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1 Introduction to Linear Programming

A Linear Programming (LP) Problem is an optimization problem where the
goal is to maximize or minimize a linear objective function, subject to a set of
linear constraints. These constraints are typically expressed as linear equations
or inequalities, and the variables are usually non-negative. LPPs are widely
used in fields like economics, business, and engineering to allocate resources
efficiently, minimize costs, or maximize profits.

1.1 What is a Linear Programming Problem?

Definition 1.1. A function f (z1,22, - ,zy,) of the vari-
ables z1,z2,- -+ ,xy, is a linear function if f (x1,x9,- -+ ,x,) =
c1x1 4+ cox9 + - - - + cpx, Where c1,ca,- - - , ¢, are constants.

Example 1.1. f (z1,22) = 211 + 22 is linear function, while f (z1,22) = 2319
is not linear.

Definition 1.2. For any linear function f (21,22, -+ ,2,) and
any real number b, the inequalities f (z1, 22, ,2,) < b and
f(z1,22,- -+ ,xy) > b are linear inequalities.

Example 1.2. 2z + 3z5 < 3 is linear inequality, while z1x5 4+ /22 > 3 is not
linear inequality.

Definition 1.3. A linear programming (LP) problem is an
optimization problem for which we do the following

1. We maximize (profit) or minimize (cost) a linear func-
tion (objective function) of the decision variables.

2. The decision variables must satisfy a set of linear equa-
tions or linear inequalities called constraints.

3. A sign restriction is associated with each variable. Each
variable is either non-negative or is unrestricted in sign

(urs).

max (or min) z=f(x1,22,+ ,Tp)
Subject to Constraints
Sign Restriction.




Example 1.3. Furnco manufactures desks and chairs. Each desk
uses 4 units of wood, and each chair uses 8. A desk
contributes $40 to profit, and a chair contributes ETA
$25. Marketing restrictions require that the number
of chairs produced be at least twice the number of

desks produced. If 20 units of wood are available,
formulate an LP to maximize Furnco's profit.

Solution: Let z1 be the number of desks produced, and z9 be the number of
chairs produced. Then, the formulation of the problem is

max z = 4021 + 2529
s.t. 4x1 4+ 8x2 < 20
T2 > 211

21 2>0,222>0

The optimal solution of this problem is 1 = 1, 2o = 2, and z = 90. (We will
see how we find these values later on.)

Note 1. [LP Assumptions]

1. The Proportionality and Additivity Assumptions.
The fact that the objective function for an LP must be a linear function
of the decision variables has two implications.

(a) The objective function's contribution from each decision variable is
proportional to its value. For instance, in example (1.3), making 5
desks contributes exactly five times the value of making one desk.

(b) The contribution of any variable to the objective function is inde-
pendent of other variables' values. For example, regardless of xo,
producing x1 desks always adds 40x; dollars to the objective func-
tion.

Analogously, the fact that each LP constraint must be a linear inequality
or linear equation has two implications.

(a) The contribution of each variable to the lefthand side of each con-
straint is proportional to the value of the variable.

(b) The contribution of a variable to the lefthand side of each constraint
is independent of the values of the variable.

2. The Divisibility Assumption.
The divisibility assumption allows decision variables to take fractional val-
ues, such as producing 1.5 desks or 1.63 chairs in example (1.3). However,
since Frunco cannot produce fractional items, this assumption is not met
in the Frunco problem. When variables must be non-negative integers,
the problem is called an integer programming problem.



3. The Certainty Assumption.
The certainty assumption is that each parameter (objective function coef-
ficient, righthand side, and constraint coefficient) is known with certainty.
If we were unsure of the exact amount of wood used by desks and chairs,
the Certainty Assumption would be violated.

1.2 Modeling LP Problems

This section presents LP models in which the definition of the variables and the
construction of the objective function and constraints are not straightforward.

Example 1.4. Giapetto's Woodcarving, Inc., manufactures two types of wooden
toys: soldiers and trains. A soldier sells for $27 and uses $10 worth of raw ma-
terials. Each soldier that is manufactured increases Giapetto's variable labor
and overhead costs by $14. A train sells for $21 and uses $9 worth of raw ma-
terials. Each train built increases Giapetto's variable labor and overhead costs
by $10. The manufacture of wooden soldiers and trains requires two types of
skilled labor: carpentry and finishing. A soldier requires 2 hours of finishing
labor and 1 hour of carpentry labor. A train requires 1 hour of finishing and
1 hour of carpentry labor. Each week, Giapetto can obtain all the needed raw
material but only 100 finishing hours and 80 carpentry hours. Demand for trains
is unlimited, but at most 40 soldiers are bought each week. Giapetto wants to
maximize weekly profit (revenues - costs). Formulate a mathematical model of
Giapetto's situation that can be used to maximize Giapetto's weekly profit.

Solution: Let x1 = number of soldiers produced each week, x5 = number
of trains produced each week. Then, the formulation of the problem is

max z = 3x1 + 229 m
s.t. 2x1 + x0 < 100 o¥e
x1 + x9 < 80

1 2>0, 22020 “

Example 1.5. A psychologist uses two types of boxes with mice
and rats. The amount of time (in minutes) that @
each mouse and each rat spends in each box per
day is given in the table. Write an LP to maximize @
the number of mice and rats that can be used in
this experiment?

Time Maximum Time
Mice (z) Rats (y) | Available per Day
Box A | 10 min 20 min 800 min
Box B | 20 min 10 min 640 min




Solution: Let x be the number of mice, and y be the number of rates.
Then a correct formulation is

max z=zx-+vy

s.t. 10z + 20y < 800
20z + 10y < 640
z,y >0

Example 1.6. A banquet hall offers two types of tables for rent: 6—person
rectangular tables at a cost of $28 each and 10—person round tables at a cost
of $52 each. Kathleen would like to rent the hall for a wedding banquet and
needs tables for 250 people. The room can have a maximum of 35 tables and
the hall only has 15 rectangular tables available. Formulate an LP to minimize
the cost of each type of tables should be rented.

Solution: Let x1 = number of rectangular tables, x5 = number of round
tables. Then, the formulation of the problem is

min w = 28x1 + 52x9
s.t. 6x1 + 10xo > 250
T1 4+ 12 < 35
T S 15

120,020
Exercise 1.1.

1. Leary Chemical manufactures three chemicals: A, B, and C. These chemi-
cals are produced via two production processes: 1 and 2. Running process
1 for an hour costs $4 and yields 3 units of A, 1 of B, and 1 of C. Running
process 2 for an hour costs $1 and produces 1 unit of A and 1 of B. To
meet customer demands, at least 10 units of A, 5 of B, and 3 of C must
be produced daily. Formulate an LP to minimize Leary Chemical's cost
of daily demands.

2. A company produces two products, A and B. The sales volume for A is
at least 80% of the total sales of both A and B. However, the company
cannot sell more than 100 units of A per day. Both products use one raw
material, of which the maximum daily availability is 240 Ib. The usage
rates of the raw material are 2 |Ib per unit of A and 4 Ib per unit of B.
The profit units for A and B are $20 and $50, respectively. Formulate an
LP to maximize the company’s profit.

3. A diet is to contain at least 400 units of vitamins, 500 units of minerals,
and 1400 calories. Two foods are available: F1, which costs $0.05 per
unit, and F2, which costs $0.03 per unit. A unit of food F1 contains 2
units of vitamins, 1 unit of minerals, and 4 calories; a unit of food F2
contains 1 unit of vitamins, 2 units of minerals, and 4 calories. Formulate



an LP to minimize the cost for a diet that consists of a mixture of these
two foods and also meets the minimal nutrition requirements.

. Katy needs at least 60 units of carbohydrates, 45 units of protein, and 30
units of fat each month. From each pound of food A, she receives 5 units
of carbohydrates, 3 of protein, and 4 of fat. Food B contains 2 units of
carbohydrates, 2 units of protein, and 1 unit of fat per pound. If food A
costs $1.30 per pound and food B costs $0.80 per pound, formulate an
LP to minimize the cost of pounds of each food should Katy buy each
month.

. An electronics firm manufactures two types of personal
computers: a standard model and a portable model. The
production of a standard computer requires a capital ex-
penditure of $400 and 40 hours of labor. The production gi
of a portable computer requires a capital expenditure of
$250 and 30 hours of labor. The firm has $20000 capi-
tal and 2160 labor-hours available for production of stan- @
dard and portable computers. If each standard computer —=——
contributes a profit of $320 and each portable model con-

tributes a profit of $220, formulate an LP to maximize the
firm’s profit.

. A farmer owns a 100-acre farm and plans to plant at most
three crops. The seed for crops A, B, and C costs $40,
$20, and $30 per acre, respectively. A maximum of $3200

can be spent on seed. Crops A, B, and C require one, two, ||||‘
and one work days per acre, respectively, and there are a
maximum of 160 work days available. If the farmer can ’

make a profit of $100 per acre on crop A, $300 per acre v
on crop B, and $200 per acre on crop C, how many acres /\'j\
of each crop should be planted to maximize profit?

. Farmer Jones bakes two types of cake (chocolate and
vanilla) to supplement his income. Each chocolate cake
can be sold for $1, and each vanilla cake can be sold
for 0.55. Each chocolate cake requires 20 minutes of
baking time and uses 4 eggs. Each vanilla cake requires
40 minutes of baking time and uses 1 egg. Eight hours
of baking time and 30 eggs are available. Let x1 be
the number of chocolate cakes baked, and x5 be the
number of vanilla cakes baked. Formulate an LP to
maximize Farmer Jones's revenue.




1.3 Geometric Preliminaries and Solutions

Any LP with only two variables can be solved graphically. We always label the
variables 1 and x5 and the coordinate axes the x; and x5 axes.

1.3.1 Half—Spaces, Hyperplanes, and Convex Sets

Definition 1.4. We define the Euclidean plane R™ to be the
set of all n—tuples of real numbers; that is

Rn:{(xl,xQ,... ’xn)|xi€Rfori:1,2,... m}

For example, R? = {(Il,l‘g) ‘ x1 and zy are reals}. Geometrically, we
represent R? as in Figure 1.

\
7

> X1

L
-3 -2 -1 1 2 3

Figure 1 Coordinates Plane, R?

The graph in R? of an equation of the form a;z1 +axzs = ¢ (where a1, as, ¢
are constants) is a straight line. For example, the graph in R? of the equation
2x1 — 3x2 = 6 is the line indicated in Figure 2.

Figure 2 The line 221 — 329 =6



The graph in R2 of the inequality a1x1 + agxe < c or a1x1 + asxo > cis
the set of all points in R? lying on the line a121 + agxs = ¢ together with all
points lying to one side of this line. For example, the shaded region in Figure
3 is the graph of the inequality 2z; — 322 < 6. To determine on which side of

L2

3]

Figure 3 The inequality 221 — 322 < 6

the line where the region of the inequality 221 — 322 < 6 lies, consider a point,
say (0,0), not lying on the line but satisfying the inequality; the side of the line
containing this point is the one corresponding to the inequality.

Definition 1.5. A half—space in R" is the set of all points in
R™ satisfying an inequality of the form

a1r1 +axe + - Fapxry, < c
or an inequality of the form
a121 + agTa + -+ + any = C

where at least one of the constants aq, as, - , a, is nonzero.

Definition 1.6. A hyperplane in R" is the set of all points in
R™ satisfying an equality of the form

aixr] +agxg + -+ anTy =c

where at least one of the constants aq, as, - , a, is nonzero.

For example, the set of points in R satisfying

1 2
3x1+5x2—x3+1‘4+§x5:—9



is a hyperplane in R?, and the set of points in R® satisfying

1 2
3x1+§x2—x3+x4+§x52—9

is a half-space in R,

Definition 1.7. A subset K of R" is convex if K is empty,
or K is a single point, or if for each two distinct points p and
q in K, the line segment connecting p and q lies entirely in
K.

Example 1.7. The sets in Figure 4 are convex.

A Y

Figure 4 Convex sets

Example 1.8. The sets in Figure 5 are not convex.

Vod:= 1 4

Figure 5 Not convex sets

Definition 1.8. pr = (p17p27 e 7p'n) and q= (Qh q2, - - 7QTZ)
are points in R", then the line segment joining p and q con-
sists of all points of the form

(1-t)p+tqg; 0<t<1
where

(1_t)p+tq: (1 _t) (p17p27”' 7Pn)+t(Q1aQZa"' 7Qn)

Observe that if t = 0, then (1 —¢)p+tq = p, and if t =1,
then (1 —t)p+tq =q.

10




Example 1.9. The line segment in R? joining the points p = (3,6) and q =
(—4,5) is the set of points

(I—-t)p+ta=(1-1)(3,6)+t(—4,5)
- [3(1—t)—4t,6(1—t)+5t} —(3-Tt6—1);0<t<1

Theorem 1.1. A half-space H in R"™ that is defined either by
the inequality

a1x1 + agxe + -+ apx, < c
or the inequality

a171 + a2 + -+ apxy > ¢

is convex.

Proof. We establish this result for the half-space H defined by the inequality
a1x1 + asTg + -+ + apT, < C (1.1)

A similar argument hold for half-spaces defined by a1x1 +aszs+- - -+ a,z, > c.
Suppose the points p = (p1,--- ,pn) and q = (g1, ,qn) lie in H; that is,
these points satisfy inequality (1.1), so we have

aip1 +agpz + -+ appn < C
a1qr +asqa + -+ angy < c

To show that the line segment connecting these two points lies entirely in H,
it suffices to show that for each ¢ € [0,1], the point

(1-t)p+tq= [(1 —t)p1+tq, - (1 —1)pn +tqn]
also satisfies inequality (1.1). To show this, we have

a1 [(1—t)p1 +tq1] + a2 [(1 — t)pa + tqo] + - - - + an [(1 — t)pn + 14y]
= (1 —1t) (a1p1 + agp2 + -+ + anpy) +t (a1q1 + a2g2 + - -+ + angy)
<(I—-t)e+te=c

and this concludes the proof. |

11



Theorem 1.2. If K1, K>, -+, K, are convex subsets of R",
then the intersection of these sets, K = K1NKyN---N K,
is also convex.

Proof. If K is empty or consists of a single point, then K is convex by definition
(1.7). Suppose then that K consists of more than one point, and let p and
q be any two distinct points in K. Since p and q are in each convex set Kj;
1 <+ < r, the line segment L connecting p and q also lies entirely in each K.
Therefore, L lies in the intersection K of these sets, and we conclude that K
is convex. |

Theorem 1.3. A hyperplane M in R" defined by

a1T1 +agxe + -+ apTy, =

is convex

Proof. M is the intersection of the convex half-spaces
a1x1 + agxe + -+ apx, < c

and
a1x1 + agTo + -+ + apxy > ¢

By Theorem (1.2), this intersection is convex. [ |

Definition 1.9. A point q is a corner point (or an extreme
point) of a convex set K if g is not an interior point of any
line segment contained in K.

Example 1.10. The points q1, 92,493,494, Qs are corner points of the convex
set in Figure 6.

q,

qs

12

44
qs

Figure 6

12



Exercise 1.2.

1. Draw the graph in R? of the following half-spaces.

(a) —2x1 +4x9 > 12. (C) T > 4.
(b) T2 S 21’1. (d) —3:B2 S 9

2. Which of the following expressions define hyperplanes, half-spaces, or

neither?
(a) 2z1 + 3z =22 — x4+ 3. (d) :c1:6+3.
T2
(b) w1 — 34 = 33 + 3. (e) 2.521 — 3.2x5 = 10.
(c) zixe < 1. (f) 1+ 23 >09.

3. Which of the following sets in Figure 7 are convex?

I CAL
41090

(F) (&)

Figure 7

4. Let p=(1,3,2) and q = (2,4, —1) be two points in R3,

(a) Find the set of points that lie on the line segment joining the points
p and q.

(b) Show that the point (1.5,3.5,0.5) lies on the line segment joining
the points p and q.

1.3.2 The Graphical Solution of Two—Variable LP Problems

Two of the most basic concepts associated with a linear programming problem
are feasible region and optimal solution. For defining these concepts, we use
the term point to mean a specification of the value for each decision variable.

13



Definition 1.10. The feasible region for an LP is the set
of all points that satisfies all the LP's constraints and sign
restrictions. Any point that is not in LP’s feasible region is
said to be infeasible point.

The shaded area in Figure 8 indicates the feasible region of the LP in example
(1.3). Note that each of the constraints in the LP defines a half-space. The
feasible set consists of all points in the intersection of these half-spaces. Observe
that the feasible region in Figure 8 is convex. Note that the points (0,0),

4z + 8x9 < 20
T9 > 21
1 >0, 222>0

Figure 8 The feasible region of example (1.3)

(0.5,1.5), and (1,2) are all in the feasible region, while (1,1) is infeasible,
because it does not satisfy the second constraint.

Theorem 1.4. The feasible region in R™ corresponding to any
number of constraints of the types below is convex.

a1 + agxo + -+ apxy, < b
a1xy + agro + -+ apxy, = b
a1x1 + ar2 + -+ apxy, > b

T1,%2,  ,Tp >0

Proof. The inequality constraints define half-spaces, and the equality constraints
define hyperplanes. By Theorems 1.1 and 1.3 these half-spaces and hyperplanes
are convex sets. Since the feasible region is the intersection of these convex sets,
it follows from Theorem 1.2 that the feasible region is convex. |

Definition 1.11. For a maximization (minimization) problem,
an optimal solution to an LP is a point in the feasible region
with the largest (smallest) objective function value.

14



The goal of any LP problem is to find the optimum, the best feasible solution

that maximizes the total profit or minimizes the cost.

Having identified the

feasible region for the Furnco problem in example (1.3) as shown in Figure 8,
we now search for the optimal solution, which will be the point in the feasible
region with the largest value of z = 402 + 25x9.

e To find the optimal solution, we need to graph a line on which all points
have the same z—value. In a max problem, such a line is called an isoprofit

line.

To draw an isoprofit line, choose any point in the feasible region and
calculate its z—value.
25(1) = 25. Thus, (0,1) lies on the isoprofit line z = 40x; + 25z = 25.

Let us choose (0,1).

For (0,1), z = 40(0) +

Because all isoprofit lines are of the form 40x; + 2529 = constant, all
isoprofit lines have the same slope. This means that once we have drawn
one isoprofit line, we can find all other isoprofit lines by moving parallel
to the isoprofit line we have drawn in a direction that increases z.

After a point, the isoprofit lines will no longer intersect the feasible region.
The last isoprofit line intersecting (touching) the feasible region defines
the largest z—value of any point in the feasible region and indicates the
optimal solution to the LP.

In our problem, the objective function z = 40z + 25x9 will increase
if we move in a direction for which both z1 and zo increase. Thus, we
construct additional isoprofit lines by moving parallel to 40x1 +25z9 = 25
in a northeast direction (upward and to the right), as shown in Figure 9.

z2=90

\\‘

> 11
1 2

L — 95 2=575

Figure 9 Isoprofit lines

e From Figure 9, we see that the isoprofit line passing through point (1,2)
is the last isoprofit line to intersect the feasible region. Thus, (1,2) is the
point in the feasible region with the largest z—value and is therefore the

15



optimal solution to the Furnco problem. Thus, the optimal value of z is
z =40(1) + 25(2) = 90.

Note 2. In a minimization problem, to find the optimal solution, we need to
graph a line on which all points have the same w—value, such a line is called an
isocost line. Once we have drawn one isocost line, we can find all other isocost
lines by moving parallel to the isocost line we have drawn first in a direction
that decreases w. After a point, the isocost lines will no longer intersect the
feasible region. The last isocost line intersecting the feasible region defines the
smallest w—value of any point in the feasible region and indicates the optimal
solution to the LP.

Example 1.11. Graphically solve the following LP problem.

min w = —4xr1 + Txo

s.t. T+ 29 >3
—x1 4222 <6
2r1 + 22 <8

1 >0, 222>0

Solution: From Figure 10, The isocost lines minimizes the value of the objective
function by decreasing w in the southeast direction (down-right). The optimum
solution is the intersection of the two lines 221 + z9 = 8 and x5 = 0, which
yields 21 = 4 and x5 = 0. The minimum value of w is w = —4(4)+7(0) = —16.

4\$2
5 —a\+ 222 =6

Figure 10

The Corner-Point Theorem In practice, a typical LP may include hundreds
or even thousands of variables and constraints. Of what good then is the study
of a two-variable LP? The answer is that the graphical solution provides one of
the most important key result in linear programming: “The optimum solution
of an LP, when it exists, is always associated with a corner point of the solution
space”, thus limiting the search for the optimum from an infinite number of

16



feasible points to a finite number of corner points. This powerful result is the
basis for the development of the general algebraic simplex method presented in
Chapter 2.

Theorem 1.5. [Corner Point Theorem]
Consider the LP problem

Maximize ( or Minimize) z = c1x1 + coxa + -+ - + cpp
subject to a system of inequalities of the types

121 + coxo + -+ cpxy < b
c1x1 +coro + -+ cpxn, =b
121 + coxo + -+ cpxy > b

T1,T9,  ,Tp >0

1. If the feasible region is bounded, then the optimal solu-
tion is attained at a corner point of this feasible region.

2. If the feasible region is unbounded, then an optimal
solution may not exist; however, if an optimal solution
exists, it is attained at a corner point of this feasible
region.

Proof. The proof of this theorem can be found in: Jan Van Tiel, Convex
Analysis, New York: Wiley, 1984. |

Note 3. If the feasible region of an LP is bounded, then an optimal solution
exists and we use The Corner Point Theorem (1.5) to find this optimal solution.
In the case that the feasible region is unbounded, the isoprofit (isocost) line is
used to determine whether the LP has an optimal solution or not.

Example 1.12. Graphically solve the following LP problem.

max z = 3x1 + 229

s.t. 2x1 + 22 < 100
1+ x9 < 80
il S 40

1 2>0,2202>0

Once the optimal solution to an LP has been found, it is useful to classify
each constraint as being a binding constraint or a nonbinding constraint.

17



Solution: From Figure 11, the feasible
region is bounded, so we use Theorem
(1.5) as follows:

Corner z
(0,0) 0
(0,80) | 160
(20,60) | 180 Optimal
(40,20) | 160
(40,0) | 120

\
\+x2:8o
\
\
-~ - 1

X
0 80\100
2x1 + 29 = 100
Figure 11

Definition 1.12. A constraint is binding if the left-hand side
and the right-hand side of the constraint are equal when the
optimal values of the decision variables are substituted into
the constraint. Otherwise, it is called nonbinding.

For instance, in example (1.12), the first two constraints are binding, while
the third one is nonbinding. While in example (1.11) the third constraint is
binding and the other two constraints are nonbinding.

changed.

Definition 1.13. A constraint is said to be redundant if its
removal from the model leaves the feasible solution space un-

For example, the feasible region of the following constraints has a redundant

constraint as shown in Figure 12

Constraint [1]: 221 + 29 <6
Constraint [2]: 1+ 3220 <9
Constraint [3]: 1+ a2 <5
Sign Restriction: r1,22 > 0

x4 my=5 (Redundant)

\:Bl

| \ K4
123 2%1+x2=6

Figure 12

Note that the third constraint is the redundant constraint since its removal from
the region will leave the feasible region unchanged.

18



Note 4. [Alternative Optima] An LP problem has infinitely many optimal
solutions when the objective function is parallel to a nonredundant binding
constraint. As an isoprofit (or isocost) line exits the feasible region, it intersects
an entire segment of the binding constraint. If two points are optimal, any
point on the segment between them is also optimal. In such cases, a secondary
criterion, like goal programming, helps select among optimal solutions. The
next example highlights the practical importance of this.

Example 1.13. Graphically solve the following LP problem.

max z=4x1 + x9

s.t. 8xr1 + 2x2 < 16
51 + 2x9 < 12
x1, w2 20

Solution: The feasible region for this LP is the shaded bounded region in Figure
13. So we use Theorem (1.5) as follows:

Corner | z
(0,00 [0
(0,6) |6

(4/3,8/3) | 8 Optimal
(2,0) |8 Optimal

Figure 13

From the table above, the optimal solution occurs at the two corner points
(3.8) and (2,0). This means that any point on line segment joining these
corner points optimal. These points are given by

4 8 2t 8t
1 s 1-9)2,0)=2——,=];0<¢t<1
(3:5) +a-neo=(2-5.5) <<

Note 5. [Infeasible LP] An LP is infeasible if its feasible region is empty,
meaning no solution exists. Since an optimal solution requires a feasible region,
an infeasible LP has none.

Example 1.14. The following LP problem has no feasible solution as shown in
Figure 14.
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Z2

321 + 220 = 120 \ z1 =30

max z =311 + 229 z1 + 22 =50
s.t. 3r1 4+ 2x0 < 120 40

T + xT9 S 50

z1 > 30 20+ To = 20

x9 > 20 s I

1,22 2 0 10 30 50

Figure 14

Note 6. [Unbounded LP] An LP is unbounded if its feasible region allows arbi-
trarily large (for maximization) or arbitrarily small (for minimization) z-values.
This suggests an error in formulation or input. Graphically, a maximization
problem is unbounded if moving parallel to the isoprofit line in the increasing
z-direction never leaves the feasible region. For minimization, unboundedness
occurs if moving in the decreasing z-direction never exits the feasible region.

Example 1.15. Graphically solve the following LP problem.

max z=2x1 — T9

s.t. T —x0 <1
2x1 + a2 >6
x1,22 >0

Solution: The feasible region is the (shaded) unbounded region in Figure 15.
To find the optimal solution, we draw the isoprofit line passing through (2,5).
This isoprofit line has z = 2(2) — (5) = —1. The direction of increasing z
is to the southeast (this makes ;1 larger and za smaller). Moving parallel to
z = 2x1 — T2 in a southeast direction, we see that any isoprofit line we draw
will intersect the feasible region. (This is because any isoprofit line is steeper
than the line 1 — 29 = 1.) Thus, there are points in the feasible region that
have arbitrarily large z-values.

Figure 15
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Example 1.16. Graphically solve the following LP problem.

min w = x| + 229

s.t. T1+x2>6
23?1 — X2 Z 0
Tr1 — 2:152 S 0
r1,x2 >0

Solution: Although the feasible region of the LP is unbounded, but it has
optimal solution as shown in Figure 16.

x1 + 19 = 6 {4
>

4

3 w =14

21 Sw =11
123456Y

2:E1 — X9 = 0
Figure 16

Example 1.17. Graphically solve the following LP problem.

max z = 5x1 + 6x2

s.t. T, — 219 > 1
—2z1 +292>1
T1,X2 Urs

Solution: The two variables 21 and x5 are unrestricted in sign means that both
can be positive, negative, or zero. The feasible region is the shaded region
in Figure 17. To find the optimal solution, we draw the isoprofit line passing
through (—3,3). This isoprofit line has z = 5(—3) 4+ 6(—3) = —33. The
direction of increasing z is to the northeast. Moving parallel to z = 5x1 + 62
in a northeast direction, we see that the last isoprofit line we draw will touch
the feasible region at the point (—1,—1). Thus, the optimal z—value is z =
5(—1) +6(—1) = —11.

Figure 17
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Exercise 1.3.

1. Match the solution region of each system of linear inequalities with one
of the four regions shown in Figure 18.

(a) x+2y <8 10 3z —2y=0
_ AN y_

3z — 2y >0 ”“"*23/_8&
(b) =42y >38 2,3)1

3x—2y <0 S

10 5 5 10

(c) z+2y>8 m /e v

3x—2y >0 )
(d) z+2y <8 -10

3r—2y <0

Figure 18
2. Find the maximum value of each objective function over the feasible region
shown in Figure 19.

Y

(d) z=z+vy 12%(0,12)
10 (7,9)
(b) z=4dx+y ?1
10,0
(c) 2=3z+Ty 2 ($ )
(0,0)' 246810

(d) z=9x+ 3y

Figure 19

3. Find the minimum value of each objective function over the feasible region
shown in Figure 20.

y

() w="Tx+4y 1(2) (0,12)

(b) w="Tx+9y 2 (0.8)

(c) w=3z+38y g (4.3) g:%, 0)

(d) w =5z + 4y 2 46 81012
Figure 20

4. The corner points for the bounded feasible region determined by the sys-
tem of linear inequalities
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z+2y <10
3x+y <15
z,y >0

are O = (0,0), A= (0,5), B=(4,3), and C = (5,0) as shown in Figure
21. If P = az + by and a,b > 0, determine conditions on a and b that
will ensure that the maximum value of P occurs

Figure 21

5. ldentify the direction of increase in z in each of the following cases:

(a) Maximize z = 21 — xo.
(b) Maximize z = —8z1 — 3.

(c) Maximize z = —z1 + 3.
6. ldentify the direction of decrease in w in each of the following cases:

(a) Minimize w = 4z — 2z5.
(b) Minimize w = —6x1 + 2z2.
7. Determine the solution space graphically for the following inequalities.

Which constraints are redundant? Reduce the system to the smallest
number of constraints that will define the same solution space.

r+y<4
4o + 3y <12
—r+y>1
r+y<6
z,y >0

8. Write the constraints associated with the solution space shown in Figure
22 and identify the redundant constraints.
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Figure 22

9. Consider the following problem:

max
s.t.

z = 6x1 — 229

31’1—3}2§6
T —x20 <1
x1,22 >0

Show graphically that at the optimal solution, the variables x1 and z2 can
be increased indefinitely while the value of the objective function remains

z = 3x1 + 219
201 + 10 < 2
3xy1 + 4xo > 12
T1,T2 Z 0

Show graphically that the problem has no feasible optimal solution.

constant.
10. Consider the following problem:
max
s.t.
11.
region.
min
s.t.

Solve the following problem by inspection without graphing the feasible

w = 5x1 + 229
1 +29=2>5
7:E1—5:E2:—1
T1,T2 20
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12. Solve the following problems graphically.

()

min
s.t.

max
s.t.

min
s.t.

w = 4x1 + x9
3x1+ 22 >6
dr1 +x9 > 12
37122

x1,22 20
2’251'1—1'2
2x1 + 3x0 > 12
x173x220
z1,22 >0

w = 5x1 + T2
201 + 22 > 6
T1+x0 >4
1+ dxo > 10
x1,22 >0

25

max
s.t.

max
s.t.

min
s.t.

z = —4x1 + x9
3r1+ 219 <8

T1 + 29 <12

x1 > 0 and z9 urs

zZ=2x1+ dxo
.%'1—3.%'220
1+ 19 <8
x1, 22 20

w = 4x1 + To
3x1+x2 > 10
T1+2x9>5
$123
x1,22 20



2 The Simplex Method

Thus far we have used a geometric approach to solve certain LP problems. We
have observed, in Chapter 1, that this procedure is limited to problems of two
or three variables. The simplex algorithm is essentially algebraic in nature and
is more efficient than its geometric counterpart.

2.1 The ldea of the Simplex Method

The simplex method in linear programming translates the geometric concept of
corner points into an algebraic approach. It begins by converting all constraints
into a standard form, where inequalities are expressed as equations. This re-
sults in a system with more variables than equations, leading to infinitely many
solutions.

Extreme points (or corner points) of the solution space correspond to basic
solutions, which are found by setting some variables to zero and solving for the
rest. The simplex method starts with an initial basic solution and systematically
moves to other basic solutions that improve the objective function's value. This
process continues until the optimal solution is identified, at which point the
algorithm terminates.

2.2 Converting an LP to Standard Form

We have seen that an LP can have both equality and inequality constraints.
It also can have variables that are required to be nonnegative as well as those
allowed to be unrestricted in sign (urs). The development of the simplex method
computations is facilitated by imposing two requirements on the LP model:

1. All the constraints are equations with nonnegative right-hand side.
2. All the variables are nonnegative.

An LP in this form is said to be in standard form. To convert an LP into
standard form, we do the following steps.

1. If the right-hand of a constraint is negative, multiply both sides of the
constraint by —1. This multiplication will convert a < sign to > and vise
versa.

2. To convert a < inequality to an equation, a nonnegative slack variable
(unused amount) is added to the left-hand side of the constraint. For
example, the constraint 321 + 2z < 12 is converted into an equation as

3x1+2x20+s=12; s>0.

3. Conversion from > to = is achieved by subtracting a nonnegative surplus
(excess amount) variable from the left-hand side of the inequality. For
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example, the surplus variable e converts the constraint 5x1 + 3z9 > 4 to
the equation
501+ 3x0—e=4; e>0.

An unrestricted variable x; can be presented in terms of two nonnegative
variables by using the substitution

Ti =Yl — Y25 Yi1,Yi2 >0

The substitution must be effected throughout all the constraints and the
objective function. In the optimal LP solution only one of the two variables
y;1 and y;o can assume a positive value, but never both. Thus, when
yi1 > 0, yio = 0 and vice versa. For example, if z; = 4 then y;; = 4 and
yio = 0, and if x; = —4 then y;; = 0 and y;0 = 4.

Example 2.1. Write the following LP problem in standard form.

min w = 2x1 + 322
s.t. xr1 +x0 =10
—2x1 4+ 329 < =5
71’1 — 41’2 S 6
x1 urs, xo >0

Solution: The following changes must be effected.

1.

Multiply both sides of the second constraint by —1 to get 2xy — 3z9 >
5, then subtract excess variable es > 0 from the left-hand side of the
constraint.

Add a slack variable s3 > 0 to the left-hand side of the third constraint.

Substitute 1 = y11 — y12, where y11,%12 > 0, in the objective function
and all the other constraints.

Thus we get the standard form as

min w = 2y11 — 2y12 + 322

s.t. Y11 — Y12 + 22 =10
2y11 — 2y12 — 3x2 —e2 =5
Ty11 — Ty12 — 4wo + 53 =6
Y11, Y12, T2,€2,53 > 0

Exercise 2.1.

1. Convert the following LP to the standard form.

max z = 2x1 + 3x2 + dx3

s.t. T1+ X0 — 23> —5
—6x1 + Txo — 923 < 4
r1 + 29 +4x3 =10
x1,x9 > 0, x3 urs
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2. Consider the inequality
22w — 4wy > —7

Show that multiplying both sides of the inequality by —1 and then con-
verting the resulting inequality into an equation is the same as converting
it first to an equation and then multiplying both sides by —1.

3. The substitution z = y; — y» is used in an LP to replace unrestricted x
by the two nonnegative variables y; and yo. If & assumes the respective
values —6, 10, and 0, determine the associated optimal values of y; and
Y2 in each case.

2.3 Basic Feasible Solutions

Suppose we have converted an LP with m constraints into standard form. As-
suming that the standard form contains n variables (labeled for convenience

Z1,%2, "+ ,xy), where n > m, the standard form for such an LP is
max (or min) Z=c121 + Ccoxo + -+ cpTn
s.t. a1171 + @122 + -+ + a1y = by

a21T1 + a22%2 + - - + GopTy = by

Am1T1 + AmaZ2 + - - + AppTy = by,

$la$27"'7xn20
If we define
a1 a2 -+ Qin x1 b1
a1 a2 -+ G2n ) bo
A= , X= and b=
Aml Am2 *°° Amn Tn bm

the constraints for the LP may be written as the system of equations Ax = b.

Definition 2.1. A basic solution to Ax = b is obtained by
setting n—m variables (the nonbasic variables, or NBV) equal
to 0 and solving for the values of the remaining m variables
(the basic variables, or BV), provided the resulting solution is
unique.

|
Note 7. The maximum number of corner points is C)), = ————.
m! (n —m)!
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Of course, the different choices of nonbasic variables will lead to different
basic solutions. To illustrate, we find all the basic solutions to the following
system of two equations (m = 2) in three variables (n = 3):

xr1 + T2 =3
—x9+x3=-1

We begin by choosing a set of n —m = 3 — 2 = 1 nonbasic variable, and note
that there are C3 = 3 choices of this nonbasic variable.

e If NBV= {3}, then BV= {x1,22}. We obtain the values of the basic
variables by setting x3 = 0 and solving

x1+x0= 3
—x9=—1

We find that z; = 2, 9 = 1. Thus, (z1,22,23) = (2,1,0) is a basic
solution to the system.

e If NBV= {x5}, then BV= {z1,23}. We obtain the values of the basic
variables by setting xo = 0 and we find that 1 = 3, 3 = —1. Thus,
(x1,x2,23) = (3,0,—1) is a basic solution to the system.

e If NBV= {z;}, then BV= {23, 23}. We obtain the values of the basic
variables by setting 1 = 0 and solving

€T =3
—To+x3=—1

We find that o = 3, x3 = 2. Thus, (z1,z92,23) = (0,3,2) is a basic
solution to the system.

The following table provides all the basic and nonbasic solutions of the above
linear system.

NBVs BVs Basic Solution

1 ZTo,X3 3,2
T2 T1,T3 3,—-1
I3 T1,T2 2, 1

Note 8. Some sets of m variables do not yield a basic solution. For example,
consider the following linear system:

T+ 220 +2x3=1
201 +4x0 + 23 =3

If we choose NBV= {z3} and BV= {z1,x2}, the corresponding basic solution
would be obtained by solving

1+ 220 =1
2x1 +4x9 =3
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Because this system has no solution, there is no basic solution corresponding to
BV= {xl, 582}.

Definition 2.2. Any basic solution to the constraints Ax = b
of an LP in which all variables are nonnegative is a basic
feasible solution (or bfs).

For example, for an LP with the constraints given by

T+ T2 3
-T2 +x3=—1

the basic solutions 1 = 2,29 = 1,23 = 0, and z1 = 0,20 = 3,23 = 2 are
basic feasible solutions, but the basic solution z1 = 3,29 = 0,23 = —1 fails to
be a feasible solution (because z3 < 0).

Theorem 2.1. A point in the feasible region of an LP is an
extreme point if and only if it is a basic feasible solution to
the LP.

Exercise 2.2.

1. Consider the following LP:

max z = 2x1 + 312

s.t. T, + 30 < 12
3x1 + 229 < 12
T1,T2 Z 0

Express the problem in equation form.

Determine all the basic solutions of the problem, and classify them
as feasible and infeasible.

Use direct substitution in the objective function to determine the
optimum basic feasible solution.

Verify graphically that the solution obtained in (c) is the optimum LP
solution, hence, conclude that the optimum solution can be deter-
mined algebraically by considering the basic feasible solutions only.

Show how the infeasible basic solutions are represented on the graph-
ical solution space.

2. Determine the optimum solution for each of the following LPs by enumer-
ating all the basic solutions.
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(a) max z =211 — 4x9 + Sx3 — 614
s.t. T+ dro — 223 + 81y < 2
—x1 +2x9+ 3x3+ 404 < 1
x1,%2,%3,24 >0
(b) min w=x1 + 229 — 313 — 224
s.t. T1+2x9 — 323+ 14 =4
T, + 229 + 13+ 214 =4
x1,%2,x3,24 >0

3. Show algebraically that all the basic solutions of the following LP are

infeasible.
max zZ=x1+ To
s.t. T, + 210 < 3
21 +x2 > 8
x1,22 >0

4. Consider the following LP:

max 2=+ 3$2
s.t. 1+ 20 <2
—2x1+ 129 <4

x1 urs, xro >0

(a) Determine all the basic feasible solutions of the problem.

(b) Use direct substitution in the objective function to determine the
best basic solution.

(c) Solve the problem graphically, and verify that the solution obtained
in (b) is the optimum.

2.4 The Simplex Algorithm

Rather than enumerating all the basic solutions (corner points) of the LP prob-
lem, as we did in section (1.2), the simplex method investigates only a “se-
lect few” of these solutions. This section describes the iterative nature of the
method, and provides the computational details of the simplex algorithm.
Before describing the simplex algorithm in general terms, we need to define

the concept of an adjacent basic feasible solution.

Definition 2.3. For any LP with m constraints, two basic
feasible solutions are said to be adjacent if their sets of basic
variables have m — 1 basic variables in common.
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For example, in Figure 23, two basic feasible solutions will be adjacent if they
have 2 — 1 = 1 basic variable in common. Thus, the bfs corresponding to
point B in Figure 23 is adjacent to the bfs corresponding to point C' but is not
adjacent to bfs D. Intuitively, two basic feasible solutions are adjacent if they
both lie on the same edge of the boundary of the feasible region.

T2

I

z=2x1+ 32

(Optimum)

— = L1
N3 4 5%

2r1 +x0 =4

1+ 2x9 =5

Figure 23

2.4.1 Iterative Nature of the Simplex Method

Figure 23 provides the solution space of an LP. For the sake of standardizing the
algorithm, the simplex method always starts at the origin where all the decision
variables, x; are zero. In Figure 23, point A is the origin (1 = x2 = 0) and the
associated objective value, z, is zero. The logical question now is whether an
increase in the values of nonbasic 21 and x5 above their current zero values can
improve (increase) the value of z. We can answer this question by investigating
the objective function:
max z = 221 + 3x9

An increase in x1 or x5 (or both) above their current zero values will improve
the value of z. The design of the simplex method does not allow simultaneous
increases in variables. Instead, it targets the variables one at a time. The
variable slated for increase is the one with the largest rate of improvement in
z. In the present example, the rate of improvement in the value of z is 2 for x7
and 3 for 9. We thus elect to increase x5 (the variable with the largest rate of
improvement among all nonbasic variables). Figure 23 shows that the value of
x9 must be increased until corner point B is reached (recall that stopping short
of corner point B is not an option because a candidate for the optimum must
be a corner point). At point B, the simplex method, as will be explained later,
will then increase the value of x1 to reach the improved corner point C', which
is the optimum.

The path of the simplex algorithm always connects adjacent corner points.
In the present example the path to the optimum is A — B — C'. Each corner
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point along the path is associated with an iteration. It is important to note that
the simplex method always moves alongside the edges of the solution space,
which means that the method does not cut across the solution space. For
example, the simplex algorithm cannot go from A to C directly since they are
not adjacent.

2.4.2 Computational Details of the Simplex Algorithm

We now describe how the simplex algorithm can be used to solve LPs in which
the goal is to maximize the objective function. The solution of minimization
problems is discussed in Section 2.5. The simplex algorithm proceeds as follows:

Step 1: Convert the LP to standard form. Then, write the objective function
Z=1C1T1 + T2 + -+ CpTp

in the form
Z—ClT] — Ty — -+ — Cpxy = 0.

We call this format the row 0 version of the objective function (row 0 for
short).

Step 2: Obtain a bfs (if possible) from the standard form. This is easy if all
the constraints are < with nonnegative right-hand sides. Then the slack
variable s; may be used as the basic variable for row i. If no bfs is readily
apparent, then use the technique discussed in Section 2.6 to find a bfs.

Step 3: Determine whether the current bfs is optimal. If all nonbasic variables
have nonnegative coefficients in row 0, then the current bfs is optimal. If
any variables in row 0 have negative coefficients, then choose the variable
with the most negative coefficient in row 0 to enter the basis. We call
this variable the entering variable.

Step 4: If the current bfs is not optimal, then determine which nonbasic variable
should become a basic variable and which basic variable should become a
nonbasic variable to find a new bfs with a better objective function value.
When entering a variable into the basis, compute the ratio

Right-hand side of constraint

Coefficient of entering variable in constraint

for every constraint in which the entering variable has a positive coeffi-
cient. The constraint with the smallest ratio is called the winner of the
ratio test. The smallest ratio is the largest value of the entering variable
that will keep all the current basic variables nonnegative.

Step 5: Use elementary row operations (EROs) to find the new bfs with the
better objective function value by making the entering variable a basic
variable (has coefficient 1 in pivot row, and 0 in other rows) in the con-
straint that wins the ratio test. Go back to step 3.
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2.4.3 Representing the Simplex Tableau

The tabular form of the simplex method records only the essential information:
e the coefficients of the variables,
e the constants on the right-hand sides of the equations,
e the basic variable appearing in each equation.

This saves writing the symbols for the variables in each of the equations, but
what is even more important is the fact that it permits highlighting the numbers
involved in arithmetic calculations and recording the computations compactly.
For example, the form

z—2x1 — 329 =0
2z1 + x2+ 51 =4
1 + 222 +82=25

would be written in abbreviated form as shown in the following table.

Basic | 1 22 s1 s | RHS
z -2 =3 0 O 0
$1 2 1 1 0 4
S9 1 2 0 1 5

The layout of the simplex tableau automatically provides the solution at the
starting iteration. The solution starts at the origin (x1,22) = (0,0), thus
defining (z1,22) as the nonbasic variables and (s, s2) as the basic variables.
The associated objective z and the basic variables (si,s2) are listed in the
leftmost Basic-column. Their values, z = 0, s1 = 4, s = 5 appearing in
the rightmost Solution-column, are given directly by the right-hand sides of the
model’s equations (a convenient consequence of starting at the origin). The
result can be seen by setting the nonbasic variables (1, x2) equal to zero in all
the equations, and also by noting the special identity-matrix arrangement of the
constraint coefficients of the basic variables (all diagonal elements are 1, and
all off-diagonal elements are 0).

Example 2.2. Solve the following LP problem using the simplex method.

max z = 2x1 + 319

s.t. 201 + a0 < 4
1+ 222 <5
I1,x2 Z 0

Solution: By adding slack variables s; and so, respectively, we obtain the LP
in standard form:
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max z—2x1 —3x9=0

s.t. 201+ 290+ 51 =4
1+ 2x9+52=25
T1,X2,81, 852 Z 0

The initial tableau and all following tableaus until the optimal solution is reached
are shown below.

1
Iteration [0] Basic | =1 z2 s; s2 | RHS
z -2 -3 0 0 0
s1 2 1 1 0 4 Ratio=4/1=4
— 52 1 2 0 1 5 Ratio=5/2=2.5
4
Iteration [1] Basic | z; 22 s1 s2 | RHS
z /20 0 32| 1572
— 5 320 1 -lf2] 3/2 Ratio=3/2+32=1
T2 21 0 1) 5/2 Ratio=5/2+1/2=15
Iteration [2] Basic | z1 9 $1 so | RHS Optimal Tableau
z | 0 0 13 45| 38 z=38
1 1 0 2/3 -1/3 1 x1 =129 =2
) 0 1 —1/3 2/3 2 S1 = 0, SS9 = 0

Example 2.3. Solve the following LP problem using the simplex method.

max z = 4x1 + 4xo

s.t. 6x1 + 4xo < 24
1+ 2x9 <6
—z1+x2 <1
xi1,29 >0

Solution: By adding slack variables s1, s2, s3 and s4, respectively, we obtain
the LP in standard form:

max z—4x1 —4x9 =0

s.t. 6x1 + 4x0 4+ 51 =24
T1+2r2+50=6
—xr1+x90+s3=1
T1,X2,81,52,S53 >0

The initial tableau and all following tableaus until the optimal solution is reached
are shown below. Note that we can choose to enter either 1 or x5 into the
basis. We arbitrarily choose to enter z; into basis.
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Iteration [0] Basic | z1 2 s1 s2 s3 | RHS
z -4 -4 0 0 O 0
— s1 6 4 1 0 O 24  Ratio= 24/6 = 4
S9 1 2 0 1 0 6 Ratio=6/1=06
s3 -1 1 0 0 1 1 X
1
Iteration [1] Basic | z; 9 s1 sy s3 | RHS
= | 0 43 25 0 0] 16
x1 1 233 16 0 0 4 Ratio=4-+2/3=6
— s 0 43 -1 1 0 2 Ratio= 2 +4/3=3/2
s3 | 0 53 16 0 1 5 Ratio=5-5/3=3
Iteration [2] Basic | z1 9 s1 sy s3 | RHS Optimal Tableau
z 0 0 1/2 1 0 18 z=18
T 1 0 1/4 _1/2 0 3 T = 3,ZE2 = 3/2
T 0 1 -1s 34+ 0] 3/ s1=0,s2=0
S3 0 0 38 —51 1 5/2 s3 =15/2,54 = 1/2

Example 2.4. Solve the following LP problem using the simplex method.

ma
s.t.

X

z =1+ 322
r1+x0 <2

—x1+ 12 < 4
x1 > 0, o urs

Solution: By assuming 2 = y1 — y2 and then adding slack variables s; and
s9, respectively, we obtain the LP in standard form:

max
s.t.

are shown below.

z—x1—3y1+3y2=0
T1+y—y2+s1=2
—T1+ Y1 —Y2t+s2=4

x1,Y1,Y2, 81,82 > 0

The initial tableau and all following tableaus until the optimal solution is reached

i

Iteration [0] Basic | 1 Y1 Ys S1  S2 RHS

z -1 =3 3 0 O 0

— $1 1 1 -1 1 0 2 Ratio=2/1=2

sp | —1 1 -1 0 1 4 Ratio=4/1=4
Iteration [1] Basic | =1 y1 w2 s1 s2 | RHS Optimal Tableau

z 2 0 0 3 0 6 z2=06

v 1 1T -1 1 0 2 1=0, 73 =2

59 —2 0 0 —1 1 2 S1 = 0, SS9 = 2




Note that from the optimal tableau we have y; = 2 and y» = 0, so that
mgzyl—y2:2—0:2.

Exercise 2.3.

1. Use the simplex algorithm to solve the following problems.

(a) max z = 2x1 + 322 (c) max Z=x1 — T2
s.t. x4+ 229 <6 s.t. 41 + 29 < 100
201+ 10 < 8 T, 4+ 22 < 80
z1,22 >0 xr1 <40
x1,22 >0
(b) max z=2x1 —x2+x3 (d) max z=x1+ T2+ 3
s.t. 3x1 + a2+ x3 <60 s.t. x1 + 222 + 223 < 20
1 — 29 + 223 < 10 2x1 + 2 + 223 < 20
1+ a9 —x3 <20 2x1 4+ 2x0 + 23 < 20
x1,22,23 >0 x1,x2,x3 > 0

2. Solve the following problem by inspection, and justify the method of so-
lution in terms of the basic solutions of the simplex method.

max z =9x1 — 612 + 3x3 — dx4 + 1225
s.t. 1 + 3x2 + dxz + 624 + 325 < 30
x1, 2,23, %4, 75 > 0

2.5 Solving Minimization Problem

There are two different ways that the simplex algorithm can be used to solve
minimization problems.

Method (1) Multiply the objective function for the min problem by —1 and
solve the problem as a maximization problem with objective function
(—w). The optimal solution to the max problem will give you the op-
timal solution to the min problem where

optimal objective function| _ |optimal objective function
value for min problem - value for max problem

Example 2.5. Solve the following LP problem using the simplex method.

min w = 2x1 — 3T2

s.t. T1+x9 <4
r1 — T2 S 6
x1,w2 20
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Solution: The optimal solution to the LP is the point (z1,z2) in the
feasible region for the LP that makes w = 2x1 — 3z the smallest. Equiv-
alently, we may say that the optimal solution to the LP is the point in
the feasible region that makes z = —w = —2x1 + 3x2 the largest. This
means that we can find the optimal solution to the LP by solving:

max z=—2x1 4+ 322
s.t. 1+ a9 <4
T — T2 S 6
z1,22 >0

By adding slack variables s; and so, respectively, we obtain the LP in
standard form:

max z4+2x1 —3x9=0

s.t. r1+xo+51 =4
r1— T2+ S9=206
I1,X2,81, 82 Z 0

The initial tableau and all following tableaus until the optimal solution is
reached are shown below.

1
Iteration [0] Basic | z1 x2 s1 sz | RHS
z 2 -3 0 0 0
— s 1 1 1 0 4 Ratio=4%4/1=4
s | 1 -1 0 1 6 X
Iteration [1] Basic | z1 x2 s1 sz | RHS Optimal Tableau
Z 5 0o 3 0 12 w=—z=—12
) 1 1 1 0 4 r1 = 0, I = 4
59 2 0 1 1 10 S1 = 0, S9 = 10

Method (2) A simple modification of the simplex algorithm can be used to

solve min problems directly. Modify Step 3 of the simplex as follows:
If all nonbasic variables in row 0 have nonpositive coefficients, then the
current bfs is optimal. If any nonbasic variable in row 0 has a positive
coefficient, choose the variable with the “most positive” coefficient in row
0 to enter the basis. This modification of the simplex algorithm works
because increasing a nonbasic variable with a positive coefficient in row 0
will decrease w. If we use this method to solve the LP in example (2.5),
then after adding slack variables s1 and ss, respectively, we obtain the LP
in standard form:

min w—2x1 + 319 =0

s.t. 1 +x9+5 =4
r1— T2+ S9=206
x1,%2,81,82 > 0

38



The initial tableau and all following tableaus until the optimal solution is
reached are shown below. Note that, because x5 has the most positive
coefficient in row 0, we enter x5 into the basis.

!
Iteration [0] Basic | 7 x2 s s2 | RHS
w -2 0 0 0
— s 1 1 1 0 4 Ratio=4/1=4
S9 1 -1 0 1 6 X
Iteration [1] Basic | 1 z2 s1 s2 | RHS Optimal Tableau
w -5 0o -3 0| —12 w=—12
xI9 1 1 1 0 4 Ir1 = 0, o — 4
S9 2 0 1 1 10 s1=0, so =10

Exercise 2.4. Use the simplex algorithm to solve the following problems.

1. min w = 4x1 — T9 4. min w = —3x1 + 8x9
s.t. 21 + 10 <8 s.t. 41 4+ 210 < 12
I2§5 2131+3$2§6
T —1x9 < 4 x1,22 >0
x1,22 >0
5. min w = 5x1 + 4x9 + 623 — 814
2. min W =T — T2 s.t. T1 + 2x9 + 223 + 44 < 40
s.t. 1 —12 <1 221 — 229 + 23 + 224 < 8
1+ 22 <2 4z — 229 + 3 — x4 < 10
x1,22 20 21,%9,23,24 >0
3. min w = 2x1 — Dxo
s.t. 3x1 + 8x9 < 12
221 + 312 <6
x1,22 >0

2.6 Artificial Starting Solution and the Big M —Method

Recall that the simplex algorithm requires a starting bfs. In all the problems we
have solved so far, we found a starting bfs by using the slack variables as our
basic variables. If an LP has any (>) or (=) constraints, a starting bfs may not
be readily apparent. When a bfs is not readily apparent, the Big M —method
may be used to solve the problem. The Big M —method is a version of the
simplex algorithm that first finds a bfs by adding “artificial” variables to the
problem. The objective function of the original LP must be modified to ensure
that the artificial variables are all equal to 0 at the conclusion of the simplex
algorithm.

The big M —method starts with the LP in equation form. If equation ¢ does
not have a slack (or a variable that can play the role of a slack), an artificial
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variable, a;, is added to form a starting solution similar to the all-slack basic
solution. However, because the artificial variables are not part of the original
problem, a modeling “trick” is needed to force them to zero value by the time
the optimum iteration is reached (assuming the problem has a feasible solution).
The desired goal is achieved by assigning a penalty defined as:

—M  in max problems

M  in min problems

Artificial variable objective
function coefficient -

where M is a sufficiently large positive value (mathematically, M — o0).

Example 2.6. Solve the following LP problem using the simplex method.

min w = 4x1 + T2

s.t. 3x1+ 22 =3
4x1 4+ 3x2 > 6
1+ 2x9 < 4
T1,T2 Z 0

Solution: To convert the constraint to equations, use es as a surplus in the
second constraint and s3g as a slack in the third constraint.

3r1+ x9 =3
4z + 3x9 — €9 =6
r1 + 229 +s3=4

The third equation has its slack variable, s3, but the first and second equations
do not. Thus, we add the artificial variables a1 and as in the first two equations
and penalize them in the objective function with Ma; + May (because we are
minimizing). The resulting LP becomes

min
s.t.

w=4x1 +x0+ Mays + Mas
3xr1+x20+a; =3

41+ 3x9 —eg +a9 =6
T1+2x9 +83 =4
x1,T2,83,€2,a1,a2 > 0

After writing the objective function as w — 421 — o — Ma; — Mas = 0, the
initial tableau will be

Iteration [0] Basic | z1 2 s3 e a1 as | RHS
w -4 -1 0 0 —-M M 0
al 3 1 0 0 1 0 3
as 4 3 0 -1 0 1 6
S3 1 2 1 0 0 0 4

Before proceeding with the simplex method computations, row 0 must be made
consistent with the rest of the tableau. The right—hand side of row 0 in the
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tableau currently shows w = 0. However, given the nonbasic solution x1 =
x2 = eg = 0, the current basic solution is a; = 3, a2 = 6, and s3 = 4 yields

w=4x0)+(1x0)+B3x M)+ (6 x M)=9M # 0.

The inconsistency stems from the fact that a; and as have nonzero coefficients
in row 0. To eliminate the inconsistency, we use EROs. The modified tableau
thus becomes (verify!):

Iteration [0] Basic 1 T9 S3 es a1 as | RHS
w "TM—-4 4M -1 0 -M 0 0] 9M
a1 3 1 0 0 1 0 3
ao 0 -1 0 1 6
S3 1 2 1 0O 0 0 4

The last tableau is ready for the application of the simplex optimality and the
feasibility conditions. Because the objective function is minimized, the variable
x1 having the most positive coefficient in the row 0 enters the solution. The
minimum ratio of the feasibility condition specifies a; as the leaving variable.
All tableaus until the optimal solution is reached are shown below.

1
Iteration [0] Basic 1 T2 S3 ey a1 ag RHS
w "™M—-4 4M -1 0 —-M 0 0] 9M
— ai 3 1 0 0 1 0 3 Ratio=3/3=1
ao 4 3 0 -1 0 1 6 Ratio=6/4 =3/2
s3 1 2 1 0 0 0| 4 Ratio=%2=2
1
Iteration [1] Basic | =3 X9 S3 €2 ay as RHS
w 0 @+M)/3 0 —M (@=T™)/3 0| 4+2M
| 1 1/3 0 0 /5 0 1 Ratio=1+1/3=3
« ay | O 5/3 0 -1 —4/3 1 2 Ratio=2 = 5/3 = 6/5
s3 | 0 5/3 10 ~1/3 0 3 Ratio=3=5/3="9/
1
Iteration [2] Basic | 1 z2 s3 €9 ay as | RHS
w 0 0 0 Y5 8s5—M —1/s—M]| 18/
x 1 0 0 s 3/5 —1/5 3/5 Ratio=3/5 +1/5 =3
T 0 1 0 -3 —4/5 35| 6/5 X
— S3 0 0 1 1 1 -1 1 Ratio=11=1
Iteration [3] Basic | 1 22 S3 € ay as | RHS Optimal Tableau
w 0 0 -5 0 7/5—M —M]| 175 w=17/5
zn |1 0 15 0 25 0] 265 w1 =25 33="905
T2 0 1 350 —1/5 0 9/5 er =1
€9 0 0 1 1 1 -1 1 a); = 0, as = 0




Note 9. From a computational standpoint, solving the problem on the computer
requires replacing M with a sufficiently large numeric value. The result is an
unnecessary layer of computational difficulty that can be avoided by substituting
an appropriate numeric value for M (which is what we would do anyway if we
use the computer). We break away from the long tradition of manipulating M
algebraically and use a numerical substitution instead. The intent is to simplify
the presentation without losing substance. What value of M should we use?
The answer depends on the data of the original LP. Recall that the penalty
M must be sufficiently large relative to the original objective coefficients to
force the artificial variables to be zero (which happens only if a feasible solution
exists). At the same time, since computers are the main tool for solving LPs,
M should not be unnecessarily too large, as this may lead to serious round-off
error. In the present example, the objective coefficients of x1 and x5 are 2 and
1, respectively, and it appears reasonable to set M = 100.

Example 2.7. Solve the following LP problem using the simplex method.

max z=2x1 + To

s.t. x1+ 29 <10
—x] + 19 > 2
Ir1,x2 Z 0

Solution: To convert the constraint to equations, use s1 as a slack in the first
constraint and eo as a surplus in the second constraint.

x1 + X2 + 51 =10
—T1 + X —eg = 2

We add the artificial variables as in the second equation and penalize it in the
objective function with —Mas = —100ay (because we are maximizing). The
resulting LP becomes

max z = 2x1 + x9 — 100a9
s.t. r1+x0+ 51 =10
—r1+ T2 —ex+ag =2
x1,x2,81,e2,a2 > 0
After writing the objective function as z — 2z; — o + 100a2 = 0, the initial
tableau will be

Iteration [0] Basic | 1 29 s3 €9 as | RHS
z -2 -1 0 0 100 0
S1 1 1 1 0 0 10
as -1 1 0 -1 1 2

Before proceeding with the simplex method computations, row 0 must be made
consistent with the rest of the tableau. The inconsistency stems from the fact
that ag has nonzero coefficients in row 0. To eliminate the inconsistency, we use
EROs. The modified tableau and all other tableaus until the optimal solution
is reached are:
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Iteration [0] Basic | 1 To 81 €y a2 RHS
z 98 —101 0 100 0| —200
51 1 1 1 0 0] 10 Ratio=10/1=10
— as -1 1 0 -1 1 2 Ratio=2/1=2
1
Iteration [1] Basic | 1 x2 s ex as | RHS
z -3 0O 0 -1 101 2
— s 2 0 1 1 -1 8 Ratio=28/2=4
T9 —1 1 0 -1 1 2 X

Iteration [2] Basic |

1 T2 S1 €2 a9 RHS Optimal Tableau
z | 0 0 32 1 195 14 z=14
x1 1 0 2 12 -1)2 4 1 =422=06
) 0 1 1/2 *1/2 1/2 6 S1 = €9 = ag = 0

Example 2.8. Consider the problem.

max
s.t.

z = 2x1 +4xo + 43 — 314
xr1 4+ T2 + 23 =4

1 + 4x2 +r4=28
I1,X2,T3,T4 Z 0

The variables x3 and 4 play the role of slack variables. So, without using any ar-
tificial variables, solve the problem with x3 and x4 as the starting basic variables.

Solution: The main difference here from the usual simplex is that x3 and x4
have nonzero objective coefficients in row 0: z — 2z —4x9 —4x3+3x4 = 0. To
eliminate their coefficients, we use EROs. The initial tableaus and all following
tableaus until the optimal solution is reached are shown below.

Iteration [0] Basic | #1 22 23 =4 | RHS
z -2 -4 -4 3 0
T3 1 1 1 0 4
T4 1 4 0 1 8
1
Iteration [0] Basic | 1  x2 3 x4 | RHS

—12 -8

z —1
I3 1
— T4 1

3
0 0
11 0 4 Ratio=4/1=4
4 0 1 8 Ratio=8/4=2

Iteration [1] Basic | z1 z2 a3 x4 | RHS Optimal Tableau
z 2 0 0 3 16 z=16
I3 3/4 0 1 _1/4 2 I = 0, T = 2
) 1/4 1 0 1/4 2 T3 = 2, T4 = 0




Exercise 2.5.

1. Use the Big M-method to solve the following LPs:

(a) min w=4x1 +4ze + 23 (c) min w = 2x1 + 322
s.t. T1+x9 + a3 <2 s.t. 201+ 10 > 4
2r1 + 22 <3 1 — w2 > —1
2x1 +x0+ 323 > 3 r1,x9 >0
x1,T2,73 > 0
(b) min w =21+ T2 (d) max 2z = 3x1 + T2
s.t. 201 + a9+ 23 =14 s.t. 201+ 29 < 4
T, + x9 + 223 < 2 T1+x20=3
x1,x2,23 >0 x1,72 >0

2. Solve the following problem using x3 and x4 as starting basic feasible
variables. As in example (2.8), do not use any artificial variables.

min z =31 + 229 + 3x3 + 214

s.t. T1 + 4xo + 23 > 14
221 + 2 +x4 > 20
T1,X2,T3,T4 Z 0

3. Consider the problem

max z =x1 + dxs + 3x3
s.t. 1+ 229 +23 =206
21‘1 — X2 =8

£1,T2,T3 > 0

The variable z3 plays the role of a slack. Thus, no artificial variable
is needed in the first constraint. In the second constraint, an artificial
variable, as, is needed. Solve the problem using z3 and a2 as the starting
variables.

2.7 Special Cases in the Simplex Method
This section considers four special cases that arise in the use of the simplex
method.

2.7.1 Degeneracy

In the application of the feasibility condition of the simplex method, a tie for the
minimum ratio may occur and can be broken arbitrarily. When this happens, at
least one basic variable will be zero in the next iteration, and the new solution
is said to be degenerate. This situation may reveal that the model has at least
one redundant constraint.
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Definition 2.4. An LP is degenerate if it has at least one bfs
in which a basic variable is equal to zero.

If one of these degenerate basic variables retains its value of zero until it is
chosen at a subsequent iteration to be a leaving basic variable, the corresponding
entering basic variable also must remain zero, so the value of the objective
function must remain unchanged. However, if the objective function may remain
the same rather than change at each iteration, the simplex method may then go
around in a loop, repeating the same sequence of solutions periodically rather
than eventually changing the objective function toward an optimal solution.
This occurrence is called cycling.

Example 2.9. Solve the following LP problem.

max z =31 + 922

s.t. T1+4x9 <8
r1+ 229 < 4
I1,x2 Z 0

Solution: By adding slack variables s; and s, we obtain the LP in standard
form
max z—3x1— 929 =0
s.t. 1 +4x9+ 51 =8
T1+ 279 + 52 =4
x1,22,51,82 > 0
The initial tableau and all following tableaus until the optimal solution is reached
are shown below.

1
Iteration [0] Basic | z1 x2 s; sz | RHS
z -3 -9 0 0 0
— s 1 4 1 0 8 Ratio=8/4=2
59 1 2 0 1 4 Ratio=4/2 =2

In iteration 0, s; and sg tie for the leaving variable, leading to degeneracy in
iteration 1 because the basic variable sy assumes a zero value.

1
Iteration [1] Basic | z; a2 s1 s2 | RHS
z |34 0 9 0] 18
29 | Ya 1 11 0 2 Ratio=2+1/1=38
— s | Y2 0 -1z 1 0 Ratio=0=1/2=0
Iteration [2] Basic | 1 22 s s9 | RHS Optimal Tableau
z | 0 0 32 32| 18 z2=18
) 0 1 1/2 _1/2 2 T = 0, To = 2
I 1 0 -1 2 0 S1 = O, S9 = 0
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The following example illustrates the occurrence of cycling in the simplex
iterations and the possibility that the algorithm may never converge to the
optimum solution.

Example 2.10. This example was authored by E.M. Beale!. Consider the
following LP:
3 1
max C =-21— 150z + %1‘3 — 624

1
s.t. —x1 — 60x9 — %1'3 + 924 <0

1
—x1 — 9029 — — 324 <0
2561 T2 50$3+ Ty <
$3§1
xla$27$3ax420

1 1
Actually, the optimal solution of this example is C' = 2 when 1 = % r3 =1,

and z9 = x4 = 0.

Note 10. There are several ways to solve the LP problem in example (2.10).
We review these methods as follows.

1. Computer Systems: like Excel Solver, LINDO and Mathematica.

2. Convert all the coefficients in the constraints to integer values by
using proper multiples:> this can be done by multiplying the first con-
straint in the original LP by lem(4,25) = 100 and the second constrain
by lem(2,50) = 50. Then we write the LP in standard form.

1
max C — %xl + 15029 — %Iﬂg +6x4 =0

s.t. 25x1 — 6000z — 4z3 + 90024 + 51 =0
25x1 — 4500x9 — x3 + 150x4 + 59 =0
r3+s3=1

T1,T2,T3,T4,581,582,53 > 0

3. Bland’s Rule for selecting entering and leaving variables®.

(a) For the entering basic variable: Of all negative coefficients in the
objective row (Row 0), choose the one with smallest subscript.

(b) For the departing basic variable: When there is a tie between one
or more ratios computed, choose the candidate for departing basic
variable that has the smallest subscript.

Saul I. Gass, Sasirekha Vinjamuri. Cycling in linear programming problems. Computers
& Operations Research 31 (2004)

2Hamdy A. Taha, Operations Research: An Introduction, 9th Edition, Prentice Hall.
2011. Call number in PU library: 658.4034 TAH.

3James Calvert and William Voxman, Linear Programming, 1st Edition, Harcourt Brace
Jovanovich Publishers, 1989.
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When we use Bland's rule to solve the LP in example (2.10), we name
the slake variables s1, s9, s3 as x5, g, x7 respectively.

4. Lexicographic Rule for selecting an exiting variable®*.
Given a basic feasible solution with basis B, suppose that the nonbasic
variable zj, is chosen to enter the basis (the most negative value in Row
0 for maximization LP). The index 7 of the variable zp leaving the basis
is determined as follows. Let

br . bz
Iy = P— = — Y
0 {r Yrk Oglénm {yzkz Yik = O}}

If Iy is a singleton, namely Iy = {r}, then xp, leaves the basis. Otherwise,

form I; as follows:
{ Yr1 . { Yi1 }}
i =qr:>— =min{q —
Yrk i€l  Yik

where y,1 is the first column of the m x m identity matrix. If I is
singleton, namely, I = {r}, then zp_ leaves the basis. Otherwise, form
I, where, in general, I; is formed from I;_; as follows:

Ij:{r:'%j: min {yw}}
Yrk €1 (Yik

where y,; is the jth column of the m x m identity matrix. Eventually,
for some j < m, I; will be a singleton. If I; = {r}, then xp, leaves the
basis.

2.7.2 Alternative Optima

Recall from example (1.13) of Section 1.3 that for some LPs, more than one
extreme point is optimal. If an LP has more than one optimal solution, then
we say that it has multiple or alternative optimal solutions. An LP problem
may have an infinite number of alternative optima when the objective function
is parallel to a nonredundant binding constraint. The existence of alternative
can be detected in the optimal tableau by examining row 0 coefficients of the
nonbasic variables. The zero coefficient of nonbasic x; indicates that x; can
be made basic, altering the values of the basic variables without changing the
value of z.

In practice, alternative optima are useful because we can choose from many
solutions without experiencing deterioration in the objective value. If the exam-
ple represents a product-mix situation, it may be advantageous to market two
products instead of one.

4 Mokhtar S. Bazaraa, John J. Jarvis, Hanif D. Sher, Linear Programming and Network
Flows, 4th Edition, John Wiley & Sons, Inc. 2010. Call number in PU library: 519.72 BAZ
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Example 2.11. Solve the following LP problem.

max z = 2x1 + 4x9

s.t. 1+ 2290 <5
T+ a9 <4
T1,X2 Z 0

Solution: By adding slack variables s; and s2, we obtain the LP in standard
form
max z—2x1 —4x9 =0
s.t. r1+2x9+S81 =5
1+ x2+852=14
x1,%2,81,82 > 0

The initial tableau and all following tableaus until the optimal solution is reached
are shown below.

1
Iteration [0] Basic | ©1 22 s s2 | RHS
z -2 -4 0 0 0
T 1 2 1 0 5 Ratio= 5/2
2 1 1 0 1 4 Ratio=4/1 =14
1
Iteration [1] Basic | z; 9 s1 s | RHS Optimal
z [[o] 0 2 0| 10 Tableau
xe | Y2 1 12 0| 5/ Ratio=5/2 +1/2=15
— sy | Y2 0 12 1 3/2 Ratio=3/2 +3/2 =3
Iteration [2] Basic | x; 22 s1 sz | RHS Alternative
z 0 0 2 0] 10 Optima
To 0 1 1 -1 1
T 1 0 -1 2 3

Mathematically, we can determine all the points (x1,x2) on the line segment
joining the optimal solutions (0,3) and (3,1) as follows:

xp =1(0)+(1-1)(3)=3-3t |
E(B) 4+ (1—t)(1) =1+ 3 },051551

2.7.3 Unbounded Solutions

In some LP models, as in example (1.15) of Section 1.3, the solution space is
unbounded in at least one variable, meaning that variables may be increased
indefinitely without violating any of the constraints. The associated objective
value may also be unbounded in this case. An unbounded LP for a max problem
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occurs when a variable with a negative coefficient (positive for min LP) in row
0 has a nonpositive coefficient in each constraint.

An unbounded solution space may signal that the model is poorly con-
structed. The most likely irregularity in such models is that some key con-
straints have not been accounted for. Another possibility is that estimates of
the constraint coefficients may not be accurate.

Example 2.12. Solve the following LP problem.

max z=2x1 + x9
s.t. 1 —x2 <10
21‘1 S 40
r1, 12 >0

Solution: By adding slack variables s; and s, we obtain the LP in standard
form

max z—2x1 —x90=0
s.t. xr1 —x9+s1 =10
2x1 + 59 =40

T1,x2,51,52 > 0

The initial tableau and all following tableaus until the optimal solution is reached
are shown below.

Iteration [0] Basic | z1 x2 s; s2 | RHS
z -2 -1 0 0 0
81 1 -1 1 0 10
59 2 0 0 1 40

In the starting tableau, both x; and x5 have negative z—equation coefficients,
meaning that an increase in their values will increase the objective value. Al-
though x1 should be the entering variable (it has the most negative z—coefficient),
we note that all the constraint coefficients under xo are < 0, meaning that x-
can be increased indefinitely without violating any of the constraints. The result
is that z can be increased indefinitely.

2.7.4 Nonexisting (or Infeasible) Solutions

LP models with inconsistent constraints have no feasible solution, see example
(1.14) of Section 1.3. This situation does not occur if all the constraints are
of the type < with nonnegative right-hand sides because the slacks provide
an obvious feasible solution. For other types of constraints, penalized artificial
variables are used to start the solution. If at least one artificial variable is
positive in the optimum iteration, then the LP has no feasible solution. From
the practical standpoint, an infeasible space points to the possibility that the
model is not formulated correctly.
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Example 2.13. Solve the following LP problem.

max z =3x1 + 222

s.t. 201 + 10 < 2
3:E1 + 4ZE2 > 12
x1,22 >0

Solution: To convert the constraint to equations, use s1 as a slack in the first
constraint and e as a surplus in the second constraint.

=2
—62:12

2x1 + w2 + 51
3x1 + 4x9

We add the artificial variables as in the second equation and penalize it in the
objective function with —Mas = —100ay (because we are maximizing). The
resulting LP becomes

max
s.t.

z = 3x1 + 2x9 — 100as
201 +x0+ 51 =2

31 +4x9 — €9+ ag = 12
x1,T2,S81,€2,a2 > 0

After writing the objective function as z — 3x1 — 229 4+ 100a = 0, the initial
tableau will be and all following tableaus until the optimal solution is reached
are shown below.

Iteration [0] Basic | 1 1z s €9 as | RHS
z | -3 -2 0 0 [100] 0
$1 2 1 1 0 0 2
as 3 4 0 -1 1 12
1
Iteration [0] Basic 1 T2 81 €y a2 RHS
z —-303 —402 0 100 O | —1200
— S1 2 1 1 0 0 2 Ratio=2/1=2
as 4 0 -1 1 12 Ratio=12/4=3
Iteration [1] Basic | z; 9 $1 ea ao | RHS Optimal
z 501 0 402 100 O | —396 Tableau
T2 2 1 1 0 0 2
-5 0 -4 -1 1 4

Optimum iteration 1 shows that the artificial variable ay is positive (= 4),
meaning that the LP is infeasible. The result is what we may call a pseudo-
optimal solution.
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Exercise 2.6.

1. Consider the following LP:

max z = 3x1 + 229

s.t. 41 —x9 < 4
41 4+ 312 < 6
dx1 + 29 < 4
T1,X2 Z 0

(a) Show that the associated simplex iterations are temporarily degen-
erate. How many iterations are needed to reach the optimum?

(b) Verify the result by solving the problem graphically.

(c) Interchange constraints (1) and (3) and resolve the problem. How
many iterations are needed to solve the problem?

2. For the following LP, identify three alternative optimal basic solutions.

max z=x1 + 22 + 323
s.t. T1 + 229 + 3x3 < 10
T1+12 <5

1 <1

x1, 22,23 > 0
3. Solve the following LP:

max z=2x1 — T2+ 33

s.t. T — To + 523 <5
2171 — T2 + 3$3 < 20
I1,X2,T3 Z 0

From the optimal tableau, show that all the alternative optima are not
corner points (i.e., nonbasic).

4. For the following LP, show that the optimal solution is degenerate and
that none of the alternative solutions are corner points.

max z =3x1 + 2

s.t. T1 4+ 212 <5
1+ T2 —x3 < 2
7$1 + 31‘2 - 51‘3 < 20
T1,22,T3 >0
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5. Consider the LP:

max z =20z + 53 + x3
s.t. 3x1 4+ 5xo — S5x3 < 50
I S 10

1 + 3x9 — 4x3 < 20
x1,r2,23 > 0

(a) By inspecting the constraints, determine the direction (x1, z2,3) in
which the solution space is unbounded.

(b) Without further computations, what can you conclude regarding the
optimum objective value?

6. Consider the LP model

max z = 3x1 + 229 + 3x3

s.t. 201 + a9+ 23 < 4
3x1 + 4xo + 223 > 16
T1,T2,T3 Z 0

Use hand computations to show that the optimal solution can include an
artificial basic variable at zero level. Does the problem have a feasible
optimal solution?

7. The following tableau represents a specific simplex iteration. All variables
are nonnegative. The tableau is not optimal for either maximization or
minimization. Thus, when a nonbasic variable enters the solution, it can
either increase or decrease z or leave it unchanged, depending on the
parameters of the entering nonbasic variable.

Basic | z1 zo 3 x4 5 ¢ wx7 xg | RHS
z 0 -5 0 4 -1 —-10 0 0| 620
s 0 3 0o -2 -3 -1 5 1 12
T3 0 1 1 3 1 0 3 0 6
T 1 -1 0 0 6 -4 0 0 0

(a) Categorize the variables as basic and nonbasic, and provide the cur-
rent values of all the variables.

(b) Assuming that the problem is of the maximization type, identify the
nonbasic variables that have the potential to improve the value of
z. |If each such variable enters the basic solution, determine the
associated leaving variable, if any, and the associated change in z.

(c) Repeat part (b) assuming that the problem is of the minimization
type.
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(d) Which nonbasic variable(s) will not cause a change in the value of z
when selected to enter the solution?

8. You are given the tableau shown below for a maximization problem.

Basic I g I3 T4 Th RHS
z —c 2 0 0 O 10
I3 -1 ay 1 0 0 4
T4 a —4 0 1 0 1
I5 as 3 0 0 1 b

Give conditions on the unknowns a1, a2, a3, b, and ¢ that make the
following statements true:
(a) The current solution is optimal.

(b) The current solution is optimal, and there are alternative optimal
solutions.

(c) The LP is unbounded (in this part, assume that b > 0).

9. Suppose we have obtained the tableau shown below for a maximization
problem.

Basic I Tro T3 T4 5 Tg RHS
z c1 C2 0 0 0 0 10
T3 4 a 1 0 a O b
T4 -1 -5 0 1 -1 0 2
Ie as -3 0 0 —4 1 3

State conditions on ai, as, as, b, ¢1, and ¢y that are required to make
the following statements true:

(a) The current solution is optimal, and there are alternative optimal
solutions.

The current basic solution is not a basic feasible solution.

The current basic solution is a degenerate bfs.

The current basic solution is feasible, but the LP is unbounded.

The current basic solution is feasible, but the objective function value
can be improved by replacing xg as a basic variable with ;.
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10. The starting and current tableaux of a given problem are shown below.
Find the values of the unknowns a through n.

Starting Basic | 1 2 x3 x4 x5 | RHS
Tableau z a 1 -3 0 0 0
Ty b c d 1 0 6
5 -1 2 e 0 1 1
Current Basic | z ) r3 x4 x5 | RHS
Tableau z 0 -3 j kL n
1 g 23 2/3 2/3 0 f
x5 h i -3 2/3 1 m
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3 Sensitivity Analysis and Duality

Two of the most important topics in linear programming are sensitivity analysis
and duality. After studying these important topics, the reader will have an
appreciation of the beauty and logic of linear programming.

3.1 Some Important Formulas

In this section, we use our knowledge of matrices to show how an LP’s opti-
mal tableau can be expressed in terms of the LP’s parameters. The formulas
developed in this section are used in our study of sensitivity analysis and duality.

Assume that we are solving a max problem that has m constraints and n
variables. Although some of these variables may be slack, excess, or artificial,

we choose to label them z1, s, -+ ,x,. Then the LP may be written as
max z=c1x1+cox2+ -+ Ty
s.t. 1171 + ajoxe + -+ + a1pxy = by

ao1x1 + a9 + - - - + agpxy = by

(3.1)

121 + Am2T2 + - 4 QpnTn = by,
T1,T2, " ,Tn Z 0

Suppose we have found the optimal solution to (3.1). We define:

Definition 3.1.
1. BV is the set of basic variables in optimal tableau.

2. Xpy is the m x 1 vector of basic variables in optimal
tableau.

3. NBYV is the set of nonbasic variables in optimal tableau.

4. Xnpy is the (n —m) x 1 vector of nonbasic variables
in optimal tableau.

5. Cpy is the 1 X m row vector contains the coefficients
of basic variables in the initial tableau.

6. Cypy is the 1 x (n — m) row vector contains the co-
efficients of nonbasic variables in the initial tableau.

7. The m x m matrix B is the matrix whose jth column
is the column of BVj in the initial tableau.

55



8. a; is the column (in the constraints) of the variable z;
in the initial tableau.

9. N is the m x (n —m) matrix whose columns are the co-
efficients of the nonbasic variables in the initial tableau.

10. b is the 1 X m column vector contains the right-hand
side of the constraints in the initial tableau.

So, the LP in (3.1) can be written as

max z=CpyXpyv + CnpvXnNBY
s.t. BXpy + NXypy =b (32)
Xpv,Xnypy =0

and the initial tableau has the form

Basic | BV NBV RHS
z CBV CNBV z value

XBv | Bmxm me(n—m) b

Formulas for Computing the Optimal Tableau

1.
2.

4.

Right-hand side of optimal tableau's constraints: b = B~'b.
Right-hand side of optimal row 0: Z = Cpy (B~'b) = Cpyb.

x; columns in optimal tableau’s constraints: a; = B_laj. In general,
Xy By columns in optimal tableau’s constraints: N = B™'N and X gy
column in optimal tableau’s constraints = 1,,,.

(a) ¢j = Cpyv (B 'a;) —¢; = Cpva; — ;.

(b) €5, = ith element in CpyB™1.

(c) @, = —ith element in CpyB~L.

(d) In maximization LP, ¢,, = ith element in CgyB~! + M.

(e) In minimization LP, ,, = ith element in CpyB~! — M.

(f) In general, Cypy = Cpy (B7'N) — Cypy = CpyN — Cypy.

The optimal tableau then has the form:

Basic | BV NBV RHS
z 0 Cpgyv (Ble) — CnBv | CBY (Bflb)
Xpv | Lmxm B_lex(nfm) B 'b
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Formulas Derivation:

1. To expressing the constraints in any tableau in terms of B~! and the
original LP, we observe that

BXpy + NXypy =b
Multiplying both sides from the left by B!, we obtain
B 'BXzy + B !NXysy =B~ b
which implies that

Xpy + B !'NXypy =B 'b

2. To determining the optimal tableau’'s Row 0 in terms of the initial LP, we
rewrite the original objective function, z = CpyXpy + CypyXnpy as

z—CpyXpy — CypvXnpy =0 (3.3)

Also, we multiply the constraints expressed in the form BX gy +NX gy =
b through by the vector CyB™! to obtain

CpyXpy + CpyB 'NXypy = CpyB™'b (3:4)
By adding equation (3.3) to equation (3.4), we obtain

z+ (CpyB™'N — Cnpv) Xnypy = CpyB™'b

Example 3.1. For the following LP, the optimal basis is BV = {z3, s2}. Com-
pute the optimal tableau.

max z=x1 + 4z9

s.t. 1+ 229 <6
221 + 22 <8
x1,22 >0

Solution: After adding slack variables s; and ss, the LP in standard form

max z=x1 + 4x9

s.t. 1+ 229+ 51 =06
201+ 290+ 59 =38
r1,T9,81,52 > 0

Since BV = {x9,s2} and NBV = {x1, 51}, then

Cov=1[4 0 . Cypv=[1 0 b:{g]
n-f e[ ] )
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So, the optimal tableau entries are

s-w- (4, 9
w41 -1 )

G = CavN-Cxm = [t 0] [J2 2] o] =1 2
z=Cpyb=1[4 0] [g] =12.

and the optimal tableau is

Basic T T S1 S92 RHS
z 1 0 2 0 12
2 |2 1 1 0] 3
s |32 0 -1 1 5

Example 3.2. For the following LP, the optimal basis is BV = {x2,24}. Com-
pute the optimal tableau.

max z=x1 + 49 + Tx3 + b1y

s.t. 2x1 + o + 223 + 4x4 = 10
3x1 — 29 — 213+ 614 =5
I1,X2,T3,T4 Z 0

Solution: Note that the constraints are in equation form, and no need to add
artificial variables here (we do not solve by simplex). Since BV = {x9, x4} and
NBV = {x1,z3}, then

Cpy=1[4 5] . Cypr=][1 7] ' b:FSO
a=[hd] [l wef

So, the optimal tableau entries are

s [ [

/10 /10| | 5 3/2
N=B'N= {13//150 I/Ql/(j E 22} N [1?2 a

Cnpy =CpyN —Cnpy = [4 5] {1?2 g] -1 7 =[32 1]
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47

Z—Cpb=[4 5 [3;*2] -7

and the optimal tableau is

Basic | 1 z9 3 x4 | RHS
z 320 1 0 | 472
T9 0o 1 2 0 4
x4 |2 0 0 1| 3

Note 11. We have used the formulas of this section to create an LP's optimal
tableau, but they can also be used to create the tableau for any set of basic
variables.

Exercise 3.1.

1. For the following LP, x1 and x2 are basic variables in the optimal tableau.
Use the formulas of matrices to determine the optimal tableau.

max z=3x1 + x9

s.t. 201 — 29 < 2
—z1 +x9 <4
I1,x2 Z 0

2. For the following LP, x5 and s; are basic variables in the optimal tableau.
Use the formulas of matrices to determine the optimal tableau.

max 2= -1+ X2

s.t. 2x1 + a0 < 4
1+ a2 <2
T1,T2 Z 0

3. Consider the following LP model:

max z = bx1 + 2z9 + 3x3

s.t. 1 + 5xr9 + 223 < by
Ir1 — 51’2 - 61’3 S bg
T1,X2,T3 >0

The following optimal tableau corresponds to specific values of b; and bs:

Basic | 1 22 x3 s1  ss | RHS
z 0 a 7 d e | 150
1 1 b 2 1 0 30
S9 0 c -8 -1 1 10

Determine the elements a, b, ¢, d, e, by and bs.
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4. For the following LP, 1 and xo are basic variables in the optimal tableau.
Determine the optimal tableau using the laws of matrices.

min w = 50x1 + 100x9

s.t. Tx1 + 229 > 28
2x1 + 1229 > 24
x1,22 >0

3.2 Sensitivity Analysis

We now explore how changes in an LP’s parameters (objective function co-
efficients, right-hand sides, and technological coefficients) change the optimal
solution. The study of how an LP’s optimal solution depends on its parameters
is called sensitivity analysis. Our discussion focuses on maximization problems
and relies heavily on the formulas of Section 3.1. (The modifications for min
problems are straightforward; see Exercise 3.2 at the end of this section.)

As in Section 3.1, we let BV be the set of basic variables in the optimal
tableau. Given a change (or changes) in an LP, we want to determine whether
BV remains optimal. The mechanics of sensitivity analysis hinge on the follow-
ing important observation. From Chapter 2, we know that a simplex tableau
(for a max problem) for a set of basic variables BV is optimal if and only if
each constraint has a nonnegative right-hand side and each variable has a non-
negative coefficient in row 0. This implies that whether a tableau is feasible
and optimal depends only on the right-hand sides of the constraints and on the
coefficients of each variable in row 0.

Suppose we have solved an LP and have found that BV is an optimal basis.
We can use the following procedure to determine if any change in the LP will
cause BV to be no longer optimal.

Step 1: Using the formulas of Section 3.1, determine how changes in the LP’s
parameters change the right-hand side and row O of the optimal tableau
(the tableau having BV as the set of basic variables).

Step 2: If each variable in row 0 has a non-negative coefficient and each con-
straint has a nonnegative right-hand side, then BV is still optimal. Oth-
erwise, BV is no longer optimal.

We will discuss how 6 types of changes on LP's parameters change the
optimal solution:

1. Changing the objective function coefficient of a nonbasic variable:
If the objective function coefficient for a nonbasic variable z; is changed,
the current basis remains optimal if ¢; > 0. If ¢; < 0, then the current
basis is no longer optimal, and x; will be a basic variable in the new
optimal solution.
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6.

Changing the objective function coefficient of a basic variable:

If the objective function coefficient of a basic variable x; is changed, then
the current basis remains optimal if the coefficient of every variable in row
0 of the BV tableau remains nonnegative. If any variable in row 0 has a
negative coefficient, then the current basis is no longer optimal.

Changing the right-hand side of a constraint:

If the right-hand side of a constraint is changed, then the current basis
remains optimal if the right-hand side of each constraint in the tableau
remains nonnegative. If the right-hand side of any constraint is negative,
then the current basis is infeasible, and a new optimal solution must be
found.

Changing a column of a nonbasic variable:

If the column of a nonbasic variable x; is changed, then the current basis
remains optimal if ¢; > 0. If ¢; < 0, then the current basis is no longer
optimal and z; will be a basic variable in the new optimal solution. If
the column of a basic variable is changed, then it is usually difficult to
determine whether the current basis remains optimal. This is because
the change may affect both B and Cpy and thus the entire row 0 and
the entire right-hand side of the optimal tableau. As always, the current
basis would remain optimal if and only if each variable has a nonnegative
coefficient in row 0 and each constraint has a nonnegative right-hand side.

Adding a new variable: If a new column (corresponding to a variable
x;) is added to an LP, then the current basis remains optimal if ¢; > 0. If
¢; < 0, then the current basis is no longer optimal and x; will be a basic
variable in the new optimal solution.

Adding a new constraint. (see Section 3.7)

When applying the techniques of this section to a minimization problem, just
remember that a tableau is optimal if and only if each variable has a nonpositive
coefficient in row 0 and the right-hand side of each constraint is nonnegative.

Example 3.3. Consider the following LP:

max z = 60x; + 30x2 4 2023

s.t. 8x1 + 6z + x3 < 48
dzy + 229 + 323 < 20
2r1 + %SIZQ + %563 <8
T1,X2,T3 >0

After adding slack variables s1, s2, and s3, the optimal tableau is:
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RHS

Basic I T2 r3 S1 S92 S3
z 0 5) 0 0 10 10| 280
S1 0 -2 0 1 2 -8 | 24
3 0 -2 1 0 2 —4 8
x1 1 54 0 0 -l 3/ 2

1. Suppose we change the objective function coefficient of xo from 30 to
30 + A. For what values of A will the current set of basic variables

remain optimal ?

Solution: From the optimal tableau we know that BV = {si,z3,21}

and NBV = {x9, 89,53},

Cpy=1[0 20 60| ,

1 1 8
0 32 4
0 12 2

B

then

CnBv

B! =

=130 0

2
2

1
0
0 —1/2

48
0] . b=120

8
-8 6 00
—4 N=[2 10
3/2 3/2 0 1

Because x5 is a nonbasic variable, Cgy has not changed. Thus, BV will

remain optimal if

Cnpv = CpyB™'N - Cppy
1 2
=[0 20 60] [0 2
0 -1/2
=[5-A 10 10]>0
A<5

8] [6
—4| |2
321 32

00
1 0| —[304+A 0 0
0 1

2. Suppose we change the objective function coefficient of z1 from 60 to
60 + A. For what values of A will the current set of basic variables

remain optimal ?

Solution: The BV will remain optimal if

Cnpv = CpyB7IN —

—[0 20 60+A4] |0

CnBv
1 2 -8
2 -4
0 —l2 3/

0 0
1 0| —[30 0 0]
0 1

3/2

=[5+5A 10—-1A 10+3A]>0

A € [—4,20]
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3. Suppose we change the right-hand-side of the second constraint from 20
to 20 + A. For what values of A will the current set of basic variables

remain optimal 7

Solution: The BV will remain optimal if

b=B""'b
1 2 -8 48 24 + 2A
=10 2 —4||20+A| =|8+2A|>0
0 —l/2 3/ 8 — 1A
A € [—4,4]

30
4. Suppose we change the elements of the column for x5 from 5 to
3/2
43
. Would this change the optimal solution to the problem ?
2

Solution: Thus, BV will remain optimal if Cxpy > 0. But

Cnpy = CpyB™!N — Cypy

1 2 =8| [5 00
=[0 20 60] {0 2 —4| |2 1 0 —[43 0 0]
0 —-1/2 32| |2 0 1

=[-3 10 10] 20
The current basis is no longer optimal.

5. Suppose we add new activity x4 to the problem, and we add the column
15

1 for x4 to the problem. How will the addition of the new activity
1
change the optimal tableau?

Solution:Because
Cypy = CBvala4 — Cgy
1 2 —8 1

=[0 20 60] |0 2 —4| |1 —15
0 12 32| |1

=5>0
The current basis is still optimal.
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Exercise 3.2.

1. For the following LP, 1 and x5 are basic variables in the optimal tableau.
For what values of «, the current basis remains optimal?

max =z = 31‘1 + T2

s.t. 201 — 19 < 2
—x1 + 22 <«
T1,X2 Z 0

2. If the basic variables in the optimal solution of the following LP is BV =

(21,73,

max 2z =4x; — 3z + 2x3

s.t. T1+ 229 — 23 <5
1+ 2w+ 23 <7
Ir1,T2,T3 Z 0

(a) Use laws of matrices to find the optimal z—value.

(b) If we change the right-hand side of the second constraint from 7 to
74 A, then for what values of A the current basis remains optimal?

(c) Suppose we change the coefficient of 5 in the objective function
from —3 to —3 + A, then for what values of A the current basis
remains optimal?

(d) If the coefficients of x; in the objective function is changed from 4
to 1, does the current basis remain optimal?

3.3 Finding the Dual of an LP

Every linear program (LP) has a corresponding dual LP, and understanding the
relationship between them is crucial for advanced topics in linear and nonlinear
programming, offering valuable economic and sensitivity analysis insights. The
original LP is called the primal, and the optimal solution of one problem directly
determines the optimal solution of the other. If the primal is a maximization
problem, its dual will be a minimization problem, and vice versa. We begin
by explaining how to construct the dual of a normal max problem, where all
variables are nonnegative and constraints are of the form (<).

max z=c1x1+cox2+ -+ cnTy
s.t. a1y + a2 + - + aipey, < by

a21%1 + a2 + - -+ + a2,y < bo
. (3.5)

121 + Am2aT2 + - 4 GpnTn < by,
T1,T2, " ,Tn Z 0
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The dual of a normal max problem such as (3.5) is defined to be

min w=Dbiyy + boyos + -+ + bYm
s.t. a11y1 + a21y2 + - + Am1Ym > €1

a12y1 + a22y2 + -+ - + amalYm > C2
, e (3.6)

a1py1 + a2pY2 + -+ AmplYm = Cn
Y1, 92, s Ym >0

A min problem such as (3.6) that has all (>) constraints and all variables
nonnegative is called a normal min problem. |If the primal is a normal min
problem such as (3.6), then we define the dual of (3.6) to be (3.5).

Finding the Dual:

1. If the primal is a maximization problem, the dual will be a minimization
problem, and vice versa. The dual of the dual problem yields the original
problem.

2. A dual variable is defined for each primal constraint equation. Also, a
dual constraint is defined for each primal variable.

3. The column coefficients in a constraint of a primal variable defines the left-
hand side coefficients of the dual constraint and its objective coefficient
defines the right-hand side of that constraint. The objective coefficients
of the dual equal the right-hand side of the primal constraint.

4. The variables and constraints in the primal and dual problems are related

as follows.
(max) = (min)
Constraint Sign Variable Sign
> —= <0
< = >0
= = u.r.s
Variable Sign Constraint Sign
<0 — <
>0 — >
u.r.s = =
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Example 3.4. Find the dual of the following LPs:

1. min w = x1 + 29 3. min w = 1521 + 1229
s.t. 201 + a0 > 4 s.t. T+ 229 > 3
1‘1—216228 ZL‘1—4ZCQS5
371,1’220 1’1,1’220
4. max z = bz + 69
2. max z =5x1 + 1229 + 425 s.t. T+ 229 =5
s.t. x1 + 229 + 23 < 10 —x1+ 522 >3
201 —x0+ 23 =28 41 + T < 8
T1,To,r3 >0 x1 urs, o >0
Solution:
1. max z =4y + 8y 3. max z = 3Y1 + 5y2
s.t. 21 +y2 <1 s.t. y1 +y2 <15
Y1 — 2y2 < 2 21 — dys < 12
y1,y2 > 0 Y1 2,92 <0
2. min w = 10y + 8y2
s.t. Y1+ 2y2 > 5 4. min w = 5y1 + 3y2 + 8ys
2y1 —y2 > 12 s.t. y1—y2+4ys =5
y1+y2 >4 2y1 + 5y2 + Tyz > 6
y1 >0, yo urs Yy urs, y2 <0,y3 >0

Exercise 3.3. Find the dual of the following LPs:

1. max z=2x1 + T2 3. max z =4x1 — r9 + 2x3
s.t. —x1+22<1 s.t. 1+ 29 <D
r1+wx2 <3 21 + 29 <7
1 — 219 < 4 2x9 +x3 > 6
x1,29 >0 r1+x3=4
x1 > 0, o, 3 urs
2. min w =YL — Y
s.t. 291 +y2 > 4 4. min w =4y + 2y2 — y3
yit+y22>1 s.t. Y1+ 2y2 <6
y1+2y2 >3 Y1 —y2 +2y3 =8
y1,y2 >0 Y1,Y2 =, Y3 urs

3.4 The Dual Theorem and its Consequences

In this section, we discuss one of the most important results in linear program-
ming: the Dual Theorem. In essence, the Dual Theorem states that the primal
and dual have equal optimal objective function values (if the problems have
optimal solutions).
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If we choose any feasible solution to the max LP and any feasible solution
to the min LP (one is primal and the other is dual), the value for the min LP
feasible solution will be at least as large as the value for the max LP feasible
solution. This result is formally stated in Lemma 3.1.

Lemma 3.1. The objective values in a pair of primal-dual
problems must satisfy the following relationships:

1. For any pair of feasible primal and dual solutions,

objective value - objective value
in MAX LP in MIN LP

2. At the optimum solution for both problems,

in MAX LP in MIN LP

( objective value ) B ( objective value )

Proof. Consider the primal LP

max 2z = CpyXpy + CypyXnBy
s.t. AXypy +IXgy =b (3.7)
Xpv,Xnpy >0

Then, the dual LP will be

min w=Yb

s.t. YA > Cuypy
YI > Cpy
Y urs

(3.8)

Multiply the constraint in (3.7) by Y from the left to obtain:
YAXpypy + YIXpy =Yb =w.

Also, multiply the first constraint in (3.8) by Xpy from the right, and the
second constraint by X gy from the right, to obtain:

YAXpy > CypyXpy
YIX By > CpyXnNBY

By adding the two inequalities above, we have
YAXnypy + YIXpy > CpyXpy + CnpvXnpy

w >z
~ T~~~

min max
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Example 3.5. Consider the following pair of primal and dual problems.

Primal Dual
min  w = 5z + 229 max z = 3y; + 52
s.t. xr1 — X9 s.t. y1+ 2y <5
2 1+ 3x9 — 1+ 3y <2
x1, x2 >0 Y1, y2 2> 0
Feasible Solution: Feasible Solution (Optimal):
331:4,302:1 y1:5,y2:0
Objective Function: Objective Function:
w = 22 z=15

Theorem 3.2. The Dual Theorem.?
Suppose BV is an optimal basis for the primal. Theny =
CpyB~! is an optimal solution to the dual. Also, Z = .

?For proof see: Wayne L. Winston, Munirpallam Venkataramanan.
Introduction to Mathematical Programming. Thomson Learning; 4th
edition (2002)

Example 3.6. The optimal solution of the following LP is z = 9 when 21 = 1
and x5 = 6. Find its dual problem, then find the solution for the dual problem.

max z=3x1 + x9

s.t. 201 + 22 <8
4r1 + 29 <10
z1,x9 > 0

Solution: Since, in the optimal solution, BV = {z1,z2} then

B 21 1 T2 12
Cov=[3 1] B_L 1] » B _[2 —1]
Hence, 7 = [yl yg] =CpyB! = [1/2 1/2] and w =z = 9. Note that the
dual LP is
min w = 8y + 10y2
s.t. 291 +4y2 > 3
y1+y2 21
y1,y2 > 0
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How to Read the Optimal Dual Solution from Row 0 of the Optimal
Tableau ?

Constraint 4 Sign Optimal y; Value Problem Type
< Coefficient of s; Max or Min
> —1x Coefficient of ¢; Max or Min
= Coefficient of a; — M Max
= Coefficient of a; + M Min
In general,
The optimal Optimal primal z—coefficient of the starting variable d;
value of the dual = +
variable y; Original objective function coefficient of d;

Example 3.7. Consider the following LP.

max z=—2x1 — 22+ x3

s.t. T1+x9+23 <3
T2+ 13 > 2
T1+x3=1

Z1,T2,T3 > 0

1. Find the dual of this LP.
Solution: The dual LP is

min w = 3y1 + 2y2 + Y3
s.t. Y1 +y3 > —2
Y1 +y2 2> —1
y1+y2+ys=>1
y1 20, y2 <0, y3 urs

2. After adding slack variable s1, subtracting excess variable e, and adding
artificial variables ao and ag, the Row 0 of the LP’'s optimal tableau is
found to be

z4+4x1 +ex+ (M —1)ag + (M + 2)az = 0.

Find the optimal solution of the dual problem.

Solution: The starting primal variables s, a2 and a3 uniquely correspond
to the dual variables y1, y2 and y3, respectively. Thus, the optimum dual
solution isw =% =0, and

Using the Table Using the General Formula
y1 =0 y1=0+0=0

Yo = —1 yp=—-M+(M-1)=-1
ys=(M+2)— M =2 ys=—M+ (M +2)=2
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3. Suppose we change the right-hand side of the third constraint from 1 to
2, what is the change on the z—value will be? Assume the current basis
remains optimal.

= 2.

NN W

Solution: znew = CpyB ! brew = 0 -1 2]
——
y

4. Repeat part (3) if we change the right-hand side of the second constraint
from 2 to 5.

3
Solution: znew = CEVB ' bpew = [0 —1 2] |5]| = —3.
Y 1

y

Corollary 3.3. The primal problem is infeasible if and only if
the normal form of the dual problem is unbounded (and vice
versa).

Note 12. With regard to the primal and dual linear programming problems,
exactly one of the following statements is true:

1. Both possess optimal solutions.

2. One problem has an unbounded optimal objective value, in which case
the other problem must be infeasible.

3. Both problems are infeasible.

From this note we see that duality is not completely symmetric. The best we
can say is that (here optimal means having a finite optimum, and unbounded
means having an unbounded optimal objective value):

Primal Optimal < Dual Optimal

Primal (Dual) Unbounded = Dual (Primal) Infeasible

Primal (Dual) Infeasible = Dual (Primal) Unbounded or Infeasible
Primal (Dual) Infeasible < Dual (Primal) Unbounded in normal form

Note 13. The relationship between degeneracy and multiplicity of the primal
and the dual optimal solutions is formulated in Theorem 3.4. Recall that de-
generacy and multiplicity always refer to LP models with inequality constraints,
and that degeneracy is defined for basic feasible solutions. In this theorem,
the term nondegenerate in the expression “multiple and nondegenerate” means
that there are multiple optimal solutions, and that there exists an optimal basic
feasible solution that is nondegenerate.

70



Theorem 3.4. Duality relationships between degeneracy
and multiplicity.

For any pair of primal and dual standard LP-models where
both have optimal solutions, the following implications hold:

Primal optimal solution Dual optimal solution
Multiple = Degenerate

Unique and nondeg. = Unique and nondeg.
Multiple and nondeg. = Unique and degenerate
Unique and degenerate = Multiple

Exercise 3.4.

1. Find the optimal value of the objective function for the following LP using
its dual. (Do NOT solve the dual using the simplex algorithm)

min  w = 10y; + 4ys + 5ys
s.t. 5y — Tys + 3y3 > 50
Y1, Y2, Y3 > 0

2. Consider the following LP.

max 2z = 2x1 + 4xo + 4z — 314
st. 14+ zo+ax3 =4
4ro+ x4 =28

X1, T2, T3, T4 > 0

(a) Write the associated dual problem.
(b) Show that the basic solution z; and x3 is not optimal.

(c) Using x3 and x4 as starting variables, the optimal tableau is given
below. Determine the dual optimal solution in TWO ways, using

the tableau.
Basic | 1 292 ®3 x4 | RHS
z 2 0 O 3 16
T3 32 0 1 —1/a 2
xo | Y4 1 0 1 2
3. For the following LP,
max 2z = —x1 + 579
s.t. x4+ 229 < 0.5
—x1 + 312 <0.5
I1, T2 2 0
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row 0 of the optimal tableau is z 4+ 0.4s1 + 1.4s9 = . Determine the
optimal z—value for the given LP.

. Consider the following linear programming problem:

max z =4z + x2
s.t. 3x1+229<6
6x1 + 3z2 < 10

z1, T2 > 0

Suppose that in solving this problem, row 0 of the optimal tableau is

20
found to be z 4+ 229 + 59 = 3 Use the Dual Theorem to prove that the

computations must be incorrect.

. Consider the following LP:

max 2z = 5x1 + 2x2 + 33
s.t. 1+ 510+ 2x3 =15
Tr1 — 5I2 - 6.%3 S 20
x1, x2, 3 >0
Given that the artificial variable a; and the slack variable sy form the

starting basic variables and that M was set equal to 100 when solving the
problem, the optimal tableau is given as:

Basic 1 T2 I3 al S92 RHS
z 0 23 7 105 0| 75
1 1 5 2 1 0] 15
S2 0 -10 -8 -1 1 )

Write the associated dual problem, and determine its optimal solution in
two ways.
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3.5 Shadow Prices

It is often important for managers to determine how a change in a constraint’s
right-hand side changes the LP’s optimal z—value.

Definition 3.2. The shadow price of the ith constraint is the
amount by which the optimal value of the objective function is
improved (improved means increased in max LP and decreased
in min LP) if we increase b; (the RHS of that constraint) by
1 (from b; to b; + 1).

Note 14.

1. The previous definition assumes that after the RHS of constraint i has
been changed to b; 4+ 1, the current basis remains optimal.

2. The shadow price of the ith constraint of a max LP is the optimal value
of the ¢th dual variable y;. Also, the shadow price of the ith constraint
of a min LP is —1x the optimal value of the ith dual variable ¥,

by

EneW:Yb:[gl Y ym] b +1

. bm -
=701+ G (b +1) + -+ b

= (b1 + - +Yibi + - + Ypbm) + 7

= Zold t ¥Yi

Znew — Zold = U;

3. In max LP, the shadow price for a (<) constraint is nonnegative, for a
(>) is nonpositive, and for (=) is urs. Also, in min LP, the shadow price
for a (<) constraint is nonpositive, for a (>) is nonnegative, and for (=)
is urs.

4. In general, if the RHS of the ith constraint is increased by an amount
Ab;, then

Znew = Zold + (Ab;)y; if the LP is max
y; if the LP is min

Znew = Zold — (Ab;)
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Example 3.8. Consider the following LP.

max z = 15x1 + 25z
s.t. 3x1 +4zo <100
2x1 + 322 < 70
x1 + 229 < 30
x9 >3

T1, T2 >0

The optimal solution of the problem is z = 435, when 1 = 24 and x2 = 3,
where the Row 0 in the optimal tableau (after adding slack variables s, s9, s3 to
the first three constraints respectively and subtracting excess variable e4 from
the last constraint then adding to it an artificial variable ay4) is

z 4 1583 + beqg + (M — 5)ag = 435.

1. Find the shadow price of each constraint.

Solution: The shadow price of each constraint is the optimal value of the
corresponding dual variable of each constraint. So,

y1=0 , =0, y3=15 , ys=-5

2. Assuming the current basis remains optimal, what would the change on
the z—value be if the RHS of the

(a) 3rd constraint were changed from 30 to 35 ?
(1007
Solution: Ze, =yb=1[0 0 15 —5] 01~ 510,
35
3

(b) 4th constraint were changed from 3 to 2 ?
(1007
Solution: Zpew =yb=1[0 0 15 -5 0 440.

30
2

Exercise 3.5. Consider the following LP:

max 2z = 3xq + 7xs + dxsg

st. 1+ zo4+2x3 < 50
221+ 3zo + 23 < 100
r1, T9, x3 >0

After adding slack variables s; and ss, the optimal tableau is as shown in the
table below.
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Basic ry T I3 S1 592 RHS
z 3 0 0 4 1| 300
x5 |2 0 1 3k -1 25
xg |12 1 0 -l2 1| 25

Using this optimal tableau, answer the following questions:
1. Find the shadow prices for the LP.

2. If the right-hand side is changed from 50 to 60, what would be the profit?

3.6 Duality and Sensitivity Analysis

From the dual theorem we demonstrate the following: Assuming that a set of
basic variables BV is feasible, then BV is optimal if and only if the associated
dual solution CgyB ™! is dual feasible.

Unbounded = infeasible, then feasible = bounded

This result can be used for an alternative way of doing the following types of
sensitivity analysis:

1. Changing the objective function coefficient of a nonbasic variable.
2. Changing a column of a nonbasic variable.
3. Adding a new variable.

Since primal optimality and dual feasibility are equivalent, the above changes will
leave the current basic optimal if and only if the current dual solution Cgy B!
remains dual feasible.

Example 3.9. Consider the following LP.

max 2z = 60z + 30x2 + 20x3
s.t. 8r1+ 6xa+ x3 <48

3
4y + 219 + 5:173 <20

2 +3 +1 < 8
L1t 5T+ 5¥3 S

x1, w2, v3 >0

The dual of the problem is:

min  w = 48y; + 20y2 + 8y3
st. 8y + 4yo +2ys > 60

3
6y1 + 2y2 + 58 > 30
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3 1
Syo o+ —yz > 20
y1—|—2y2+2y3 >

Y1, Y2, Y3 > 0

The optimal solution for the primal was z = 280, s; =24,x3 = 8,21 = 2,

Basic
x9 = sg = s3 = 0. Also, the optimal dual solution (constraint shadow prices)

NonBasic

are y1 = 0,92 = 10, y3 = 10.
1. Let co be the coefficient of x5 in the objective function. For what values
of co will the current basis remain optimal?

Solution: If y; = 0,52 = 10,y3 = 10 remains dual feasible, then the
current basis and the values of all the variables are unchanged. Note that
if the objective function coefficient for xo is changed, then the first and
third dual constraints remain unchanged, but the second dual constraint

3
is changed to 6y; + 2ys + 53 > co. Thus, the current basis remains

. 3
optimal if ¢y satisfies 6(0) 4+ 2(10) + 5(10) > g, or cg < 35.

30
2. Suppose we change the elements of the column for x5 from g to
3/2
43
g , does the current basis remain optimal?
2

Solution: Changing the column for the nonbasic variable leaves the first
and third dual constraints unchanged but changes the second to

dy1 + 2y2 + 2y3 > 43

Because y1 = 0,72 = 10,y3 = 10 does not satisfy the new second dual
constraint, dual feasibility is not maintained, and the current basis is no
longer optimal.

3. Suppose we add new activity x4 to the problem, and we add of the x4
15

1 . . .
column 1 to the problem. Does the current basis remain optimal?

1

Solution: Introducing the new activity leaves the three dual constraints
unchanged, but the new variable x4 adds a new dual constraint. The new
dual constraint will be y; +ys +y3 > 15. Because 0+ 10+ 10 > 15, the
current basis remains optimal.
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Exercise 3.6. Consider the following LP and its optimal tableau:

max 2z = 95x| + x2 + 2x3
st. 1+ z0+1x3 <6
6x1 + 1z <8

To + lxg <2

x1, T2, T3 >0

Basic I o I3 81 S92 53 RHS
z 0 1% 0 0 56 16| 9
s1 0 Y 0 1 -6 —5/6| 3
x1 1 Y% 0 0 s -6 | 1
3 0 1 1 0 0 1 2

1. Find the dual to this LP and its optimal solution.

2. Find the range of values of the objective function coefficient of zo for
which the current basis remains optimal.

3. Find the range of values of the objective function coefficient of z; for
which the current basis remains optimal.

3.7 The Dual—Simplex Method

In the simplex algorithm presented in Chapter 2 the problem starts at a (basic)
feasible solution. Successive iterations continue to be feasible until the optimal
is reached at the last iteration. The algorithm is sometimes referred to as the
primal simplex method.

This section presents two additional algorithms: The dual simplex and the
generalized simplex.

e In the dual simplex, the LP starts at a better than optimal infeasible
(basic) solution. Successive iterations remain infeasible and (better than)
optimal until feasibility is restored at the last iteration.

o The generalized simplex combines both the primal and dual simplex meth-
ods in one algorithm. It deals with problems that start both non-optimal
and infeasible. In this algorithm, successive iterations are associated with
basic feasible or infeasible (basic) solutions. At the final iteration, the
solution becomes optimal and feasible (assuming that one exists).

Dual Simplex Algorithm: The crux of the dual simplex method is to start
with a better than optimal and infeasible basic solution. The optimality and
feasibility conditions are designed to preserve the optimality of the basic solutions
while moving the solution iterations toward feasibility.
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e To start the LP optimal and infeasible, two requirements must be met:

— The objective function must satisfy the optimality condition of the
regular simplex method.

— All the constraints must be of the type (<), regardless the type of
problem either max or min. This condition requires converting any
(>) to (L) simply by multiplying both sides of the inequality (>)
by —1. If the LP includes (=) constraints, the equation can be
replaced by two inequalities. For example, ;1 +x2 = 1 is equivalent

1 +xo <1 r1+x2 <1

to or
r1+x2 21 —r1—xy < -1

e After converting all the constraints to (<), the starting solution is infea-
sible if at least one of the right-hand sides of the inequalities is strictly
negative.

e Dual feasibility condition. The leaving variable, x, is the basic variable
having the most negative value (ties are broken arbitrarily). If all the basic
variables are nonnegative, the algorithm ends.

e Dual optimality condition. Given that x, is the leaving variable, let
¢; be the reduced cost of nonbasic variable z; and a,; the constraint
coefficient in the z,.—row and zj—column of the tableau. The entering
variable is the nonbasic variable with a,; < 0 that corresponds to

y Qrj <0}

min —
NonBasic x; Qrj

Note that

1. Ties are broken arbitrarily.

2. If a,; > 0 for all nonbasic x;, the problem has no feasible solution.

Example 3.10. Use the dual—simplex algorithm for solving the following LP
problem.

min w = 5x1 + 622
sit. 1 4x0>2
dory —x9 > 4

1, T2 >0

Solution: After converting all the constraints to (<), then adding slack variables
s1 and sy to the constraints, the LP in standard form is
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min w—5x1 —6x9 =0

st. — 1 —290+ 5 = -2
—4x + 22 + 59 = —4
r1, Ta, S1, S9 >0

The initial tableau and all following tableaus, using the dual-simplex algorithm,
are shown below.

i}

Iteration [0] Basic | 1 z2 s; s2 | RHS Optimal
w -5 -6 0 O 0 but not
$1 -1 -1 1 0| —2 feasible

— S9 —4 1 0 1| —4

!
1 To 81 so2 | RHS Optimal
w 0 —29/4 0 -5/a| 5 but not
— 5 0 -54+ 1 -14| —1 feasible
1 1 Y4 0 -] 1

Iteration [1] Basic |

Iteration [2] Basic | x1 z2 s; s2 | RHS Optimal
w 0O -1 -5 0 10 and
S9 0 5 —4 1 4 feasible
T 1 1 -1 0 2

Example 3.11. Use the dual—simplex algorithm for solving the following LP
problem.

max z = —4x1 — 2x9

s.t. T1+x9=1
—3z1+ 29> 2
r1, x93 >0

Solution: After converting all the constraints to (<), then adding slack variables
$1, 82 and s3 to the constraints, the LP in standard form is

max z+4x1+2x9=0

s.t. xr1+ 22 + 81 = 1
— 1 — X2 + $9 =—1
3r1 — T2 + 53 = =2

Z1, T2, S1, S2, S3 > 0

The initial tableau and all following tableaus, using the dual-simplex algorithm,
are shown below.

79



Iteration [0]

<_
Iteration [1]

<_

Basic | z1 x2 s1 sy s3 | RHS Optimal
z 4 2 0 0 0 0 but not
$1 1 1 1 0 0 1 feasible
S9 -1 -1 0 1 0] -1
S3 3 -1 0 0 1] -2

Basic r1T T2 S1 82 S3 RHS Since S1 leaves
z 10 0 0 O 20 -4 with no entering
$1 4 0 1 O 1] -1 variable, then the
$9 -4 0 0 1 -1 1 solution is infeasible
To -3 1 0 0 -1 2

Note 15. The dual simplex method is often used to find the new optimal
solution to an LP after a constraint is added. When a constraint is added, one
of the following three cases will occur:

1. The current optimal solution satisfies the new constraint.

2. The current optimal solution does not satisfy the new constraint, but the
LP still has a feasible solution.

3. The additional constraint causes the LP to have no feasible solutions.

Example 3.12. Consider the following LP and its optimal tableau.

max z = 6x1 + x9

Basic | 21 To 81 so2 | RHS

s.t. 1+ w2 <9 z 0 2 0 3| 18
2 x1+ x2 <6 S1 0 1/2 1 —1/2 2

1. 29 > 0 @ |1 1/2 0 1/2] 3

Find the optimal solution to this LP if we add the constraint

1. 321 + 29

Solution: After converting the constraint to (

< 10.

constraint, we obtain:

) by adding s3 to the

Basic | z1 z9 s sy s3 | RHS
z 0 2 0 3 0] 18
st | 0 12 1 -2 0] 2
1 1 12 0 12 0 3
53 1 0 0 1] 10

Basic | 21 To S so  s3 | RHS = The solution
z 0 2 0 3 0 18 is optimal
s1 0 Y2 1 -l2 0] 2 and feasible
x| 1 12 0 12 0] 3
s3 | 0 -2 0 =32 1| 1
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2. I —2332 Z 6.

Solution: After converting the constraint to (<) then adding s3 to the
constraint, we obtain:

Basic 1 T2 S1 S92 83 RHS
z 0 2 0 3 0] 18
51 0 2 1 -1 0] 2
x1 1 12 0 12 0| 3
s3 |[-1] 2 0 0 1] -6

Basic | 21 zo sy so sz | RHS Since s3 leaves
z 0o 2 0 3 0| 18 with no entering
s1 0 12 1 -2 0| 2 variable, then the
x1 1 12 0 12 0| 3  solution is infeasible
s3 | 0 32 0 12 1| -3

3. 8x1 + 29 < 12.

Solution: After converting the constraint to (=) by adding s3 to the
constraint, we obtain:

Iteration [0] Basic | 1 z2 s sy s3 | RHS
z 0 2 0 3 0 18
s1 0 12 1 -2 0] 2
21 | 1 12 0 1 0| 3
s3 1 0 0 1| 12

1

Iteration [0] Basic | 1 =2 s sy s3 | RHS The solution
z 0 2 0 3 0 18 is optimal
51 0 Y2 1 -12 0| 2  butinfeasible
x1 1 12 0 12 0| 3

— S3 o -3 0 -4 1| —-12

Iteration [1] Basic | z1 x2 s S9 s3 | RHS = The solution
z O 0 0 s 2/3] 10 is optimal
s1 0 0 1 73 1| 0 and feasible
x| 10 0 “Ys s| 1
x9 0 1 0 43 -13] 4

Generalized Simplex Algorithm: The (primal) simplex algorithm starts fea-
sible but not optimal. The dual simplex starts (better than) optimal but infeasi-
ble. What if an LP model starts both not optimal and infeasible? The following
example illustrates what we call the generalized simplex algorithm for solving
LP problems with this situation.
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Example 3.13. Consider the following LP.

max 2z =1x1 — 3%y

s.t. 11— z19<2
r1+ x9 >4
2x1 4+ 210 > 3
z1, o >0

The model can be put in the following tableau form in which the starting basic
solution (s1, s2,s3) is both non-optimal (because z1 has a negative reduced

cost) and infeasible (because so = —4, s3 = —3).
!
Iteration [0] Basic | 1 z2 s; s2 s3 | RHS = The solution
z -1 3 0 0 O 0 is not optimal
$1 1 -1 1 0 0 2 and infeasible
— S9 -1 -1 0 1 0| —4
S3 -2 -2 0 0 1| -3

Remove infeasibility first by applying a version of the dual simplex feasibility
condition that selects so as the leaving variable. To determine the entering
variable, all we need is a nonbasic variable whose constraint coefficient in the
so—row is strictly negative. The selection can be done without regard to opti-
mality, because it is nonexistent at this point anyway. In the present example,
x1 and zo have negative coefficient in the so—row and z; is selected as the
entering variable. The result is the following tableau:

1
Iteration [1] Basic | ;1 22 s1 sz s3 | RHS = The solution
z 0 4 0 -1 0 4 is not optimal
— s1 0o -2 1 1 0| —2 and infeasible
T 1 1 0 -1 0 4
S3 0 0o 0 -2 1 5

At this point, s; leaves the solution and z2 have negative coefficient in the
s1—row and is selected as the entering variable. The result is the following
tableau:

Iteration [2] Basic | z; 9 $1 so 83 | RHS  The solution
z 0 0 2 1 0] 0 is optimal
T2 0 1 -2 -t 0] 1 and feasible
x| 1 0 12 -2 0| 3
S3 0 0 0o -2 1 5

The solution in the preceding tableau is now feasible and fortunately optimal.
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Exercise 3.7.
1. Solve the following LP by using the generalized simplex algorithm.

max z =2x1 —x9+ T3

s.t. 2x1+4x9— 23 >4
—r1+ To— T3 > 2
r1 + 2x9 + 223 < 8
x1, T2, v3 >0

2. Use the dual simplex method to solve the following LP:

max 2z = —2r] — 3
st. 1+ 29— x3 >5
T, — 2x9 +4x3 > 8

x1, 2, v3 >0

3. Solve the following LP in three different ways. Which method appears to
be the most efficient computationally?

min  w = 6x1 + Txo + 3x3 + Sy
s.t. bxy 4+ 6xo — 33+ 4y > 12
To — bxg — 624 > 10

2x1 + 510+ 3+ x4 > 8

Ty, T2, T3, T4 > 0
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Answers

DON'T EVEN DARE PEEK AT THE SOLUTIONS TO AN EXERCISE UNTIL
YOU'VE GENUINELY TRIED TO SOLVE THE EXERCISE !!

Chapter 1 Exercise 1.1

1. Let 21 = number of hours of Process 1, x5 = number of hours of Process
2. Then, the formulation of the problem is

min
s.t.

w = 4x1 + x9
3r1 + 22 > 10
1+ 2225
5[5123

1 >0, 2202>0

2. Let 1 = number of units of A, o = number of units of B. Then, the

formulation of the problem is

max
s.t.

z = 2021 + 5029
z1 > 0.80 (:L‘l + 372)
x1 <100

2x1 + 4o < 240
T1 2 O, T 2 0

3. Let 21 = number of units of food F1 to be eaten, x5 = number of units
of food F2 to be eaten. Then, the formulation of the problem is

min
s.t.

w = 0.0521 + 0.03z2
2x1 + xo > 400

x1 + 2x9 > 500

4x1 + 4xo > 1400
Tl Z O, D) Z 0

4. Let x1 = pounds of food A purchased, z2 = pounds of food B purchased.
Then, the formulation of the problem is

min
s.t.

w = 1.3x1 + 0.8x2
d9x1 + 222 > 60
3x1 + 2x9 > 45
41 4+ x20 > 30
120, 102>0
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5. Let x1: number of computers of standard model, x2: number of comput-
ers of portable model. Then the LP formulation is

max z = 32021 + 22029

s.t. 400z1 + 250z < 20000
40x1 + 30z9 < 2160
1 2>0, 22020

6. Let 1 = number of acres of crop A, z9 = number of acres of crop B,
and x3 = number of acres of crop C. Then, the LP formulation is

max z = 100x; + 30029 + 20029
s.t. x|+ 9 + 23 < 100
40x1 + 20xz9 + 3023 < 3200
1 + 229 + 23 < 160
I1,T2,T3 Z 0

7. Let x1 be the number of chocolate cakes baked, and x5 be the number
of vanilla cakes baked. Then, the LP formulation is

max 2z =1x1 + 0.5x9
s.t. 20x; +40xy <480
421+ xzo < 30

x1, 2 >0

Chapter 1 Exercise 1.2

10 10 104
5 5 5
1 1 T ] 71
- —535 5 10 —10—535 10 —1-9—{25——5—}0
-10 -10 -10
(A) (©) (D)

. Hyperplane: (a), (e). Half-Space: (b). Neither: (c), (d), (f)
. Convex: (A), (B), (F), (H)

(@) (1+¢3+t2-3t);0<t<1
(b) (1+¢,3+¢2—3t)=(15,3.5,05)if t =0.5¢€ [0,1]

N

w

&
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Chapter 1 Exercise 1.3

1. (a) IV (b) 1l (c) | (d) 1l

2. (a) 16 (b) 55 (c) 84 (d) 90

3. (a) 32 (b) 55 (c) 36 (d) 32

4 () 20<b (c)b<§ (e)b:%
(b)§<b<2a (d) b=2a

5. (a) south-east (down-right) (c) north-west (up-left)

(b) south-west (down-left)

6. (a) north-west (up-left) (b) south-east (down-right)

7. The constraints  + y < 6 and = + y < 4 are redundant.
Y

N v oo o5 o

8. The redundant constraint is y < 3

—r+y<1
r+y<5>H
r—2y<2
y<3
z>1
z,y >0
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10. the solution is left to the student.

11. z1 = 2, 9 = 3 by solving the two constraint-equations.

12. (a) w=12, 21 =3, 22=0 (d) 2=4,21=0,22=6
(b) unbounded optimal solution (e) 2=16, 21 =6, zo = 2
(c) w=6,21=0,29=06 (f) w=14, 21 =3, 29 =2

Chapter 2 Exercise 2.1

1. max z = 21 + 322 + 5ys + Hys
s.t. —r1—22+Yys+ys+s51=5
—6x1 + Tx2o —9ys — ys + 55 =4
x1 + xo +4y; + 4y, = 10
L1,T2,Y3,Y4,81,852 ZO

2. 2201 —4x9 > —T= 22201 —4dx9 —el = 7= —22x1 +4x9 +e1 =7
2221 — 4o > -7 = —2201 +409 < 7= —2221 +429+ 81 =7

Chapter 2 Exercise 2.2

1. (a) max z = 2x1 + 3x9
s.t. x4+ 3x9 + 51 =12
3x1 + 229 + 59 =12
x1,%2,81,52 > 0
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(b) NBVs BVs values feasible? z—value

T1,To  S1, 89 (12,12) yes 0
To,S9  S1,%1 (8,4) yes 8
T1,S52 S1,X2 (—6,6) no
s1,Ta  S2,x1 (—24,12) no
1,51 S9,T9 (4,4) yes 12
s1,82  x1,xe  (12/7,24/7) yes 96/7
(c) from the table above, the optimum solution is z = 96/7, x; = 12/7,
To = 24/7.
(d) the solution is left to the student
(e) the solution is left to the student
2. (a) the solution is left to the student
(b) BVs values feasible? w—value
x1,T3 (4,0) yes 4
x1,%4 (4,0) yes 4
T2, T3 (2,0) yes 4
X2, x4 (2,0) yes 4
T3, T4 (*4/7, 16/7) no
3. BVs values feasible? z—value
si,e2 (3/2,-8) no
81,1 (—1, 4) no
81,2 (—13, 8) no
€2, 1 (—5,3) no
ez, ra  (—13/2,3/2) no
x1,x2  (13/3,-2/3) no
4. (a) BVs values  feasible? z—value
81, 89 (2,4) yes 0
s,z (4,-2) yes -2
s1,x2 (—2,4) no
82,1 (8,2) yes 2
$9, T2 (2,2) yes 6
x1,x2  (—2/3,8/3) yes 22/3

(b) see the table above
(c) the solution is left to the student

Chapter 2 Exercise 2.3

1 (a) 2=1323, 21 =103, mp =43
(b) =25 21 =15, 220="5, 23 =0
(c) 2=25, 21 =25 22=0

88



(d) 2=12, 21 =4, 29 =4, z3=14

2. BVs wvalues feasible? z—value

T 30 yes 150
To 10 yes —60
T3 6 yes 18
T4 5 yes —25
5 10 yes 120
S1 30 yes 0

Chapter 2 Exercise 2.4
1. w=-521=0,29=5
2. w=-2,11=0, 29 =2
3. w=-75,21=0,29=1.5
4. w=-9,21=3,29=0
5 w=—-48, 21 =0,29=4, 23=0, x4 =8

Chapter 2 Exercise 2.5

1. QQw=121=0,220=0,23=1
(b)) w=2,21=2,29=0,23=0
(c)w=4,21=222=0
(d) z2=5,21=1, 29 =2

2. w=214/7 31 =66/7, x9 =8/7, 23 =0, 24 =0
3. 2=10, z1 =4, 20 =0, x3 =2
Chapter 2 Exercise 2.6

1. (a) iterations 2 and 3 are degenerate, and degeneracy is removed in
iteration 4.

(b) the solution is left to the student
(c) 3 iterations
2. z=10 when: z; = 0,29 = 0,23 = 10/3
I = O,xg = 5,.%'3 =0

T = 1,.%'2 :4,x3:1/3
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3. x3 and s; can yield alternative optima, but because all their constraint

coefficients are non-positive, non can yield an alternative basic solution.
Basic Tr1 X2 €T3 S1 S92 RHS

z 0 0 0 0 1 20

1 1 0 -2 -1 0 15

o 1 -7 -2 1 10

52

4. the optimal solution is degenerate because sj is basic and equal 0, also it
has alternative nonbasic solution because sy has zero coefficient in z—row
and all its coefficients are < 0.

Basic | 21 22 23 81  s2 s3 | RHS
z o 5 0 3 0 0 15
T3 0 1 1 1 -1 0 3
1 1 2 0 1 0 0 5
83 0 -6 0 -2 -5 1 0

5. (a) solution space unbounded in the direction of x3
(b) objective value is unbounded because each unit increase in x3, in-
creases z by 1.

6. because as = 0 in the optimal tableau, the problem has feasible optimal
solution: 1 =0, 29 =4, z = 8.

Basic I xT9 T3 S1 €9 a9 RHS
z 5M—-1 0 2M -1 M 4M+2 0 8
x9 2 1 1 0 1 0 4
as -5 0 —2 —1 —4 1 0
7. (a) BVs: (zg,z3,21) = (12,6,0) ; z = 620
NBVs : (z2, 24, x5, x6, 27) = (0,0,0,0,0)
. 12 6 .
(b) x2 enters: xo = min (3, T —) = 4. so xg leaves with Az =5 x 4 = 20.

7?72) = 0. so x1 leaves with Az =1 x0=0.

xg enters: xo = min (—, —, —) = 4. so no leaving variable leaves and zg

T5 enters: 5 = min (—

can be increased to oo with Az = oo.
c) the solution is left to the student

d) x5 and x7

b) ¢=0,b>0, ag >0 and/or ag > 0. If only a3 > 0 then b > 0

(c)
(d)
8. (a) ¢<0,b>0
(b)
(c)

c) c>0,a02<0,a3<0
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9. (a) b> 0 is necessary.
e If ¢; =0 and co > 0 we can pivot in x1 to obtain an alternative
optimum.

e If c1 >0, cg > 0 and as > 0 we can pivot in x5 and obtain an
alternative optimum.

e If co =0, a; >0 and ¢; > 0 we can pivot in xo and obtain an
alternative optimum.

(b) b< 0

(c) b=0

(d) b > 0 makes the solution feasible. If ¢ < 0 and a; < 0 we can
make x2 as large as desired and obtained an unbounded solution.

(e) b > 0 makes the current basic solution feasible. For x4 to replace x;
we need ¢; < 0 (this ensures that increasing z; will increase z) and
we need Row 3 to win the ratio test for x1. This requires 3/a; < b/4.

10. the solution is left to the student

Chapter 3 Exercise 3.1

1. Basic r1 T2 S S92 RHS
z 0O 0 4 5 28
T 1 0O 1 1 6
T2 o 1 1 2 10

2. Basic Tr1 T2 S1 S92 RHS
z 2 0 0 1 2
T2 1 1 0 1 2
51 1 0o 1 -1 2

3. the solution is left to the student

4. Basic Tr1 T2 €1 €9 RHS
z 0 0 =5 —15/2| 3800
1 1 0 =32 120 | 18/5
T 0 1 1 =780 | 75

Chapter 3 Exercise 3.2

1. a> -1

2. (a) z=26
(b) A> -2
(c) A<L5
(d) NO
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Chapter 3 Exercise 3.3

1. min w = y1 + 3y2 + 4y3 3. min
s.t. Y1+ Y2 +y3 > 2 s.t.
y1+y2—2y3 > 1
Y1,Y2,y3 = 0
4. max
2. max z =4x1 + x9 + 3x3 s.t.
s.t. 201+ 10+ 23 <1

1 +x9+ 23 < —1
x1,w2,23 > 0

Chapter 3 Exercise 3.4
1. w= 250/3_

2. (a) the solution is left to the student

(b) éNBV = CBvB_lN — CNBV = [—2 7/2]

(c) ey=Cp/Bl'=[4 0]=[n v

w = 5y + Ty2 + 6y3 + 4y
Y1+ 2y2 +ys > 4

Y1 +y2 +2ys = —1
ys+ys =2

y1,y2 2 0, y3 < 0, x4 urs

z = 6x1 + 89
T1+ w2 < 4
2:B1 — X9 S 2
2r9 = —1

xr1 <, x9 urs

e Using the general formula: y; =0+4 =14
Y2 = 3 + (—3) =0

3.2=CpyB 'b=[04 14] 05 _ 0.9
N—_—— 0.5
y

4. sincey = [0 1] then w = 10 # 20/3

5. the solution is left to the student
Chapter 3 Exercise 3.5

Lyr=41y2=1

2. Znew = Zold + 10 x 4 = 340
Chapter 3 Exercise 3.6

1. the solution is left to the student

2. g <1/s

3. c1 < 5/6
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Chapter 3 Exercise 3.7
1. 1 =43, 20 =10/3, 23 =0, 2 =2/3
2. 21=0,29=14, 23=9, 2 = -9

3. 21 =0, 29 =10, 23 =0, 24 =0, w =70
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