QUESTIONS ON LEXICAL ANALYSIS

a) Write a regular expression that recognises the same string as the following C-like code:

```
ch=getchar();
if (ch=='a') {
        ch=getchar();
        while (ch=='a' || ch='b') {
            ch=getchar();
            do {
                ch=getchar();
            } while (ch=='c');
        }
        if (ch=='d') accept();
} else {
    if (ch='e') accept();
}
```

(4 marks)
b) Consider the following regular expression

$$
(0 \mid \varepsilon)(0 \mid 1)^{*} 0
$$

i) Construct an NFA for the regular expression above using Thomson's construction. (4 marks)
ii) Convert the NFA to a DFA using the subset construction algorithm. Feel free to use a shortened version of the NFA for this conversion, which does not include unimportant ε-transitions.

4Marks
c) Draw the DFA for the following transition table (s1 is the start state; s4 is the end state)

	a	b
s1	s2	s3
s2	s4	s2
s3	s3	s4
s4	-	-

d) Consider the alphabet $\mathrm{V}=\{0,1, \ldots, 9\}$ and the language L , which consists of all strings of V, which represent all integers that are greater than 798 (for example, the strings 799, 890, 2345, 777777 belong to the language L , whereas the strings $1,42,711,798$ do not). Provide a regular expression that generates all strings of the language L .

