Compound Assignment Operators in C++

Simple assignment operator Compound assignment operator
$\mathrm{X}=\mathrm{X}+1$;
$\mathrm{Y}=\mathrm{Y}-1$;
$\mathrm{Z}=\mathrm{Z}+\mathrm{X}$;
$\mathrm{P}=\mathrm{P}$ * item;
$\mathrm{N}=\mathrm{N} *(\mathrm{x}+1)$;
Total $=$ Total $/(\mathrm{X}+\mathrm{Y})$;
Hours = Hours \% 13;

Control Structures (Selections)

Topics to cover here:

Selection statements in the algorithmic language:

- One-Way Selection
- Two-Way Selection
- Multi-Way Selection
- Nested Structures
- Selection statements in C++ language

Selections .. cont.

- The selection statement allows to choose a set of statements for execution.
- The selection depends on the validity of a condition when the program is executed.
- The condition is a logical expression that has values as true or false.

One-Way Selection

Syntax:

In pseudo code
IF (condition) THEN
statements
END IF

In C++

if (logical expression) statements;

The semantics (execution) of this statement:
-If the value of the "condition" is true, the statements between IF .. END IF are executed and the execution continues to the statement after END IF. -If the value of the "condition" is false, the statements between IF .. END IF are ignored and the execution continues from the statement that follows END IF.

One-Way Selection

The following figure shows the execution of this selection statement.

One-Way Selection .. Examples

- Example 1:

Write an algorithm that takes an integer and prints its double value if it is less than 50 .

First, we have to analyze the problem to understand what is its requirements and how to solve it.

1- Analysis stage:
■ Problem Input:

- An integer, say n

■ Problem Output:

- The double value of n

■ Criteria
if $\mathrm{n}<50$, print its double value

Example 1.. cont.

2- Algorithm Design
 ALGORITHM Double INPUT n IF (n < 50) THEN OUTPUT"The double value is ", n * 2 END IF OUTPUT "Finished"
 END

Example 1.. cont.

3- Testing the algorithm

n $\quad(\mathrm{n}<50)$

12

true

The output:

The double value is 24
Finished

Example 1: C++ Program

```
#include <iostream>
using namespace std;
void main ()
{
    int n;
    cin >> n;
    if (n<50)
        cout << "The double value is " << n N 2 << endl ;
    cout << " Finished " << endl;
}
```


Two-Way Selection

This statement chooses- statements to run- from two sets of choices.
Syntax:

In pseudo code
In C++

IF (condition) THEN
statements 1
ELSE
statements 2 END IF
if (logical expression) statements1; else
statements2;

Two-Way Selection .. cont.

- The semantics (execution) of this statement:
- If the value of the "condition" is true, the statements after THEN are executed and the execution continues to the statement after END IF.
- If the value of the "condition" is false, the statements after ELSE are executed and the execution continues from the statement that follows END IF.
- The following figure shows this execution:

Two-Way Selection .. cont.

Two-Way Selection .. Examples

- Example 1:

Write an algorithm that takes two integers and prints the smallest number with appropriate message.

1- Analysis stage:

- Problem Input:
- Two integers, say num1 and num2
- Problem Output:
- The smaller number

Example 1.. cont.

2- Algorithm Design
 ALGORITHM Smaller
 INPUT num1, num2
 IF (num1 < num 2) THEN
 OUTPUT "The smaller number is ", num1
 ELSE
 OUTPUT "The smaller number is ", num2
 END IF
 END Smaller

Example 1 .. cont.

3- Testing the algorithm

num1 num2 (num2<num1)

93

true

The output:
The smaller number is 3

Example 1: C++ Program

\#include <iostream>
using namespace std;
void main ()
\{ int num1, num2;
cin >> num1 >> num2;
if (num1 < num2)
cout << "The smaller value is " \ll num1 \ll endl ; else
cout << "The smaller value is" << num12 << endl;
\}

Example 2

Write an algorithm that takes prices of two items, if there total is over 100 JDs, calculate a discount of 40% and tax of 16%. Otherwise, calculate a discount of 20% and tax of 6%. Then calculate the total price as: Total + tax - Discount.

1- Analysis stage:

- Problem Input:
- Two prices, p1 and p2
- Problem Output:
- The total price of the two items
- Criteria
check whither the total prices is over 100 or not.

Example 2 .. cont.

2- Algorithm DesignALGORITHM Total_PriceINPUT p1, p2
sub_total $\leftarrow \mathrm{p} 1+\mathrm{p} 2$
IF (sub_total > 100) THEN
Discount \leftarrow sub_total * 0.4
Tax \leftarrow sub_total * 0.16
ELSE
Discount \leftarrow sub_total * 0.2
Tax \leftarrow sub_total * 0.06
END IF
Total \leftarrow sub_total + Tax - DiscountEND Total_Price

Example 2: C++ Program

```
#include <iostream>
using namespace std;
void main ()
{ float p1, p2, sub_total, discount, tax, total;
    cin >> p1 >> p2;
    sub_total = p1 + p2;
    if ( sub_total > 100)
    {
        discount = sub_total * 0.4;
        tax = sub_total * 0.16;
    }
    else
    {
        discount = sub_total * 0.2;
        tax = sub_total * 0.06;
    }
}

\section*{Multi Way Selection}
- You can choose statement(s) to run from many sets of choices.
- There are two cases for this:
(a) Multi way selection by nested IF structure
(b) Multi way selection by SWITCH structure

\section*{Multi Way Selection by Nested IF Structure}
- The structure that contains another structure of the same type is called a nested structure.
- In the Nested IF structure, the statements that exists between IF and ELSE or between IF and END IF can contain IF statement.

\section*{Multi Way Selection by Nested If Structure .. Cont.}

Syntax:
\begin{tabular}{|c|c|}
\hline In pseudo code & In C++ \\
\hline \begin{tabular}{l}
IF (conditionl) THEN \\
Statements 1 \\
ELSE IF (condition2) THEN \\
Statements 2 \\
ELSE IF (Condition3) THEN \\
Statements3 \\
ELSE IF (Condition4)
\end{tabular} & \begin{tabular}{l}
if (conditionl) \\
Statements1; \\
else if (condition2) \\
Statements 2 ; \\
else if(Condition3) \\
Statements3; \\
else if(Condition4)
\end{tabular} \\
\hline \begin{tabular}{l}
THEN \\
Statements 4 \\
END IF
END IF \\
END IF
\end{tabular} & Statements4; \\
\hline
\end{tabular}

Note: The nest can be to many levels.

\section*{Multi Way Selection by Nested If Structure .. Cont.}


\section*{Multi Way Selection by Nested If Structure .. Examples}
- Example 1:

Write an algorithm that inputs a student mark and outputs the corresponding grade, where grades are as follows:
\begin{tabular}{ll} 
mark & grade \\
\hline \(90-100\) & A \\
\(80-89\) & B \\
\(70-79\) & C \\
\(60-69\) & D \\
\(<60\) & E
\end{tabular}

\section*{Example 1.. Cont.}

\section*{1- Analysis stage:}
- Problem Input:
- student's mark, mark
- Problem Output:
- grade
- Criteria
- according to the previous grade table

\section*{Example 1.. Cont.}
2- Algorithm Design
ALGORITHM Grades
INPUT mark
IF ( mark < 0 OR mark > 100) THEN
OUTPUT " Mark out of range"
ELSE IF ( mark \(\geq 90\) AND mark \(\leq 100\) ) THEN
OUTPUT "A"
ELSE IF ( mark \(\geq 80\) ) THEN
OUTPUT "B"
ELSE IF ( mark \(\geq 70\) ) THEN
OUTPUT "C"
ELSE IF ( mark \(\geq 60\) ) THEN
OUTPUT "D"
ELSE OUTPUT "E"
END IF
END IF
END IF
END IF
END IF
END Grades

\section*{Example 1: C++ Program}
```

\#include <iostream>
using namespace std;
void main ()
{ int mark ;
cin >> mark;
if (mark < 0 || mark > 100)
cout << " Mark out of range" << endl;
else if (mark >= 90)
cout << "A"<< endl;
else if (mark >= 80)
cout << "B" << endl ;
else if (mark >= 70)
cout << "C" << endl;
else if (mark >= 60)
cout << "D"<< endl;
else cout << "E"<< endl;
}

```

\section*{Example 2: : Read three numbers to print the smallest one.}
\#include <iostream.h>
void main() \{
int \(\mathbf{a}, \mathrm{b}, \mathrm{c}\);
cout<<"\nPlease Enter three numbers:";
cin>>a>>b>>c;
cout<<" 1 nMin= ";
if \(((a<b) \& \&(a<c))\) cout<<a;
if \(((b<a) \& \&(b<c))\) cout \(\ll b\);
if \(((c<a) \& \&(c<b))\) cout \(\ll C\);
cout<<endl;
\}

\section*{Program2 (nested if)}
\#include <iostream.h>
void main() \{
int a, b, c; cout<<"|nPlease Enter three numbers:"; cin>>a>>b>>c; cout<<"InMin=";
if \((\mathrm{a}<\mathrm{b})\)
\[
\text { if }(a<c)
\]
cout<<a;
else
cout<<c;
else
\[
\begin{aligned}
& \text { if }(\mathrm{b}<\mathrm{c}) \\
& \text { else }
\end{aligned}
\]
cout<<c
cout<<end;;

\section*{Note:}
- In some cases, you may need to use a variable as the condition of an if statement. But, how this variable will be interpreted into the result of the condition?

We can use: If(x)
- Example:
\{
int x ;
cin>> \(x\);
if ( x ) cout << " \(x\) is any number but zero";
else
```

cout << " x is zero";

```

Notes: - a value of 0 , is considered false in this case, while all other values, either positive or negative, are considered true.
- The same applies for float variables.
- Character variables always return true.

\section*{Switch Statement in \(\mathrm{C}_{++}\)}

\section*{Switch Statement in \(\mathrm{C}_{++}\)}
- Syntax
switch (selector)
\{ case L1: statements1; break;
case L2: statements2; break;
default: statements_n; \}
- Semantics:

This statement has the same meaning as in the algorithmic language.

\section*{Example 1: C++ Program}
```

\#include <iostream>
using namespace std;
void main ()
{
int lab;
cin >> lab;
switch (lab)
{
case 503 : cout << " C++ " << endl; break;
case 508: cout << " C\# " << endl; break;
case 512 : cout << " Oracle" << endl; break;
case 514: cout << " PHP " << endl; break;
case 507: cout << " Java " << endl; break;
default : cout << " MS Office" << endl;
}
}

```
```

Example 2: C++ Program
\#include <iostream>
using namespace std;
void main ()
{ char ch;
cout <<" \n Enter the grade of student: "<<endl ;
cin >> ch;
switch (ch) {
case 'A':
case 'a':
cout<<"Excellent";
break;
case 'B':
case 'b':
cout<<"Good";
break;
case 'C':
case 'c':
cout<<"O.K";
break;
case 'D':
case 'd':
case 'F':
case 'f':
cout<<"poor";
break;
default: cout<<"invalid letter grade";}
}

```

\section*{Example 3: C++ Program}
```

\#include <iostream>
using namespace std;
void main()
{ int x,y;
cout << "Enter 2 integer number: ";
cin >> x>>y;
switch (x+y)
{ case 7: cout << "Too small, sorry!";
break;
case 5: cout << "Good job!\n";
break;
case 4: cout << "Nice Pick!\n";
case 3: cout << "Excellent!\n";
break;
case 2: cout << "Masterful!\n";
break;
case 1: cout << "Incredible!\n";
break;
default: cout << "Too large!\n";
}
cout << "\n\n";
}

```

\section*{Example 4: \(\mathrm{C}_{++}\)Program}
```

\#include <iostream>
using namespace std;
void main ()
{ char ch ; float radius, area, circum;
cout << " Enter the radius of a circle: ";
cin >> radius;
cout << " Enter a to calculate the area of a circle or c to calculate its circumference:"
cin >> ch ;
switch (ch)
{ case 'a': area = 3.14f * radius * radius;
cout << " Area = " << area << endl; break;
case 'c': circum = 2* radius * 3.14f ;
cout <<" Circumference = " << circum << endl; break;
default : cout <<" Invalid letter was read " << endl;
}
}

```

\section*{Convert IF into Switch}

\section*{\#include <iostream>}

\section*{using namespace std;}
void main ()
\{ char degree;
cout <<" \(\backslash n\) Enter the temperature degree
"<<endl ;
cin >> degree;
if (degree >=50)
cout<<"Very Hot";
else if (degree >= \(35 \& \&\) degree \(<50\) )
cout<<"Hot";
else if (degree \(>=20\) \& \& degree <35) cout<<"Fair";
else if (degree >= 0 \&\& degree <20) cout<<"Cold";
else cout<<"Very Cold";

\section*{\#include <iostream>}
using namespace std;
void main ()
\{ char degree;
cout <<" \n Enter the temperature degree "<<endl ;
cin >> degree;
switch (degree \(>=50\) )
\{
case true: cout<<"Very Hot"; break; case false:
switch (degree >= 35 \&\& degree <50)
\{
case true: cout<<"Hot"; break; case false:
switch (degree >= 20 \&\& degree \(<35\) )
\{
case true: cout<<"Fair"; break; case false:
switch (degree >= 0 \&\& degree <20) \{
case true: cout<<"Cold"; break; case false: cout<<"Very Cold"; \}
)

\section*{Increment and Decrement Operators in C++}
\begin{tabular}{|rl|llll|}
\hline \multicolumn{2}{|l|}{ Increment Operators } & & \multicolumn{3}{l|}{ Decrement Operators } \\
\hline 1- Postfix operator: & e.g. & i++ & 1- Postfix operator: & e.g. & i-- \\
2- Prefix operator: & e.g. & ++i & 2- Prefix operator: & e.g. & --i \\
\hline
\end{tabular}
- For postfix operators, the increment (or decrement) occurs after the current value of the variable has been used.
- For prefix operators, the increment (or decrement) occurs first and the new value of the variable is then used.
- Example

The following C++ statements has the effects as shown in the comment:
\(\begin{array}{ll}\mathrm{i}=3 ; & \text { // initial value of } \mathrm{i} \\ \mathrm{k}=\mathrm{i}++; & \text { // assigns } 3 \text { to } \mathrm{k} \text { and } 4 \text { to } \mathrm{i} \\ \mathrm{k}=++\mathrm{i} ; & \text { // assigns } 5 \text { to } \mathrm{k} \text { and } 5 \text { to } \mathrm{i} \\ \mathrm{k}=\mathrm{i}--; & / / \text { assigns } 5 \text { to } \mathrm{k} \text { and } 4 \text { to } \mathrm{i} \\ \mathrm{k}=-\mathrm{i} ; & / / \text { assigns } 3 \text { to } \mathrm{k} \text { and } 3 \text { to } \mathrm{i}\end{array}\)

\section*{Increment and Decrement Operators}
\begin{tabular}{|l|l|l|}
\hline\(\underline{\text { Simple }}\) & easy & easiest \\
\hline\(x=x+1 ;\) & \(x+=1\) & \(x++\) \\
\hline\(x=x-1 ;\) & \(x-=1\) & \(x--\) \\
\hline
\end{tabular}

\section*{Example}
- Compute the following expression where:
\(z=3, x=2, y=2\)
\(Z_{+=++x-y--; ~}^{\text {- }}\)

\section*{Solution:}```

