same syntax as Solve.

In[ ]: NSolve[2 - 4 x + x^5 == 0, x]

Out[ ]: {{x → −1.51851}, {x → 0.508499}, {x → 1.2436},
{x → −0.116792− 1.43845I}, {x → −0.116792+ 1.43845I}}

NSolve doesn’t work at all with exponential, logarithmic, trigonometric, or hyperbolic functions. You should
solve these types of equations using FindRoot, and giving a starting value for x. FindRoot has the form:

FindRoot[equation , {variable , estimation of a sol.}]

The estimate of a solution is just that a value that you think is close to or somehow near the point where
you expect to find a solution. FindRoot then iteratively searches for a solution starting from that estimate.

Example 7.9. Find a root of ex + sinx near x = 0.

In[ ]: FindRoot[Sin[x] + Exp[x], {x, 0}]
Out[ ]:

{
x → −0.588533

}
Note that FindRoot[lhs == rhs,{x,x0,x1}] searches for a solution using x0 and x1 as the first two
values of x, avoiding the use of derivatives. If you specify only one starting value of x, FindRoot searches
for a solution using Newton methods. If you specify two starting values, FindRoot uses a variant of the
secant method.

Example 7.10. Find the positive root of cosx = x2 using both Newton and Secant methods.

In[ ]: FindRoot[Cos[x] == x^2, {x, 3}]
Out[ ]:

{
x → 0.824132

}
In[ ]: FindRoot[Cos[x] == x^2, {x, 3, 5}]
Out[ ]:

{
x → 0.824132

}
Also, FindRoot[lhs == rhs,{x,xstart,xmin,xmax}] searches for a solution, stopping the search if x ever
gets outside the range xmin to xmax.

Example 7.11. The equation tan x = 8− 17x2 has two real roots in the interval
[
− 1, 1

]
. Find these two

roots.

In[ ]: FindRoot[Tan[x] == 8 - 17 x^2, {x, 0.5, -1, 1}]
Out[ ]:

{
x → 0.652415

}
In[ ]: FindRoot[Tan[x] == 8 - 17 x^2, {x, -0.75, -1, 1}]
Out[ ]:

{
x → −0.722824

}
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To solve a system of two or more equations in the unknowns x, y, etc., we use x = x0, y = y0, · · · as initial
estimates of a solution.

Example 7.12. Solve the system

{
− x3 + y2 = 5

3 cos x− x+ y = 4

The above equations have a simultaneous solution that’s close to x = 1 and y = 2. We can pinpoint it
with:

In[ ]: FindRoot[{y^2-x^3==5, y-x+3Cos[x]==4}, {x,1}, {y,1}]
Out[ ]: {x → 0.663687, y → 2.30051}

The Command Reduce In addition to being able to solve purely algebraic equations, Mathematica can
also solve some equations involving other functions like sin x = a. It is important to realize that an equation
such as sin x = a actually has an infinite number of possible solutions, in this case differing by multiples
of 2π. However, Solve by default returns just one solution, but prints a message telling you that other
solutions may exist. You can use Reduce to get more information.

Reduce[expr, vars ]

reduces the statement expr by solving equations or

inequalities for vars and eliminating quantifiers

For example,

In[ ]: Reduce[a x + b == 0, x]

Out[ ]: (b == 0 && a == 0) ||

(
a! = 0 && x == −b

a

)
In[ ]: Reduce[Sin[x] == 1, x]

Out[ ]: C[1] ∈ Integers && x ==
π

2
+ 2πC[1]

In[ ]: Reduce[x^4 - 1 == 0, x]

Out[ ]: x == −1 || x == −I || x == I || x == 1

7.5 Inequalities

Just as the equation x2 + 3x = 2 asserts that x2 + 3x is equal to 2, so also the inequality x2 + 3x > 2

asserts that x2 + 3x is greater than 2. In Mathematica, Reduce works not only on equations, but also on
inequalities. For example, the following pair of inequalities reduces to a single inequality.

In[ ]: Reduce[{0 < x < 2, 1 < x < 4}, x]

Out[ ]: 1 < x < 2

These inequalities can never simultaneously be satisfied.

In[ ]: Reduce[{x < 1, x > 3}, x]

Out[ ]: False

This inequality yields three distinct intervals.

In[ ]: Reduce[(x - 1) (x - 2) (x - 3) (x - 4) > 0, x]

Out[ ]: x < 1 || 2 < x < 3 || x > 4

The ends of the intervals are at roots and poles.

In[ ]: Reduce[1 < (x^2 + 3 x)/(x + 1) < 2, x]

Out[ ]: −1−
√
2 < x < −2 || − 1+

√
2 < x < 1

The following inequality allows only finitely many intervals.

In[ ]: Reduce[{Sin[x] > 0, 0 <= x <= 2 Pi}, x]

Out[ ]: 0 < x < π

7.6 Exercises

1. Expand the function (1+ x)2(1− x)3.
Ans. −x5 + x4 + 2x3 − 2x2 − x+ 1

2. Factorize the polynomials

(a) (1+ x)3 + (1− x)3

Ans. 2 (3x2 + 1)

(b) x2 + 5

Ans.
(
x− i

√
5
) (

x+ i
√
5
)
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3. Write
1

x− 1
+

x

x2 + 1
as single fraction.

Ans.
2x2 − x+ 1

(x− 1) (x2 + 1)

4. Decompose
x

x2 + 6x+ 5
into sum of partial fractions.

Ans.
5

4(x+ 5)
− 1

4(x+ 1)

5. Show that:

(a)
(1+

√
5)10 − (1−

√
5)10

1024
√
5

= 55

(b) tan

(
3π

11

)
+ 4 sin

(
2π

11

)
=

√
11

(c)
etanh

−1 x − e− tanh−1 x

etanh
−1 x + e− tanh−1 x

= x

6. Find all the coefficients of (2+ 3x)4. Hint: see CoefficientList.
Ans. 16, 96, 216, 216, 81

7. What is the coefficient of xy3 when we expand (x+ y)4 ? What is the coefficient of y2 ? Hint: see
the command Coefficient.
Ans. 4, 6x2, 6x2

8. Find the exact value of the number
√

3 +
√
8−

√
2.

Ans. 1

9. Compare TrigExpand and TrigReduce on the expression sin2 x+ tan2 x.

10. Find the quotient and remainder of the polynomial division
x2 + x+ 1

2x+ 1
.

Hint: see PolynomialQuotient and PolynomialRemainder.

Ans.
x

2
+

1

4
,
3

4

11. Solve each of the following.

(a) x2 − 3x+ 1 = 0

(b) x5 − 3x+ 1 = 0

(c) x+ y+ z = 3 , 2x2 + 3y2 − 6z2 = −1 and 3z2 = 9x2 − 6y3

(d) tan3 x+ e2x = 10 over the interval
[
1, 5
]

Ans. 1.87452

(e) x2 ≥ 1

12. (a) Solve the equation
∣∣x− 1

∣∣ = 3 over real numbers.

(b) Find integer solution(s) for the equation (x2 − 3x+ 1)
x+1

= 1.
Ans. −1, 0, 1, 3

13. Solve the equation sin2 x− 3 sinx+ 2 = 0 for sinx

14. The Taxicab Number. The famous number theorist G. H. Hardy (1887-1947) was visiting S.
Ramanujan (1887-1920) when Ramanujan was ill in a hospital. Hardy said that the number of his
taxicab is 1729, seemed to him to be a dull number. Ramanujan responded that, on the contrary,
1729 is the sum of two cubes in two ways. Prove Ramanujan claim. Use the command Solve then
use the new function PowersRepresentations.
Ans. 1, 12 or 9, 10

15. The built-in function FindInstance[expr, vars] finds an instance of vars that makes the state-
ment expr be True. Use Mathematica’s help to read more about this function, and then use it to
solve exercise (14).

16. For what truth values of the statements a, b, c, and d will the following proposition is true:
(∼ a ∨ b) ∧ (c∧ ∼ d).
Hint: again, you may use FindInstance.
Ans. a b c d

T T T F
F T T F
F F T F

48



Feras Awad @2024 8 SINGLE VARIABLE CALCULUS

8 Single Variable Calculus

Two important machineries in calculus are differentiation and integration, and both use the concept of
limit. We assume the reader is familiar with calculus as all the material in these notes.

8.1 Limits

Mathematica provides the command Limit for exploring the limit of a function. If f is a function of a
single variable, Mathematica evaluates lim

x→a
f(x) with the following syntax:

Limit[ function , variable -> a ]

For example, lim
x→0

sin x

x
= 1 as shown below.

In[ ]: Limit[Sin[x]/x, x -> 0

Out[ ]: 1

The limit of the function
|x|
x

when x → 0 does not exist.

In[ ]: Limit[RealAbs[x]/x, x -> 0]

Out[ ]: Indeterminate

Be careful! The function
|x|
x

has a different limiting value at x = 0, depending on whether you approach from

above or below. We know that the right-hand limit lim
x→0+

|x|
x

= 1 and the left-hand limit lim
x→0−

|x|
x

= −1.

Therefore lim
x→0

|x|
x

does not exist. To calculate a left-hand lim
x→a−

f(x), you have to specify the Direction

option in the Limit command. To find lim
x→0−

|x|
x
, you use:

In[ ]: Limit[RealAbs[x]/x, x -> 0, Direction -> "FromBelow"]

Out[ ]: −1

Similarly, to find the right-hand limit lim
x→0+

|x|
x
, you can use:

In[ ]: Limit[RealAbs[x]/x, x -> 0, Direction -> "FromAbove"]

Out[ ]: 1

Note: To evaluate the limit from both real directions we use Direction → Reals or Direction →
"TwoSided".

The following examples show some sample limit computations. Mathematica can compute most limits,
even those that involve infinite limits, or limits at infinity:

1. lim
x→0

ex − x− 1

x

In[ ]: Limit[(Exp[x] - x - 1)/x, x -> 0]

Out[ ]: 0

2. lim
x→3

1− x

(x− 3)2

In[ ]: Limit[(1 - x)/(x - 3)^2, x -> 3]

Out[ ]: −∞

3. lim
x→∞

x√
x2 + 1

In[ ]: Limit[x/Sqrt[x^2 + 1], x -> Infinity]

Out[ ]: 1

4. lim
x→−∞

x√
x2 + 1

In[ ]: Limit[x/Sqrt[x^2 + 1], x -> -Infinity]

Out[ ]: −1

5. lim
x→0

3x− sin(3x)

4x− tan(4x)

In[ ]: Limit[(3 x - Sin[3 x])/(4 x - Tan[4 x]), x -> 0]

Out[ ]: − 27

128
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6. lim
x→∞

sin x

In[ ]: Limit[Sin[x], x -> Infinity]

Out[ ]: Indeterminate

7. lim
x→1

ln x

1− x

In[ ]: Limit[Log[x]/(1 - x), x -> 1]

Out[ ]: −1

8.2 Differentiation

If f is a function of a single variable, Mathematica will understand the symbol f′ as the derivative of f,
where the prime is entered using the single-quote character. For example,

In[ ]: f[x ] := x^4

In[ ]: f′[x]

Out[ ]: 4x3

Higher-order derivatives follow with the usual notation:

In[ ]: {f′′[x],f′′′[a]}
Out[ ]: {12x2, 24a}

Also, you can use the differential operator D for computing derivatives.

D[ function , variable]

For example,

In[ ]: f[x ] := x^4

In[ ]: D[f[x],x]

Out[ ]: 4x3

To calculate a second derivative, you can use D either of these short-hand formats:

In[ ]: D[f[x],x,x]

Out[ ]: 12x2

In[ ]: D[f[x],{x,2}]
Out[ ]: 12x2

Similarly, for the third derivative of f we can use either of the following:

In[ ]: D[f[x],x,x,x]

Out[ ]: 24x

In[ ]: D[f[x],{x,3}]
Out[ ]: 24x

Example 8.1. If g(t) = t2 + t3 + ln t, find g′′(1).

In[ ]: g[t ] := t^2+t^3+Log[t]

In[ ]: g′′[1]

Out[ ]: 7

In[ ]: D[g[t],{t,2}] /. {t -> 1}
Out[ ]: 7

Example 8.2. Find the equation of the tangent line for the function g(t), given in the previous example,
at t = 1. Remember that the equation of tangent is given by y = g(1) + g′(1)(t− 1). So,

In[ ]: Simplify[g[1] + g′[1] (t - 1)]

Out[ ]: −4+ 6t

Example 8.3. Evaluate
d

dx

[
x sin (3πex)

]∣∣∣
x=ln 2

.

In[ ]: D[x Sin[3 Pi Exp[x]], x] /. x -> Log[2]

Out[ ]: 6πLog[2]
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Example 8.4. Find all number(s) c that satisfy the conclusion of the Mean-Value Theorem for f(x) = x2 − 3x

on

[
0,

7

2

]
. Note that f is continuous on

[
0,

7

2

]
and differentiable on

(
0,

7

2

)
since it is a polynomial. So,

c ∈
(
0,

7

2

)
exists and satisfies f′(c) =

f
(
7
2

)
− f(0)

7
2
− 0

.

In[ ]: f[x ] := x^2 - 3 x

In[ ]: Solve[{f′[c]==(f[7/2]-f[0])/(7/2-0) && 0<c<7/2}, c]

Out[ ]:

{{
c → 7

4

}}

8.3 Implicit Differentiation

In calculus, an implicit equation is an equation where the dependent variable is not explicitly expressed in
terms of the independent variable. This means that an implicit equation is a statement that two or more
variables are related to each other, but the relationship is not necessarily expressed as a function of one
variable with respect to the others. For example, the circle centered at the origin with radius 5 represents
an implicit curve whose equation is x2 + y2 = 25. It is implicit because y is not explicitly solved for in
terms of x, and vice versa.

Implicit equations often require special techniques, such as implicit differentiation, to find derivatives or
solve related calculus problems. In Mathematica, the command

ImplicitD[eqn,y,x]

gives the derivative of y, assuming that the variable y represents an implicit function defined by the
equation eqn.

Example 8.5. Find y′ if x+ y = sin−1 y.

In[ ]: ImplicitD[x + y == ArcSin[y], y, x]

Out[ ]: −
√
1− y2√

1− y2 − 1

To find the higher-order implicit derivative
dny

dxn
, one may use ImplicitD[eqn,y,{x,n}].

Example 8.6. Find y′′ if x2 + y2 = 25.

In[ ]: ImplicitD[x^2 + y^2 == 25, y, {x, 2}]

Out[ ]:
−x2 − y2

y3

8.4 Maximum and Minimum

In Mathematica, Maximize[f,x] try to find the absolute maximum value of f with respect to x on its
natural domain or a given domain. While Minimize[f,x] try to find the absolute minimum value of f
with respect to x.

In[ ]: Maximize[-2 x^2 - 3 x + 5, x]

Out[ ]:

{
49

8
,

{
x → −3

4

}}
In[ ]: Maximize[{Sin[x], 0 <= x <= 2 Pi}, x]

Out[ ]:
{
1,
{
x → π

2

}}
In[ ]: Minimize[{Cos[x], -3 Pi/4 <= x <= 5 Pi/6}, x]

Out[ ]:

{
−
√
3

2
,

{
x → 5π

6

}}
Finding local maximum and minimum values of f is available inMathematica using the commands FindMinimum
and FindMaximum as follows:

In[ ]: FindMinimum[x^3-x, x]

Out[ ]: {−0.3849, {x → 0.57735}}
In[ ]: FindMaximum[x^3-x, {x,-4}]
Out[ ]: {0.3849, {x → −0.57735}}
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8.5 Integration

F(x) is an antiderivative of f(x) if F′(x) = f(x). The symbol

∫
f(x)dx means “find all antideriva-

tives of f(x).” Because all antiderivatives of a given function differ by a constant, we usually write∫
f(x)dx = F(x) + C where C represents an arbitrary constant. You can use the Integrate command

to compute

∫
f(x)dx. It has the form:

Integrate[f[x], x]

You specify a function or an expression to integrate, as well as the variable in which the integration is to

take place. For example, to compute

∫
x3 dx, use this syntax:

In[ ]: Integrate[x^3, x]

Out[ ]:
x4

4

Mathematica can integrate almost every integral that can be done using standard integration methods (e.g.,
substitution, integration by parts, partial fractions). Here are some typical integrations:

1.

∫
x ln x dx

In[ ]: Integrate[x Log[x], x]

Out[ ]: −x2

4
+

1

2
x2Log[x]

2.

∫
1

1− x2
dx

In[ ]: Integrate[1/(1 - x^2), x]

Out[ ]: −1

2
Log[1− x] +

1

2
Log[1+ x]

3.

∫
e
√
x

√
x
dx

In[ ]: Integrate[Exp[Sqrt[x]]/Sqrt[x], x]

Out[ ]: 2e
√
x

4.

∫ √
4− 9x2 dx

In[ ]: Integrate[Sqrt[4 - 9 x^2], x]

Out[ ]:
1

2
x
√
4− 9x2 +

2

3
sin−1

(
3x

2

)
5.

∫
x

1+ x4
dx

In[ ]: Integrate[x/(1 + x^4), x]

Out[ ]:
tan−1 (x2)

2

6.

∫
xex

(1+ x)2
dx

In[ ]: Integrate[x Exp[x]/(1 + x)^2, x]

Out[ ]:
ex

1+ x

7.

∫
cos
(
sin
(
y2
))

dy

In[ ]: Integrate[Cos[Sin[y^2]], y]

Out[ ]:

∫
cos
(
sin
(
y2
))

dy

As you see in the last of the examples above, the integrand has no closed-form anti-derivative. So, Mathe-
matica will return your input unevaluated whenever it can’t handle an integral. This can mean either that
it’s not possible to find an antiderivative in closed form or that Mathematica hasn’t yet been programmed
to do the integral.
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Definite Integral A definite integral

∫ b

a

f(x)dx is computed in Mathematica with this form of the

Integrate command:

Integrate[f[x], {x,a,b}]

Mathematica will try to find an antiderivative first, then evaluate it at the endpoints and subtract (according
to the Fundamental Theorem of Calculus). Here are some examples:

1.

∫ 2

−1

x2 dx

In[ ]: Integrate[x^2, {x, -1, 2}]
Out[ ]: 3

2.

∫ ∞

0

1

4+ y2
dy

In[ ]: Integrate[1/(4 + y^2), {y, 0, Infinity}]

Out[ ]:
π

4

3.

∫ 1

0

√
sin (t2) dt

In[ ]: Integrate[Sqrt[Sin[t^2]], {t, 0, 1}]

Out[ ]:

∫ 1

0

√
sin (t2)dt

In the last example, Mathematica can’t evaluate an antiderivative at the endpoints. The NIntegrate

command finds a numerical approximation for a definite integral

∫ b

a

f(x)dx with the following syntax:

NIntegrate[f[x], {x,a,b}]

Notice that its syntax is the same as the Integrate command. For example,

In[ ]: NIntegrate[x^2, {x, -1, 2}]
Out[ ]: 3

In[ ]: NIntegrate[Sqrt[Sin[t^2]], {t, 0, 1}]
Out[ ]: 0.486177

The NIntegrate command doesn’t attempt to find a symbolic antiderivative, so it’s quick and it works

with almost all integrands, including

∫ 1

0

√
sin (t2)dt for which Integrate failed (as you saw above).

8.6 Sequences

A sequence is a function whose domain is the set of positive integers. The terms of the sequence
{
an
}

are a1, a2, a3, · · ·. The term an is called the general term of the sequence. For example, the sequence
1

2
,
2

3
,
3

4
,
4

5
,
5

6
,
6

7
, · · · has the general term an =

n

n+ 1
. In Mathematica, we attempt to find a simple

function that yields the sequence
{
an
}
when given successive integer arguments by using the command

FindSequenceFunction.

In[ ]: FindSequenceFunction[{1/2, 2/3, 3/4, 4/5}, n]

Out[ ]:
n

n+ 1

A sequence
{
an
}
is said to converge to the limit ℓ if lim

n→∞
an = ℓ. A sequence that does not converge to

some finite limit is said to diverge. The command DiscreteLimit gives the limit lim
n→∞

fn for the sequence

fn as n tends to infinity over the integers.

Example 8.7. Determine whether the sequence converges or diverges.

1.

√
9n2 + 4n− 7

2n+ 1

In[ ]: DiscreteLimit[Sqrt[9n^2+4n-7]/(2n+1), n -> Infinity]

Out[ ]:
3

2

2.
nn

n!

In[ ]: DiscreteLimit[n^n/n!, n -> Infinity]

Out[ ]: ∞
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8.7 Series

You can use the Sum command to add up a finite number of terms of an indexed expression. To find
b∑

n=a

for an expression, you type:

Sum[ expression , {n,a,b}]

For example, the value of
20∑
n=1

n2 is

In[ ]: Sum[ n^2 , {n,1,20}]
Out[ ]: 2870

The Sum command has moderate success even with certain symbolic summations. For example,
k∑

n=0

rn is a

partial sum for a geometric series:

In[ ]: Sum[ r^n , {n,0,k}]

Out[ ]:
−1+ r1+k

−1+ r

Example 8.8. Show that 1+ 2+ 3+ · · ·+ k =
k(k+ 1)

2
.

In[ ]: Sum[ n , {n,1,k}]

Out[ ]:
1

2
k(k+ 1)

If you want an approximate value for a summation, use NSum instead. It has the same syntax as Sum. For
example,

In[ ]: NSum[Sin[n], {n, 0, 500}]
Out[ ]: 1.4903

Both the Sum and NSum commands allow you to specify an infinite range, providing the ability to evaluate
certain infinite series. Each is also pretty good at recognizing series that do not converge. In particular,
Sum can symbolically reproduce almost all standard series computations found in Calculus books and tables.
For example,

1.
∞∑
n=0

(arn) (* Geometric Series *)

In[ ]: Sum[a r^n, {n, 0, Infinity}]

Out[ ]:
a

1− r

2.
∞∑
n=1

1

n
(* Divergent Series *)

In[ ]: Sum[1/n, {n, 1, Infinity}]
Out[ ]: Sum::div: Sum does not converge.

3.
∞∑
n=1

(−1)n

n
(* Alternating Series *)

In[ ]: Sum[(-1)^n/n, {n, 1, Infinity}]
Out[ ]: −Log[2]

4.
∞∑
n=1

1

n2
(* Convergent p-Series *)

In[ ]: Sum[1/n^2, {n, 1, Infinity}]

Out[ ]:
π2

6

5.
∞∑
n=0

2n

n!
(* Taylor Series of ex *)

In[ ]: Sum[2^n/n!, {n, 0, Infinity}]
Out[ ]: e2

6.
∞∑
n=0

sin (e−n) (* Unevaluated *)

In[ ]: Sum[Sin[Exp[-n]], {n, 0, Infinity}]

Out[ ]:

∞∑
n=0

sin
(
e−n
)
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Notice that Sum returns its input unevaluated if it doesn’t have a known simplification or result for it, or
if it is known to not converge (see the last example above). If you do not receive an error message telling
you that a series does not converge then you can investigate using NSum.

In[ ]: NSum[Sin[Exp[-n]], {n, 0, Infinity}]
Out[ ]: 1.41477

Example 8.9. Find the sum
1

1
+

1

1+ 2
+

1

1+ 2+ 3
+ · · ·+ 1

1+ 2+ 3+ · · ·+ 99
.

In[ ]: Sum[1/Sum[j, {j, 1, i}], {i, 1, 99}]

Out[ ]:
99

50

The command SumConvergence gives conditions for the sum
∞∑
n

fn to be convergent. For example, the

p−series
∞∑
n

1

np
converges for all real numbers p > 1.

In[ ]: Assuming[Element[p, Reals], SumConvergence[1/n^p, n]]

Out[ ]: p > 1

Example 8.10. Find the interval of convergence for the real power series
∞∑
n

xn

n 3n
.

In[ ]: SumConvergence[(x^n)/(n 3^n), n, Assumptions->Element[x,Reals]]

Out[ ]: −3 ≤ x < 3

8.8 Taylor Polynomials

Recall that if a function f satisfies certain reasonable conditions, then it can be approximated by a polynomial
pn(x) of degree n near a point x = a defined by:

pn(x) = f(a) +
f′(a)

1!
(x− a) +

f′′(a)

2!
(x− a)2 + · · ·+ f(n)(a)

n!
(x− a)n

A composition of the Normal and Series commands as follows will more easily produce the Taylor poly-
nomial of degree n for a function about a point x=a:

Normal[Series[ function, {x, a, n}]]

For example,

In[ ]: Normal[Series[Exp[x], {x, 0, 6}]]

Out[ ]: 1+ x+
x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720

The following command will give an approximate value of e3 using the Taylor polynomial of degree 6 for
ex about x = 0:

In[ ]: Normal[Series[Exp[x], {x, 0, 6}]] /. {x -> 3} // N

Out[ ]: 19.4125

The Series command by itself actually gives a Taylor polynomial together with a remainder term which
shows its order using the notation O[x].

In[ ]: Series[Exp[x], {x, 0, 6}]

Out[ ]: 1+ x+
x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720
+ O[x]7

Applying Normal to this result removes the remainder term and give the Taylor polynomial.

8.9 Exercises

1. Evaluate each of the following limits:

(a) lim
x→3

x2 − 9

x− 3
.

(b) lim
x→∞

3x− sin(3x)

4x− tan(4x)
.

(c) lim
x→∞

tan−1 x

ex
.
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(d) lim
x→1

1− x∣∣x2 + x− 2
∣∣ .

(e) lim
x→∞

(
1+

a

x

)bx
2. Find the domain and range of each of the following functions.

Hint: use the commands FunctionDomain and FunctionRange

(a) f(x) =
1

x− x2
.

Ans. x < 0 ∨ 0 < x < 1 ∨ x > 1, y < 0 ∨ y ≥ 4

(b)
√∣∣x∣∣.
Ans. R, y ≥ 0

(c) f(x) = 2 ln x and g(x) = ln (x2).

3. Let f(x) =

{
2x2 x < 1

−3x+ 5 x ≥ 1
. Find: f′(2) and f′(1).

Ans. −3, does not exist

4. Let f(x) = x3 + ex + sin x. Find: f′(x) and f′′(0).

5. Find
d87

dx87

[
x sin x

]
at x =

π

2
.

Ans. −87

6. Given that f(x) = x3 − 3x2 + 3 ; x ∈
[
− 2, 4

]
. Find for f :

(a) Critical numbers.

(b) Intervals of increasing and decreasing.

(c) Absolute maximum and absolute minimum values.

(d) Intervals of concavity.

(e) Inflection points.

7. Evaluate each of the following integrals:

(a)

∫
x2
√
1+ x2 dx

(b)

∫
x+ 1

x2 − 9
dx

(c)

∫
e1/x

x2
dx

(d)

∫
x2 cos x dx

(e)

∫ 4

1

x2 + 1√
x

dx

(f)

∫ ∞

0

e−x2 dx

(g)

∫ π/2

0

√
sin x dx

8. Find the values of A such that lim
x→A

(
1

x− 3
− 6

x2 − 9

)
= lim

x→A

x2 − x− 12

36x− 144
.

Ans. −9 or 3

9. Assume n ≥ 1, find a formula for the nth order derivative of each of the following functions.

(a) f(x) = xex.

(b) g(x) = sinx

(c) h(x) = x cosx

10. Show that (1+ 2+ · · ·+ n)2 = 13 + 23 + · · ·+ n3.

11. Evaluate the following:

(a)
∞∑
n=0

(−1)n

(b)
∞∑
n=0

(−1)n x2n

(2n)!

12. Find Taylor polynomial of degree 10 for f(x) =
√
x about x = 1 and use it to approximate the value

of
√
1.5.
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13. Determine whether the series converges or diverges.

1+
1

2
+

1

3
− 1

4
− 1

5
− 1

6
+

1

7
+

1

8
+

1

9
− · · ·

Ans.
1

9

(
2π

√
3+ log(8)

)
14. Find

∞∑
n=0

1

F2n
where Fm is the mth term of Fibonacci sequence.

Ans.
1

2

(
7−

√
5
)

15. Find the interval of convergence of the power series
∞∑
n

(x− 3)n√
n

.

16. Find the general term of each of the following sequences.

(a) −1

2
,
1

8
,− 1

24
,
1

64
,− 1

160
,

1

384
, · · ·

(b) 2, 3, 5, 7, 11, 13, · · ·
(c) 1, 0,−1, 0, 1, 0,−1, 0, · · ·

17. Determine whether the sequence −1

5
,
1

25
,− 1

125
,

1

625
, · · · converges or diverges.
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9 Graphics in Mathematica

9.1 Making Graphs

There are many ways that you can plot a two-dimensional picture in Mathematica. In this chapter, we will
concentrate on drawing the graph of a function. You draw the graph of a function y = f(x) with the Plot
command. To see the graph of f(x) = x2 over the interval [−3, 2], type

In[ ]: Plot[x^2, {x, -3, 2}]

Out[ ]:

In general, to plot a function of x over an interval x ∈ [a, b], you type:

Plot[f(x), {x, a, b}]

When you use the Plot command, you usually don not need to specify the vertical range of the graph.
Mathematica automatically adjusts the vertical range to show you the full range of (vertical) values covered
by the plot. If you wish, you can explicitly control the horizontal and vertical range by adding a PlotRange
specification in the Plot command. For example:

In[ ]: Plot[x^3, {x, -2, 2}, PlotRange -> {-3, 3}]

Out[ ]:

Here you see only the portion of the graph with y−values between −3 and 3. Thus, using Plot with the
PlotRange option is similar to setting up a view window on a graphing calculator. You can specify a range
of x−values as well, by using the option PlotRange-> {{Xmin, Xmax} , {Ymin, Ymax}}.

Proportion and Aspect Ratio When you are working in a Mathematica notebook, you can resize a
picture by first clicking on it and then dragging along one of its comers or edges with the mouse. By
default, no matter how big or small a picture you create, the aspect ratio of the picture (the ratio of its
height to width) will remain the same. The default aspect ratio is very close to the relative proportions of
a standard credit card. You can change the aspect ratio for a Plot command by directly specifying a value
for its AspectRatio. For example, the height of the following picture is about one-fifth its width:

In[ ]: Plot[2 Sin[x], {x, -3, 3}, AspectRatio -> 1/5]

Out[ ]:

To make the units on the x− and y−axes have the same length, we set AspectRatio to Automatic.

In[ ]: Plot[2 Sin[x], {x, -3, 3}, AspectRatio -> Automatic]

Out[ ]:

Plotting Multiple Expressions You can plot several functions in the same picture by listing all the
functions separated by commas, enclosing them in curly braces. For example:
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In[ ]: Plot[{Sin[x], Cos[x]}, {x, -Pi, Pi}]

Out[ ]:

Several graphics produced independently can be combined into a single picture by using the Show command.
First, name each of the graphics as they are produced. Then, use the Show command to combine them
into a single output.

In[ ]: graph1 = Plot[Cos[x], {x, -3, 1}];
In[ ]: graph2 = Plot[Sin[x], {x, 0, 3}];
In[ ]: graph3 = Plot[0.5, {x, -2, 4}];
In[ ]: Show[graph1, graph2, graph3]

Out[ ]:

Notice that the combined graphic above is shown only over the range [−3, 1], which is the range of the first
graphic listed in the Show command. This is a default behavior of Show, it arranges its output according to
the options attached to the first graphic. We can change this behavior by specifying PlotRange -> All

in the Show command. The result is:

In[ ]: Show[graph1, graph2, graph3, PlotRange -> All]

Out[ ]:

We can use the GraphicsRow command to ask Mathematica to show several plots side by side:

In[ ]: Show[GraphicsRow[{graph1, graph2}]]

Out[ ]:

The GraphicsRow command has several options that can be specified. For example, one (Alignment)allows
for adjusting the alignment of the graphics, while another (Dividers)specifies whether lines should be
drawn between and/or above and below the graphics. Mathematica also has a GraphicsGrid command
that allows you to arrange graphics in a two-dimensional display.

The PlotStyle Option You can add more properties to a graph by adjusting the color, thickness, opacity
level, and dashing pattern of the plot. This can be done by specifying one or multiple PlotStyle options
for the Plot command. It has the syntax:

Plot[f[x], {x,a,b}, PlotStyle -> {Option 1, Option 2,...}]

For example, we will make the sine curve red with a dashed line and the cosine curve a thick blue. Here is
how we define these style features, using the names style1 and style2.

In[ ]: style1 = {Red, Dashing[{0.02, 0.02}]};
In[ ]: style2 = {Blue, Thickness[0.02]};
In[ ]: Plot[{Sin[x],Cos[x]},{x,-Pi,Pi}, PlotStyle->{style1,style2}]
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Out[ ]:

Thickness[0.02] means that lines will be drawn to be about 2% of the width of the graphic, while
Dashing[{0.02,0 .04}] means that the curve will be drawn solid for about 2% of the width of the
graphic, then 2% will be omitted, and so on.

9.2 Plotting Curves

In the previous section you saw how to use Plot to draw curves that are graphs of functions. But not all
curves are the graphs of functions.

Parametric Plots A two-dimensional (2D) parametric curve is usually defined by an ordered pair of
coordinate functions (x(t), y(t)), with the parameter t allowed to vary over some set. You use the
ParametricPlot command to draw such a curve over a fixed interval [a, b]. The command has the
form:

ParametricPlot[{x[t],y[t]}, {t,a,b}]

For example, to see the curve (t2, t+ 1) for t ∈ [−2, 2], we use:

In[ ]: ParametricPlot[{t^2, t + 1}, {t, -2, 2}]

Out[ ]:

As with the Plot command, Mathematica will always, by default, show you a large enough picture to see
all values on the curve. If necessary, you can specify a given PlotRange for ParametricPlot. Also, unlike
the Plot command, ParametricPlot uses the option AspectRatio → Automatic by default. Thus,
curves which are circles will truly appear as circles:

In[ ]: ParametricPlot[{Cos[t], Sin[t]}, {t, 0, 2 Pi}]

Out[ ]:

However, setting AspectRatio → Automatic is not always the right thing to do, as you will see in drawing
the curve (t, t3) where t ∈ [0, 5] (try it by your self). You can draw a better picture with the following
command

In[ ]: ParametricPlot[{t,t^3}, {t,0,5}, AspectRatio->1/GoldenRatio]

Out[ ]:

We suggest you redraw the graphic either by setting AspectRatio→l which gives a square graphic, or
by setting AspectRatio→l/GoldenRatio which gives the standard proportion graphic you see with most
other commands.
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Multiple Curves The ParametricPlot command lets you plot several curves together, just like the Plot
command. To do this, you include the formulas for the curves in a list. For example, to draw the horizontal
line (t, 1), the vertical line (2, t), and the curve (cos t, t) for t ∈

[
−π

2
, π
2

]
, we use the command

In[ ]: ParametricPlot[{{t,1}, {2,t}, {Cos[t],t}}, {t,-Pi,Pi}]

Out[ ]:

Plotting in Polar Coordinates If a curve is given in polar coordinates (r, θ), where r is the radius, θ
is the angle in radians, and r = f(θ) for θ ∈ [θ1, θ2], then we can draw it with the PolarPlot command
using the syntax:

PolarPlot[f[theta], {theta, θ1,θ2}]

Notice that this form is very similar to that of the Plot command you already know. For example, to plot
the three-leaf rose r = 2 cos(3θ), use:

In[ ]: PolarPlot[2 Cos[3 theta], {theta, 0, 2Pi}]

Out[ ]:

The default setting for PolarPlot is AspectRatio→Automatic. As we discussed in the case of ParametricPlot,
you may want to directly specify the value of the option AspectRatio for a PolarPlot command that
does not display well.

Just as with the Plot and ParametricPlot commands, you can plot more than one polar curve at the

same time by entering all of them using a list. For example, you can plot the spirals r =
θ

2π
, r =

(
θ

2π

)2

,

and the circle r = 1 all in the same picture with:

In[ ]: PolarPlot[{theta/(2Pi), (theta/(2Pi))^2, 1}, {theta, 0, 2Pi}]

Out[ ]:

Plotting Graphs of Implicit Equations When a curve is defined by an equation in two variables, you can
draw the curve with the ContourPlot,a command whose full functionality we will discuss more carefully
later. For now, we will use ContourPlot to draw just that portion of the curve defined by an equation in,
say, the two variables x and y, which lies within a rectangle x ∈ [a, b] and y ∈ [c, d] with the syntax:

ContourPlot[ equation of x and y, {x,a,b}, {y,c,d}]
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For example, to see the unit circle x2 + y2 = 1 which we know lies within the rectangle [−1, 1]× [−1, 1],
we use:

In[ ]: ContourPlot[x^2+y^2==1, {x,-1,1}, {y,-1,1}]

Out[ ]:

You can plot several curves defined by equations in a single command. The syntax is exactly the same as
it is for the Plot, ParametricPlot, and PolarPlot commands. For example, we will plot the portions of
the curves x2 + 3xy+ y3 = 25, x2 + 3xy+ y3 = 10, and x2 + 3xy+ y3 = 0 which lie within the rectangle
−10 ≤ x ≤ 10 and −7 ≤ y ≤ 4. We will remove the frame, and draw the axes within the picture itself.

In[ ]: f[x , y ] := x^2 + 3 x y + y^3;

In[ ]: ContourPlot[{f[x,y]==25, f[x,y]==10, f[x,y]==0},
{x,-10,10},{y,-7,4}, Frame->False, Axes->True]

Out[ ]:

An interesting feature of the default output from ContourPlot is that if you position the mouse over any
of the three curves shown in the graphic above, you will see the equation shown as a tool tip on the mouse.

Tick Marks Each of the commands Plot, ParametricPlot, PolarPlot, and ContourPlot allows
you to control the placement of tick marks on each of the axes using the Ticks option. This is done as we
do in the following example. Suppose we draw the graph of x+ sin(3x), and we wish to have tick marks

on the x−axis at
π

6
,
2π

6
,
3π

6
,
4π

6
,
5π

6
and on the y−axis at 1, 2, 3.

In[ ]: Plot[x+Sin[3x], {x,0,Pi}, Ticks->{Range[5]Pi/6, {1,2,3}}]

Out[ ]:

You can specify the labels to be shown at given tick marks.

In[ ]: Plot[x+Sin[3x],{x,0,Pi},Ticks->{Range[5]Pi/6,{{1,"A"},{2,"B"},{3,"C"}}}]

Out[ ]:
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Labels The AxesLabel and PlotLabel options allow you to specify labels for one or both of the axes,
or for the output graphic as a whole, respectively.

In[ ]: Plot[Cos[x]+15, {x,0,4Pi}, AxesLabel->{"day","price"},
PlotLabel->"Daily Stock Price"]

Out[ ]:

If your picture is framed, then you must use the FrameLabel option in place of AxesLabel.

In[ ]: ContourPlot[x^2/16+y^2/9==1, {x,-4,4}, {y,-3,3}, Axes->True,

AspectRatio->Automatic, FrameLabel->{"x-axis","y-axis"},
PlotLabel->"Ellipse"]

Out[ ]:

9.3 Making Graphs in Space

The easiest way to sketch a surface in three dimensions (3D) is to use the Plot3D command. You input
an expression that gives the height of a surface above the xy−plane, in terms of the independent variables
x and y. You must also specify intervals x ∈ [x0, x1] and y ∈ [y0, y1]. The Plot3D command then has the
form:

Plot3D[ expression of x and y, {x,x0,x1}, {y,y0,y1}]

For example, The surface whose height is z = 4− x2 − y2 above the xy−plane, over the rectangle [−2, 2]×
[−2, 2], is seen with:

In[ ]: Plot3D[4-x^2-y^2, {x,-2,2}, {y,-2,2}]

Out[ ]:

The graph of the function f(x, y) = x2 − y2 looks like a saddle if we take, for example, x, y ∈ [−3, 3] as
shown below.

In[ ]: Plot3D[x^2-y^2, {x,-3,3}, {y,-3,3}]

Out[ ]:
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There are a number of options that you can use to add more character to the graph of a function z = f(x, y)
with Plot3D. For example,

1. AxesLabel : Provides names to label each of the three axes.

2. BoxRatios : Scales the graphic so that it appears within a certain lengths of a box.

3. PlotRange : Specify the range of one or more of the variables x, y, and z.

4. Mesh→False : Omit the mesh on the graph.

5. PlotStyle→Green : Color the graph green.

For example see how the sombrero looks like using some of Plot3D options. Note that the sombrero is

given by the function f(x, y) =
sin
(√

x2 + y2
)

√
x2 + y2

.

In[ ]: Plot3D[Sin[Sqrt[x^2+y^2]]/Sqrt[x^2+y^2], {x,-7,7},
{y,-7,7}, PlotPoints->50, PlotRange->All, AxesLabel->{"x","y","z"},
Mesh->False, BoxRatios->{1,1,1}]

Out[ ]:

Mathematica includes very useful Notebook feature for working with 3D graphics. As you move over a 3D

graphic with the mouse, you will see that the cursor changes. If you now click and drag with the mouse,
you will be able to rotate the graphic in real time. This lets you view the surface from many different
angles. Every three-dimensional picture drawn in Mathematica will be shown from a specified ViewPoint.
Specifying a ViewPoint is the same as describing how your eye is located with respect to the graphic being
drawn. Let us show you how it is done. You input the ViewPoint option in the form ViewPoint->{a,b,c},
where the values a, b, and c describe the position of your eye relative to the object that you are viewing.
Positive values of a, b, and c place you ”in front of”, ”to the right of”, and ”above” the object, with
respect to the direction of the positive x-, y- and z-coordinate axes, respectively. Negative values place
you ”behind”, ”to the left of”, and ”below” the object. A value of zero for any of these three places you

”at the center”. Let us think of the graph of f(x, y) = (x2 + y2) e−
x2

400
− y2

100 as being twin mountains. Let
us take a ”helicopter ride” around these mountains using three ViewPoints: {3,1,1}, {3,2,-1}, and
{0,100,0}, respectively.

In[ ]: f[x ,y ] := (x^2+y^2) Exp[-x^2/400 - y^2/100];

In[ ]: vp1=Plot3D[f[x, y],{x,-40,40},{y,-40,40},ViewPoint->{3,1,1}];
In[ ]: vp2=Plot3D[f[x, y],{x,-40,40},{y,-40,40},ViewPoint->{3,2,-1}];
In[ ]: vp3=Plot3D[f[x, y],{x,-40,40},{y,-40,40},ViewPoint->{0,100,0}];
In[ ]: GraphicsRow[{vp1, vp2, vp3}, ImageSize -> Full]

Out[ ]:

9.4 Surfaces in Cylindrical and Spherical Coordinates

Surfaces are sometimes more easily described in terms of the cylindrical or spherical coordinate sys-
tems. You can draw such a surface easily with the Mathematica commands RevolutionPlot3D and
SphericalPlot3D commands, respectively.
Points in the cylindrical coordinate system are described by quantities r, θ, and z, where

r is the horizontal radial distance of the point from the z−axis;

θ is the horizontal angle measured from the x−axis; and
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z is the z−coordinate in standard rectangular coordinates.

To draw the surface z = f(r, θ) for r ∈ [r0, r1] and θ ∈ [θ0, θ1], you enter:

RevolutionPlot3D[f[r,θ],{r,r1,r2},{θ,θ1,θ2}]

For example, to see the surface z = r2 cos(8θ), for r ∈ [0.5, 1] and θ ∈ [0, 2π]:

In[ ]: RevolutionPlot3D[r^2 Cos[8 theta], {r,0.5,1}, {theta,0,2Pi}]

Out[ ]:

In Mathematica, points in the spherical coordinate system are described by quantities ρ, ϕ, and θ, where

ρ is the radial distance in space of the point from the origin;

θ is the vertical angle measured from the positive z−axis; and

ϕ is the horizontal angle measured from the x−axis.

Note that Mathematica uses ϕ and θ for the horizontal and vertical angles, respectively, in spherical coor-
dinates. This is exactly the opposite of the notation used in almost every Calculus book.

To draw the surface ρ = f(θ, ϕ), where θ ∈ [θ0, θ1] and ϕ ∈ [ϕ0, ϕ1], you will enter:

SphericalPlot3D[f[θ,ϕ],{θ,θ1,θ2},{ϕ,ϕ1,ϕ2}]]

For example, to see the surface defined by ρ = cos(θ) cos(4θ), for θ ∈
[
0, π

4

]
, and ϕ ∈ [0, 2π], use:

In[ ]: SphericalPlot3D[Cos[theta]Cos[4theta], {theta,0,Pi/4},{phi,0,2Pi}]

Out[ ]:

When you use the SphericalPlot3D command, you must enter the interval for the vertical angle theta

first, then the interval for the horizontal angle phi. If you do not use this order, the picture will be incorrect.

Plotting Multiple Surfaces The Plot3D command allows you to draw more than one surface above a
rectangle x ∈ [a, b] and y ∈ [c, d] in a single graphic. You use it in the form

Plot3D[{surface1, surface2, ...},{x,a,b},{y,c,d}]

and you still can attach options just as before. For example, the intersection of the paraboloid z = x2 + y2

with the plane z = 2x+ 5y is a circle. You can see this quite easily with

In[ ]: Plot3D[{x^2+y^2, 2x+5y}, {x,-6,6}, {y,-6,6}]

Out[ ]:
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SphericalPlot3D similarly allows you to plot more than one surface, using the same syntax extension
as the Plot3D command uses. For example, we can see a very nice ”cut-away” image of the 3 spheres

r = cos(θ), r = 2 cos(θ), and r = 3 cos(θ) by restricting the range of ϕ, to stay between
π

4
and

7π

4
and

looking at them from in front of the x−axis:

In[ ]: SphericalPlot3D[{Cos[theta], 2Cos[theta], 3Cos[theta]},
{theta,0,Pi/2}, {phi,Pi/4,7Pi/4}, ViewPoint->{2, 0, 0}]

Out[ ]:

Finally, although RevolutionPlot3D also allows multiple equations in the same graphic, the syntax is
different. You must use one extra layer of curly braces { and }. For example, in cylindrical coordinates, the
equation z = r, for 1 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π, describes a portion of a cone, also the equations z = r± 1

are just vertical translations of the cone. Put the three together and you have got three bowls stacked up.

In[ ]: RevolutionPlot3D[{{r}, {r-1}, {r+1}}, {r,0,2}, {theta,0,2Pi}]

Out[ ]:

9.5 Changing Coordinate Systems

Changing coordinate systems can involve two very different operations. One is recomputing coordinate
values that correspond to the same point. The other is re-expressing a field in terms of new variables. The
Wolfram Language provides functions to perform both these operations.

Converting Points Two coordinate systems are related by a mapping that takes coordinate values in the
old system and returns coordinate values in the new system. The function CoordinateTransformData

returns information about mappings between the coordinate systems. For example, the following converts
the point (r, θ) in polar coordinates to the corresponding (x, y) Cartesian coordinates.

In[ ]: CoordinateTransformData["Polar"->"Cartesian","Mapping",{r,θ}]
Out[ ]: {r cos(θ), r sin(θ)}

Conversely, we write

In[ ]: CoordinateTransformData["Cartesian"->"Polar","Mapping",{x,y}]

Out[ ]:
{√

x2 + y2, tan−1
(y
x

)}
To covert a point (ρ, θ, ϕ) in spherical coordinates to the corresponding (x, y, z) Cartesian coordinates, and
vice versa, we use

In[ ]: CoordinateTransformData["Spherical"->"Cartesian","Mapping", {ρ, θ, ϕ}]
Out[ ]: {ρ sin(θ) cos(ϕ), ρ sin(θ) sin(ϕ), ρ cos(θ)}

In[ ]: CoordinateTransformData["Cartesian"->"Spherical","Mapping",{x,y,z}]

Out[ ]:

{√
x2 + y2 + z2, tan−1

(√
x2 + y2

z

)
, tan−1

(y
x

)}

Also, we convert a point (r, θ, z) in cylindrical coordinates to the corresponding (x, y, z) Cartesian coordi-
nates, and vice versa by writing
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In[ ]: CoordinateTransformData["Cylindrical"->"Cartesian","Mapping", {r,θ,z}]
Out[ ]: {r cos(θ), r sin(θ), z}
In[ ]: CoordinateTransformData["Cartesian"->"Cylindrical","Mapping", {x,y,z}]

Out[ ]:
{√

x2 + y2, tan−1
(y
x

)
, z
}

Example 9.1. Convert the point (1, 1, 0) in Cartesian coordinates to the corresponding values in spherical
coordinates.

In[ ]: CoordinateTransformData["Cartesian"->"Spherical","Mapping",{1,1,0}]

Out[ ]:
{√

2,
π

2
,
π

4

}
Example 9.2. Convert the point

(
1,

π

3
,
π

4

)
in spherical coordinates to the corresponding cylindrical coor-

dinates.

In[ ]: CoordinateTransform["Spherical"->"Cylindrical",{1,Pi/3,Pi/4}]

Out[ ]:

{√
3

2
,
π

4
,
1

2

}

Example 9.3. Convert the points (1, 1), (1,−1), and (0,−2) from Cartesian coordinates to the corre-
sponding polar coordinates.

In[ ]: CoordinateTransform["Cartesian"->"Polar",{{1,1},{1,-1},{0,-2}}]

Out[ ]:
{{√

2,
π

4

}
,
{√

2,−π

4

}
,
{
2,−π

2

}}

Transforming Fields When transforming fields between two coordinate systems, a field given in terms
of variables in the old system is re-expressed in terms of variables in the new system. In addition to
the mapping between the systems, several additional steps are needed: solving for the old variables in
terms of the new, the substituting in these expressions. All of these steps are performed by the command
TransformedField. For example, this converts the scalar field x2 + y2 + z2 from Cartesian (x, y, z) to
cylindrical (r, θ, ξ) coordinates.

In[ ]: TransformedField["Cartesian"->"Cylindrical", x^2+y^2+z^2, {x,y,z}->
{r,θ,ξ}] // Simplify

Out[ ]: ξ2 + r2

The following converts the hyperbola x2 − y2 from Cartesian (x, y) to polar (r, θ) coordinates.

In[ ]: TransformedField["Cartesian"->"Polar",x^2-y^2, {x,y}->{r,θ}]//Simplify
Out[ ]: r2 cos(2θ)

Example 9.4. In some cases, a surface given in rectangular coordinates will look better if you draw it using

cylindrical or spherical coordinates. For example, the surface defined by the equation z =
x2 − y2

(x2 + y2)
2 can

be plotted with:

In[ ]: Plot3D[(x^2-y^2)/(x^2+y^2)^2,{x,-3,3},{y,-3,3}]

Out[ ]:

The picture is choppy especially near the origin. However, if we use cylindrical coordinates, the surface
becomes

In[ ]: f=TransformedField["Cartesian"->"Cylindrical",

(x^2-y^2)/(x^2+y^2)^2, {x,y,z}->{r,θ,ξ}] // Simplify

Out[ ]:
cos(2θ)

r2

Now, we will do the plot.
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In[ ]: RevolutionPlot3D[f,{r,0.5,3},{θ,0,2Pi}]

Out[ ]:

9.6 Level Curves and Level Surfaces

In Mathematica, the level curves (contours) of a function f(x,y) are plotted with the ContourPlot

command. To see the level curves inside the rectangle x ∈ [a, b] and y ∈ [c, d], you use the command with
this syntax:

ContourPlot[f[x,y],{x,a,b},{y,c,d}]

For example, here are some level curves of f(x, y) = xye−x2−y2 near the origin:

In[ ]: ContourPlot[x y Exp[-x^2-y^2], {x,-2,2}, {y,-2,2}]

Out[ ]:

By default, Mathematica automatically sketches an appropriate number of level curves and colors the areas
between these curves. Lighter shades represent higher levels, while darker shades represent lower levels.
By moving the mouse over the graphic above, Mathematica will show you (using a tooltip at the cursor)
exactly what contour levels have been drawn.

Level Surfaces in Space If f(x, y, z) is a function of three variables defined over a region x ∈ [x0, x1],
y ∈ [y0, y1], and z ∈ [z0, z1] then the level surface of f at level c can be seen with the ContourPlot3D

command.

ContourPlot3D[function, {x,x0,x1}, {y,y0,y1}, {z,z0,z1}, Contours->{c}]

You can specify more than one level surface to be shown in the same graphic by writing Contours→{the
levels}, where the levels are separated by commas. For example, We can see the level surfaces of
f(x, y, z) = x3 − y2 + z2 at the levels of 1 and 10 with the following.

In[ ]: ContourPlot3D[x^3-y^2+z^2,{x,-2,3},{y,-2,2},{z,-2,3}, Contours->{1,10}]

Out[ ]:

9.7 Parametric Curves and Surfaces in Space

You use the ParametricPlot3D command to draw a space curve. To see the curve given parametrically
as
(
x(t), y(t), z(t)

)
, for t ∈ [a, b], type:

ParametricPlot3D[{x(t),y(t),z(t)},{t,a,b}]
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This format is similar to the ParametricPlot command used for plane curves. Here, however, the curve
is defined with three parametric functions rather than two. For example, the helix, given parametrically by
(t, 3 cos t, 3 sin t), for t ∈ [0, 8π], is drawn with:

In[ ]: ParametricPlot3D[{t,3Cos[t],3Sin[t]}, {t,0,8Pi}]

Out[ ]:

ParametricPlot3D can also be used to draw a surface in space. If a surface is defined parametrically by(
x(u, v), y(u, v), z(u, v)

)
for u ∈ [a, b] and v ∈ [c, d], you enter:

ParametricPlot3D[{x(u,v),y(u,v),z(u,v)},{u,a,b},{v,c,d}]

For example, to see a portion of the one-sheeted hyperboloid given parametrically by
(
cos u cosh v,

sin u cosh v, sinh v
)
, for u ∈ [0, 2π] and v ∈ [−2, 2], write:

In[ ]: ParametricPlot3D[{Cos[u]Cosh[v],Sin[u]Cosh[v],Sinh[v]}, {u,0,2Pi},
{v,-2,2}]

Out[ ]:

9.8 Visualizing Data

In Mathematica, curly braces are used to represent lists, regardless of the type of elements in the list. Lists
can be created several different ways as we have seen before in chapter 4.

It is common to store lists in variables; this allows the lists to be easily referenced in subsequent calculations.
For example, by assigning a list to the symbol data, this variable can be used in other calculations or
commands where the list is needed.

In[ ]: data = {8, 2, 5, 1, 4, 7, 6}
Out[ ]: {8, 2, 5, 1, 4, 7, 6}

Just as the Wolfram Language has many commands available to visualize all types of mathematical functions
and surfaces, so too does it have many commands available to visualize lists and datasets. One of the most
common commands to visualize data is ListPlot, which displays the data as individual points.

In[ ]: ListPlot[data]

Out[ ]:

When values jump around, it is usually harder to understand if you do not join them up. ListLinePlot

plots a list, joining up values.

In[ ]: ListLinePlot[data]

Out[ ]:
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If you just want to know which numbers appear, you can plot them on a number line.

In[ ]: NumberLinePlot[data]

Out[ ]:

Making a bar chart can be useful too:

In[ ]: BarChart[data]

Out[ ]:

So long as the list is not too long, a pie chart can be useful:

In[ ]: PieChart[data]

Out[ ]:

Multiple Datasets While the examples thus far have concentrated on visualizing a single dataset, the
visualization commands can also be used to visualize multiple datasets. Multiple datasets can be constructed
by placing several different lists into a single ”parent” list that encompasses them all. This larger list can be
passed to a command like ListPlot to visualize each of the sublists as a separate dataset. The following
example shows the use of ListPlot to plot two datasets, which are automatically given different colors to
easily tell them apart.

In[ ]: ListPlot[{{3, 5, 7, 9}, {1, 4, 9, 16, 25}}]

Out[ ]:

In[ ]: ListLinePlot[{{3, 5, 7, 9}, {1, 4, 9, 16, 25}}]

Out[ ]:

The following example depicts a use of the Show command to combine a data visualization from ListPlot

and a function visualization from Plot.

In[ ]: Show[Plot[x^2, {x,0,5}], ListPlot[{1,4,9,16,25},PlotStyle->
{Red,PointSize[Large]}]]

Out[ ]:

Note that we add an option to ListPlot called PlotStyle, which allows us to color the data points in
red and change their size to large, in order to make them stand out.

Many measurements are commonly represented as two-dimensional datasets. The data visualization com-
mands in the Wolfram Language are designed to work with both one- and multidimensional data. When a
command like ListPlot is given a one-dimensional list, it is assumed that the list contains y values that
correspond to x values 1, 2, and so on. ListPlot also accepts a list of (x,y) pairs instead of single
height values for y coordinates.
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In[ ]: ListPlot[Table[{2i,Prime[i]}, {i,8}]]

Out[ ]:

Visualizing lists or datasets in three dimensions is just as easy as visualizing them in one or two dimensions.
Many of the plotting commands shown thus far have 3D equivalents, like ListPlot and ListPlot3D. The
ListPlot3D command visualizes a 3D surface based on the values from that dataset, and this 3D surface
has the same interactivity (rotation, panning, zooming) as other objects.

In[ ]: ListPlot3D@Table[Cos[i] Cos[j], {i,2,8},{j,-3,1}]

Out[ ]:

To visualize only the discrete data points and not a connecting mesh between the points, ListPointPlot3D
can be used.

In[ ]: ListPointPlot3D@Table[Cos[i] Cos[j], {i,2,8},{j,-3,1}]

Out[ ]:

Visualize a Matrix Vectors and matrices have special visualization commands. ArrayPlot draws a
representation of an array, coloring squares that represent larger values with darker colors. The following is
the ArrayPlot of the 8× 8 matrix of the first 64 consecutive prime numbers.

In[ ]: ArrayPlot[Partition[Prime[Range[64]],8]]

Out[ ]:

MatrixPlot follows a similar logic, where the position of a value in a matrix determines the coloration of
that position in the plot, with negative values shown in cool tones, like blue, and positive values shown in
warm tones, like orange. The higher the magnitude of a value, the more intense its corresponding color is
for that position.

In[ ]: MatrixPlot[{{-10,-5,-1}, {2,4,6}, {20,30,40}}]

Out[ ]:
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Shape Matrices Mathematica provides certain shapes of matrices as follows.

1. DiskMatrix[r] gives a matrix whose elements are 1 in a disk-shaped region of radius r, and are
otherwise 0.

In[ ]: ArrayPlot[DiskMatrix[7], Mesh -> All]

Out[ ]:

2. BoxMatrix[r] gives a (2r+ 1)× (2r+ 1) matrix of 1’s.

In[ ]: ArrayPlot[BoxMatrix[7], Mesh -> All]

Out[ ]:

3. CrossMatrix[r] gives a matrix whose elements are 1 in a centered cross-shaped region that extends
r positions along each index direction, and are 0 otherwise.

In[ ]: ArrayPlot[CrossMatrix[7], Mesh -> All]

Out[ ]:

4. DiamondMatrix[r] gives a matrix whose elements are 1 in a diamond-shaped region that extends r
index positions to each side, and are 0 otherwise.

In[ ]: ArrayPlot[DiamondMatrix[7], Mesh -> All]

Out[ ]:

9.9 Advanced Graphics

In addition to using commands such as Plot and ParametricPlot to create 2D pictures, we can ask
Mathematica to directly draw simple objects such as points, lines, circles, and rectangles. These objects are
called graphics primitives, and they are the lowest-level commands used to produce every 2D Mathematica
picture. To work with graphics primitives, you have to first define them with the Graphics command:

Graphics[ graphics primitive ]

or, to group several graphic primitives together, use

Graphics[ {graphics primitive1, graphics primitive2, ...} ]

3D graphics primitives are also available in Mathematica. You use the Graphics3D command both to define
and show them. Some of the graphics primitives we have used often are the following.
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1. Point[p] is a graphics and geometry primitive that represents a point at p.

In[ ]: Graphics[Point[{-2,1}]]

Out[ ]:

In[ ]: Graphics[Point[Table[{t,Sin[t]}, {t,0,2Pi, 2Pi/10}]]]

Out[ ]:

In[ ]: pts=Table[{t,Sin[t],Cos[t]},{t,0,2Pi,2Pi/10}];
In[ ]: Graphics3D[Point[pts]]

Out[ ]:

2. Line[{p1,p2,...}] represents the line segments joining a sequence for points pi.

In[ ]: Graphics[{Thick, Line[{{1,0}, {2,1}, {3,0}, {4,1}}]}]

Out[ ]:

In[ ]: line=Line[{{1,1,-1},{2,2,1},{3,3,-1},{4,4,1}}];
In[ ]: Graphics3D[{Thick,Dashed,line}]

Out[ ]:

3. InfiniteLine[{p1,p2}] represents the infinite straight line passing through the points p1 and p2.

In[ ]: Graphics[InfiniteLine[{0,0},{1,1}], Frame->True]

Out[ ]:

In[ ]: Graphics3D[InfiniteLine[{0,0,0},{1,2,3}]]

Out[ ]:
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In[ ]: lines=Table[InfiniteLine[{0,y},{1,1}],{y,5}];
In[ ]: Graphics[lines,PlotRange->{{-6,6},{0,6}}]

Out[ ]:

Example 9.5. Find the point of intersection for the two lines ℓ1 that passes through the point
(0, 0) in the direction of the vector (1, 1), and the line ℓ2 that passes through the points
(0, 1), (1, 0).

In[ ]: line1 = InfiniteLine[{0,0},{1,1}];
In[ ]: line2 = InfiniteLine[0, 1, 1, 0];

In[ ]: sol=Solve[Element[{x,y},line1]&& Element[{x,y},line2],{x,y}

Out[ ]:

{{
x → 1

2
, y → 1

2

}}
In[ ]: Graphics[{{Thick,line1,line2},{PointSize[0.06],Red,

Point[{x,y}/.sol]}},Axes->True,ImageSize->Small]

Out[ ]:

4. Arrow[{pt1,pt2}] is a graphics primitive that represents an arrow from pt1 to pt2.

In[ ]: Graphics[Arrow[{{1,0},{2,1},{3,0},{4,1}}]]

Out[ ]:

In[ ]: Plot[Sin[x],{x,0,2Pi},Epilog->{Arrow[{{3Pi/2,1/2},{Pi,0}}],
Text["Zero",{3Pi/2,1/2},{-1,-1}]}]

Out[ ]:

5. Triangle[{p1,p2,p3}] represents a filled triangle with corner points p1, p2, and p3.

In[ ]: Graphics[Triangle[]]

Out[ ]:

In[ ]: Graphics3D[Triangle[{{0,0,0},{1,0,0},{0,1,1}}]]

Out[ ]:

Example 9.6. To define an equilateral triangle by side length s, we use the command SSSTriangle[a,b,c]
which returns a filled triangle with sides of lengths a, b, and c.
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In[ ]: EquilateralTriangle[s ] := SSSTriangle[s,s,s]

In[ ]: EquilateralTriangle[2]

Out[ ]: Triangle[{{0, 0}, {2, 0}, {1,
√
3}}]

In[ ]: Graphics@EquilateralTriangle[2]

Out[ ]:

Example 9.7. To define an isosceles triangle by side length s that adjacent to both equals
angles α, we may use either the command IsoscelesTriangle[a,s,b] which returns a filled
triangle with angles a and b and side length c, and c is adjacent to both angles, or we use the
command SASTriangle[s1,a,s2] which returns a filled triangle with sides of length s1 and
s1 and angle a between them.

In[ ]: IsoscelesTriangle[a ,s ,b ] := ASATriangle[a,s,b]

In[ ]: IsoscelesTriangle[Pi/6,3,Pi/6]

Out[ ]: Triangle[

{
{0, 0}, {3, 0},

{
3

2
,

√
3

2

}}
]

In[ ]: Graphics@IsoscelesTriangle[Pi/6,3,Pi/6]

Out[ ]:

In[ ]: IsoscelesTriangle[s1 ,a ,s2 ] := SASTriangle[s1,a,s2]

In[ ]: Graphics@IsoscelesTriangle[2, Pi/6, 2]

Out[ ]:

6. Rectangle[{xmin,ymin},{xmax,ymax}] represents an axis-aligned filled rectangle from {xmin, ymin}
to {xmax, ymax}.

In[ ]: Graphics[Rectangle[]] (* this command defines a unit square *)

Out[ ]:

In[ ]: Graphics[Rectangle[{2,1},{4,5}],Axes->True,AxesOrigin->{0,0}]

Out[ ]:

7. RegularPolygon[n] gives the regular polygon with n vertices equally spaced around the unit circle.
RegularPolygon[n,r] gives the regular polygon of radius r.
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In[ ]: Table[Graphics[RegularPolygon[k]],{k,3,8}]

Out[ ]:

8. Circle[{x,y},r] represents a circle of radius r centered at {x,y}. The command Circle[{x,y},{rx,ry}]
gives an axis-aligned ellipse with semi-axes lengths rx and ry. While Circle[{x,y},...,{θ1,θ2}]
gives a circular or ellipse arc from angle θ1 to θ2.

In[ ]: Graphics[Circle[]] (* Unit Circle *)

Out[ ]:

In[ ]: Graphics[Circle[{0,0},1,{Pi/6,3Pi/4}]] (* Circular Arc *)

Out[ ]:

In[ ]: Graphics[Circle[{0,0},{3,4}]] (* An Ellipse *)

Out[ ]:

In[ ]: Graphics[Table[Circle[{i,j},1/2],{i,7},{j,5}]]

Out[ ]:

9. Disk[{x,y},r] represents a disk of radius r centered at {x,y}.

In[ ]: Graphics[Disk[]] (* Unit Disk *)

Out[ ]:

In[ ]: Graphics[{Orange,Disk[{0,0},1,{Pi/4,3Pi/4}]}] (* Disk Sector *)

Out[ ]:

In[ ]: Graphics[{Gray,Disk[{0,0},{3,4}]}] (* An Elliptical Disk *)

Out[ ]:
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10. InfinitePlane[{p1,p2,p3}] represents the plane passing through the points p1, p2, and p3.
InfinitePlane[p,{v1,v2}] represents the plane passing through the point p in the directions v1
and v2.

To represent a plane through the points (1,0,0), (1,1,1), and (0,0,1)

In[ ]: Graphics3D[InfinitePlane[{{1,0,0},{1,1,1},{0,0,1}}]]

Out[ ]:

To define the plane passing through the point (1,0,0) in the directions (0,1,1) and (1,0,1)

In[ ]: Graphics3D[InfinitePlane[{1,0,0},{{0,1,1},{-1,0,1}}]]}]

Out[ ]:

11. Ball[p,r] represents a ball of radius r centered at the point p.

A unit ball at the origin:

In[ ]: Graphics3D[Ball[{0,0,0}]]

Out[ ]:

12. Cylinder[{{x1,y1,z1},{x2,y2,z2}},r] represents a cylinder of radius r around the line from
(x1,y1,z1) to (x2,y2,z2).

Cylinder from the origin to {1,1,1} with radius
1

2
.

In[ ]: Graphics3D[Cylinder[{{0,0,0},{1,1,1}},1/2]]

Out[ ]:

13. Cone[{{x1,y1,z1},{x2,y2,z2}},r] represents a cone with a base of radius r centered at (x1,y1,z1)
and a tip at (x2,y2,z2).

Cone from the origin to {1,1,1} with radius
1

2
at its base

In[ ]: Graphics3D[Cone[{{0,0,0},{1,1,1}},1/2]]

Out[ ]:

14. Cuboid[pmin,pmax] represents an axis-aligned filled cuboid with lower corner pmin and upper corner
pmax.
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In[ ]: Graphics3D[Cuboid[{-2,0,1},{1,3,3}],Axes->True,AxesOrigin->{0,0,0}]

Out[ ]:

9.10 Region Integrals Measures

The Wolfram Language supports a broad range of standard properties and measures for geometric regions,
including integral measures such as length, area, volume, and centroid.

Arc Length The command ArcLength[reg] gives the length of the one dimensional region reg. For

example, the arc length of the function f(x) =
x3

6
− 1

2x
on the interval [1, 2] is

In[ ]: ArcLength[x^3/6+1/(2x), {x,1,2}]

Out[ ]:
17

12

The length can be computed using the polar representation of r(θ) = 2− 2 cos θ on [0, 2π] as follows.

In[ ]: ArcLength[{2-2Cos[theta],theta},{theta,0,2Pi},"Polar"]
Out[ ]: 16

Length of one revolution of the helix given parametrically is

In[ ]: ArcLength[{Cos[t],Sin[t],t},{t,0,2Pi}]
Out[ ]: 2

√
2π

The length of the line connecting the points (0, 0), (1, 1), and (3,−1) is

In[ ]: ArcLength[Line[{{0,0},{1,1},{3,-1}}]]
Out[ ]: 3

√
2

The length of a circle with radius r is

In[ ]: ArcLength[Circle[{x,y},r]]
Out[ ]: 2πr

The length of an ellipse is

In[ ]: N@ArcLength[Circle[{0,0},{2,3}]]
Out[ ]: 15.8654

The arc length of a circle intersected with a triangle:

In[ ]: R1 = Circle[];

In[ ]: R2 = Triangle[{{-3/2,0},{3/2,0},{0,11/10}}];
In[ ]: R3 = RegionIntersection[R1,R2];

Out[ ]:

In[ ]: ArcLength[R3]

Out[ ]: 2

(
sin−1

(
3

692

(
121− 5

√
295
))

+ cos−1

(
3

692

(
5
√
295+ 121

)))
The perimeter of the triangle whose two of its angles are

π

6
and

π

3
, and the length of the side adjacent to

both angles is of length 2, is

In[ ]: ArcLength[RegionBoundary[ASATriangle[Pi/6,2,Pi/3]]]]

Out[ ]:
√
3+ 3

where the command RegionBoundary represents the boundary of the region reg.
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Area The command Area[reg] gives the area of the two dimensional region reg. For example, the area
of the disk with radius r is

In[ ]: Area[Disk[{x,y}, r]]

Out[ ]: πr2

The surface area of a sphere (ball) with radius r is

In[ ]: Area[RegionBoundary[Ball[{x,y,z},r]]]
In[ ]: Area[Sphere[{x,y,z},r]]
Out[ ]: 4πr2

The area of an annulus with inner radius 1 and outer radius 2 equals

In[ ]: Area[{r Sin[theta],r Cos[theta]},{r,1,2},{theta,0,2Pi}]
Out[ ]: 3π

The area of the triangle whose vertices at the points
(
− 1

2
,−1

)
, (1, 2), and (3, 0) is

In[ ]: Area[Triangle[{{-1/2,-1},{1,2},{3,0}}]]

Out[ ]:
9

2

The area of a triangle with sides of length a, b, and c is

In[ ]: Area[SSSTriangle[a,b,c]]

Out[ ]:
1

4

√
|(a+ b− c)(a− b+ c)(−a+ b+ c)(a+ b+ c)|

The area of an ellipse centered at
(
cx, cy

)
is

In[ ]: Area[Disk[{cx,cy},{a,b}]]
Out[ ]: abπ

Volume The command Volume[reg] gives the volume of the three dimensional region reg. For example,
the volume of a ball in 3D of radius r is

In[ ]: Volume[Ball[{a,b,c},r]]

Out[ ]:
4πr3

3

The volume and the surface area of a cone of height h and radius r of its circular base are

In[ ]: PowerExpand@Volume[Cone[{{0,0,0},{0,0,h}},r]]

Out[ ]:
1

3
πhr2

In[ ]: Area[RegionBoundary[Cone[{{0,0,0},{0,0,h}},r]]]

Out[ ]: πr
(√

h2 + r2 + r
)

Centroid The centroid or geometric center of a plane figure is the arithmetic mean (”average”) position
of all the points in the shape. RegionCentroid[reg] gives the centroid of the region reg. For example,
the centroid of the disk with center (a,b) and radius r is

In[ ]: RegionCentroid[Disk[{a,b},r]]
Out[ ]: {a, b}

The centroid of the rectangle is

In[ ]: RegionCentroid[Rectangle[{a,b},{c,d}]]

Out[ ]:

{
a+ c

2
,
b+ d

2

}

9.11 Graphs and Networks

A graph is a way of showing connections between things - say, how web pages are linked, or how people
form a social network. Let us start with a very simple graph, in which 1 connects to 2, 2 to 3, and 3 to 4.
Each of the connections is represented by → (typed as ->).

In[ ]: Graph[{1->2,2->3,3->4}]
Out[ ]:
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Automatically label all the ”vertices”:

In[ ]: Graph[{1->2,2->3,3->4},VertexLabels->All]

Out[ ]:

Let us add one more connection: to connect 4 to 1. Now we have a loop.

In[ ]: Graph[{1->2,2->3,3->4,4->1},VertexLabels->All]

Out[ ]:

Add two more connections, including one connecting 2 right back to 2:

In[ ]: Graph[{1->2,2->3,3->4,4->1,3->1,2->2},VertexLabels->All]

Out[ ]:

As we add connections, the Wolfram Language chooses to place the vertices or nodes of the graph differ-
ently. All that really matters for the meaning, however, is how the vertices are connected. And if you do
not specify otherwise, the Wolfram Language will try to lay the graph out so it is as untangled and easy to
understand as possible.

You can do computations on the graph, say finding the shortest path that gets from 4 to 2, always following
the arrows.

In[ ]: FindShortestPath[Graph[{1->2,2->3,3->4,4->1,3->1,2->2}],4,2]
Out[ ]: {4, 1, 2}

Now let us make another graph. This time let us have 3 nodes, and let us have a connection between every
one of them. Start by making an array of all possible connections between 3 objects:

In[ ]: Table[i->j,{i,3},{j,3}]
Out[ ]: {{1 → 1, 1 → 2, 1 → 3}, {2 → 1, 2 → 2, 2 → 3}, {3 → 1, 3 → 2, 3 → 3}}

The result here is a list of lists. But what Graph needs is just a single list of connections. We can get that
by using Flatten to ”flatten” out the sublists.

In[ ]: Flatten[Table[i->j,{i,3},{j,3}]]
Out[ ]: {1 → 1, 1 → 2, 1 → 3, 2 → 1, 2 → 2, 2 → 3, 3 → 1, 3 → 2, 3 → 3}

Now, show the graph of these connections:

In[ ]: Graph[Flatten[Table[i->j,{i,3},{j,3}]],VertexLabels->All]

Out[ ]:

The following generates the completely connected graph with 6 nodes:
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In[ ]: Graph[Flatten[Table[i->j,{i,6},{j,6}]]]

Out[ ]:

Sometimes the ”direction” of a connection does not matter, so we can drop the arrows.

In[ ]: UndirectedGraph[Flatten[Table[i->j,{i,6},{j,6}]]]

Out[ ]:

9.12 Exercises

1. The standard normal curve used in probability and statistics is defined by the function

f(x) =
1√
2π

e−x2/2. Sketch the graph of f for x ∈ [−3, 3].

2. The graphs of a function and its inverse are symmetric with respect to the line y = x. Plot the
functions f(x) = x2, x ∈ [0, 2], and its inverse f−1(x) =

√
x, x ∈ [0, 4], and the line y = x and

observe the symmetry.

3. Sketch the graphs of y = x2, y = −x2, and y = x2 sin(10x), x ∈ [−2π, 2π], on a single set of axes
enclosed by a frame.

4. Sketch the parabola y = x2 − 9 and a circle of radius 3 centered at the origin.

5. The curve traced by a point on a circle as the circle rolls along a straight line is called a cycloid and
has parametric equations x = r(θ − sin θ) and x = r(1− cos θ) where r represents the radius of the
circle. Plot the cycloid formed as a circle of radius 1 makes four complete revolutions.

6. The polar graph r = θ is called the Spiral of Archimedes. Sketch the graph for θ ∈ [0, 10π].

7. Sketch the graph defined by the equation y2 = x3(2− x) where x ∈ [0, 2] and y ∈ [−2, 2].

8. Plot the first 50 prime numbers.

9. Make a number line plot of the first 20 elements of the sequence given by the rule
1

n
.

10. Plot the functions y = x2 and y = 8− x2 and color the region enclosed between them using the plot
option Filling.

11. Plot the graph of the function e−x2−y2 above the rectangle [−2, 2]× [−2, 2].

12. Graph the paraboloid z = x2 + y2 with the plane z+ y = 12 above the rectangle [−5, 5]× [−5, 5].
Do not draw axes or a surrounding box.

13. Sketch the space curve defined by the parametric equations

x(t) = (4+ sin 20t) cos t

y(t) = (4+ sin 20t) sin t

z(t) = cos 20t

where t ∈ [0, 2π]. This curve is called a toroidal spiral since it lies on the surface of a torus.

14. Draw the ”ice cream cone” formed by the cone z = 3
√
x2 + y2 and the upper half of the sphere

x2 + y2 + (z− 9)2 = 9. Use cylindrical coordinates.

15. Sketch the graph of the surface ρ = 1+ sin 4θ sinϕ given in spherical coordinates where θ ∈ [0, 2π]
and ϕ ∈ [0, π].
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16. Draw a contour plot of f(x, y) = sin x+ sin y on the square x, y ∈ [−4π, 4π].

17. Let f(x, y, z) = 5x2 + 2y2 + z2. Draw the level surfaces f(x, y, z) = k for k=1,4,9,16, and 25.
Sketch the surfaces only for y ≥ 0 so that all the surfaces will be visible.

18. A triangle has angles
π

6
and

π

4
, and a side of length 1 is adjacent to only one of the angles. Find

the perimeter of this triangle, then find its centroid and display the position of the centroid inside the
triangle.

19. Make a graph with 4 nodes in which every node is connected.

20. For the graph {1 → 2, 2 → 3, 3 → 4, 4 → 1, 3 → 1, 2 → 2}, make a grid giving the shortest paths
between every pair of nodes, with the start node as row and end node as column.
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