
Lexical Analysis

Where We Are

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine

Code

++ip;

while (ip < z)

do[for] = new 0;

T_Do [T_For T_New T_IntConst

0

d o [f o r] = n e w 0 ;

] =

do[for] = new 0;

Scanning a Source File

(i < z) \ \ + i p ;p + + +w h i l e (1 3 7 < i) \n \t + + i ;

(i < z) \ \ + i p ;p + + +w h i l e (1 3 7 < i) \n \t + + i ;

(i < z) \ \ + i p ;p + + +w h i l e (1 3 7 < i) \n \t + + i ;

(i < z) \ \ + i p ;p + + +w h i l e (1 3 7 < i) \n \t + + i ;

(i < z) \ \ + i p ;p + + +w h i l e (1 3 7 < i) \n \t + + i ;

(i < z) \ \ + i p ;p + + +w h i l e (1 3 7 < i) \n \t + + i ;

Scanning a Source File

+w h i l e (1 3 7 < i) \n \t + + i ;

T_While

Scanning a Source File

+w h i l e (1 3 7 < i) \n \t + + i ;

T_While

This is called a token . You can

think o f i t as an enumerated type

r ep resent ing what logical ent i t y we

read ou t o f the source code .

T he piece of the or ig inal p rog r am

f r o m which we made the token is

called a lexeme .

Scanning a Source File

+w h i l e (1 3 7 < i) \n \t + + i ;

T_While

Scanning a Source File

+w h i l e (1 3 7 < i) \n \t + + i ;

T_While

Scanning a Source File

+w h i l e (1 3 7 < i) \n \t + + i ;

T_While

Sometimes we will discard a lexeme

r at her t han sto r ing it f o r lat er use.

Her e, we ig nor e whit espace, since it

has no bearing on the meaning o f

the program.

Scanning a Source File

+w h i l e (1 3 7 < i) \n \t + + i ;

T_While

Scanning a Source File

+w h i l e (1 3 7 < i) \n \t + + i ;

T_While

Scanning a Source File

+w h i l e (1 3 7 < i) \n \t + + i ;

T_While

Scanning a Source File

+w h i l e (1 3 7 < i) \n \t + + i ;

T_While (

Scanning a Source File

+w h i l e (1 3 7 < i) \n \t + + i ;

T_While (

Scanning a Source File

+w h i l e (1 3 7 < i) \n \t + + i ;

T_While (

Scanning a Source File

+w h i l e (1 3 7 < i) \n \t + + i ;

T_While (

Scanning a Source File

+w h i l e (1 3 7 < i) \n \t + + i ;

T_While (

Scanning a Source File

+w h i l e (1 3 7 < i) \n \t + + i ;

T_While (

Scanning a Source File

+w h i l e (1 3 7 < i) \n \t + + i ;

T_While (T_IntConst

137

Scanning a Source File

+w h i l e (1 3 7 < i) \n \t + + i ;

T_While (T_IntConst

137

Some tokens can have

at t r ibutes that s tore

ext r a in for mat ion about

the token . Here we

s tore which in teger is

represented.

Goals of Lexical Analysis

● Convert from physical description of a program
into sequence of of tokens .
●

●

E a c h token represents one logical piece of the source
file – a keyword, the name of a variable, etc .

E a c h token is associated with a lexeme .

● The actual text of the token: “137 ,” “ int ,” etc.

● E a c h token may have optional attributes .

●

●

Extra information derived from the text – perhaps a
numeric value.

The token sequence will be used in the parser to
recover the program structure.

Choosing Tokens

What Tokens are Useful Her e?

for (int k = 0; k < myArray[5]; ++k) {

cout << k << endl;

}

What Tokens are Useful Her e?

for (int k = 0; k < myArray[5]; ++k) {

cout << k << endl;

}

for

int

<<

=

(

)

{

}

;

<

[

]
+

+

What Tokens are Useful Her e?

for (int k = 0; k < myArray[5]; ++k) {

cout << k << endl;

}

for

int

<<

=

(

)

{

}

;

<

[

]
++

Identifier

IntegerConstant

Choosing Good Tokens

●

●

Very much dependent on the language.

Typically:

●

●

●

●

Give keywords their own tokens.

Give different punctuation symbols their own
tokens.

Group lexemes representing identifiers,
numeric constants, strings, etc . into their own
groups.

Discard irrelevant information (whitespace,
comments)

Thanks to Prof. AlexAiken

Scanning is Hard

● FO RT R A N : Whitespace is irrelevant

DO 5 I = 1,25

DO 5 I = 1.25

Thanks to Prof. AlexAiken

Scanning is Hard

● FO RT R A N : Whitespace is irrelevant

DO 5 I = 1,25

DO5I = 1.25

Thanks to Prof. AlexAiken

Scanning is Hard

● FO RT R A N : Whitespace is irrelevant

DO 5 I = 1,25

DO5I = 1.25

● C a n be difficult to tell when to partition
input.

Thanks to Prof. AlexAiken

Scanning is Hard

● C + + : Nested template declarations

vector<vector<int>> myVector

Thanks to Prof. AlexAiken

Scanning is Hard

● C + + : Nested template declarations

vector < vector < int >> myVector

Thanks to Prof. AlexAiken

Scanning is Hard

● C + + : Nested template declarations

(vector < (vector < (int >> myVector)))

Thanks to Prof. AlexAiken

Scanning is Hard

● C + + : Nested template declarations

(vector < (vector < (int >> myVector)))

● Again, can be difficult to determine
where to split .

Thanks to Prof. AlexAiken

Scanning is Hard

● PL/1: Keywords can be used as
identifiers.

Thanks to Prof. AlexAiken

Scanning is Hard

● PL/1: Keywords can be used as
identifiers.

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

Thanks to Prof. AlexAiken

Scanning is Hard

● PL/1: Keywords can be used as
identifiers.

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

Thanks to Prof. AlexAiken

Scanning is Hard

● PL/1: Keywords can be used as
identifiers.

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

● C a n be difficult to determine how to label
lexemes.

Chal lenges in Scanning

●

●

●

Ho w do we determine which lexemes are
associated with each token?

When there are multiple ways we could
scan the input, how do we know which
one to pick?

Ho w do we address these concerns
efficiently?

Associating Lexemes with Tokens

Lexemes and Tokens

●

●

Tokens give a way to categorize lexemes by
what information they provide.

S o m e tokens might be associated with only a
single lexeme:

●

●

Tokens for keywords like if and whileprobably
only match those lexemes exactly.

S o m e tokens might be associated with lots of
different lexemes:

● All variable names, all possible numbers, all
possible strings, etc .

Sets of Lexemes

●

●

●

●

Idea: Associate a set of lexemes with each
token.

We might associate the “number” token
with the set { 0, 1, 2, … , 10, 11, 12, … }

We might associate the “string” token
with the set { "", "a", "b", "c", … }

We might associate the token for the
keyword while with the set { while } .

Ho w do we describe which (potentially
infinite) set of lexemes is associated with

each token type?

Formal Languages

●

●

A formal language is a set of strings.

M a ny infinite languages have finite descriptions:

●

●

●

Define the language using an automaton.

Define the language using a grammar.

Define the language using a regular expression.

●

●

We can use these compact descriptions of the
language to define sets of strings.

Over the course of this class, we will use all of
these approaches.

Regular Expressions

●

●

●

Regu lar expressions are a family of
descriptions that can be used to capture
certain languages (the regular
languages).

Often provide a compact and human-
readable description of the language.

U s e d as the basis for numerous software
systems, including the flex tool we will

use in this course.

Atomic Regular Expressions

●

●

●

The regular expressions we will use in
this course begin with two simple
building blocks.

The symbol ε is a regular expression
matches the empty string.

For any symbol a, the symbol a is a
re g ular expression that just m atc hes a.

Compound Regular Expressions

●

●

●

●

If R 1 and R 2 are regular expressions, R 1 R 2 is a regular

expression represents the concatenation of the

languages of R 1 and R 2 .

If R 1 and R 2 are regular expressions, R 1 |R 2 is a regular

expression representing the union of R 1 and R 2 .

If R is a regular expression, R * is a regular expression for
the Kleene closure of R .

If R is a regular expression, (R) is a regular expression
with the same meaning as R .

Operator Precedence

●

●

Regular expression operator precedence
is

(R)

R*

R 1R 2

R1 | R2

S o ab*c|d is parsed as ((a(b*))c)|d

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

H e re is a regular expression for strings containing
00 as a substring:

(0 | 1)*00(0 | 1)*

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

H e re is a regular expression for strings containing
00 as a substring:

(0 | 1)*00(0 | 1)*

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

H e re is a regular expression for strings containing
00 as a substring:

(0 | 1)*00(0 | 1)*

11011100101
0000

11111011110011111

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

H e re is a regular expression for strings containing
00 as a substring:

(0 | 1)*00(0 | 1)*

11011100101
0000

11111011110011111

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

H e re is a regular expression for strings of length
exactly four:

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

H e re is a regular expression for strings of length
exactly four:

(0|1)(0|1)(0|1)(0|1)

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

H e re is a regular expression for strings of length
exactly four:

(0|1)(0|1)(0|1)(0|1)

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

H e re is a regular expression for strings of length
exactly four:

(0|1)(0|1)(0|1)(0|1)

0000
1010
1111
1000

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

H e re is a regular expression for strings of length
exactly four:

(0|1)(0|1)(0|1)(0|1)

0000
1010
1111
1000

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

H e re is a regular expression for strings of length
exactly four:

(0|1){4}

0000
1010
1111
1000

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

H e re is a regular expression for strings of length
exactly four:

(0|1){4}

0000
1010
1111
1000

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

H e re is a regular expression for strings that
contain at most one zero:

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

H e re is a regular expression for strings that
contain at most one zero:

1*(0 | ε)1*

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

H e re is a regular expression for strings that
contain at most one zero:

1*(0 | ε)1*

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

H e re is a regular expression for strings that
contain at most one zero:

1*(0 | ε)1*

11110111
111111
0111

0

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

H e re is a regular expression for strings that
contain at most one zero:

1*(0 | ε)1*

11110111
111111
0111

0

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

H e re is a regular expression for strings that
contain at most one zero:

1*0?1*

11110111
111111
0111

0

Applied Regular Expressions

●

●

Suppose our alphabet is a, @ , and ., where a

represents “some letter.”

A regular expression for email addresses is

aa* (.aa*)* @ aa*.aa* (.aa*)*

Applied Regular Expressions

●

●

Suppose our alphabet is a, @ , and ., where a

represents “some letter.”

A regular expression for email addresses is

aa* (.aa*)* @ aa*.aa* (.aa*)*

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

mailto:cs143@cs.stanford.edu
mailto:first.middle.last@mail.site.org
mailto:barack.obama@whitehouse.gov

Applied Regular Expressions

●

●

Suppose our alphabet is a, @ , and ., where a

represents “some letter.”

A regular expression for email addresses is

aa* (.aa*)* @ aa*.aa* (.aa*)*

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

mailto:cs143@cs.stanford.edu
mailto:first.middle.last@mail.site.org
mailto:barack.obama@whitehouse.gov

Applied Regular Expressions

●

●

Suppose our alphabet is a, @ , and ., where a

represents “some letter.”

A regular expression for email addresses is

aa* (.aa*)* @ aa*.aa* (.aa*)*

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

mailto:cs143@cs.stanford.edu
mailto:first.middle.last@mail.site.org
mailto:barack.obama@whitehouse.gov

Applied Regular Expressions

●

●

Suppose our alphabet is a, @ , and ., where a

represents “some letter.”

A regular expression for email addresses is

aa* (.aa*)* @ aa*.aa* (.aa*)*

cs143@cs.stanford.edu

first.middle.last@mail.site.org
barack.obama@whitehouse.gov

mailto:cs143@cs.stanford.edu
mailto:first.middle.last@mail.site.org
mailto:barack.obama@whitehouse.gov

Applied Regular Expressions

●

●

Suppose our alphabet is a, @ , and ., where a

represents “some letter.”

A regular expression for email addresses is

a+ (.aa*)* @ aa*.aa* (.aa*)*

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

mailto:cs143@cs.stanford.edu
mailto:first.middle.last@mail.site.org
mailto:barack.obama@whitehouse.gov

Applied Regular Expressions

●

●

Suppose our alphabet is a, @ , and ., where a

represents “some letter.”

A regular expression for email addresses is

a+ (.a+)* @ a+.a+ (.a+)*

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

mailto:cs143@cs.stanford.edu
mailto:first.middle.last@mail.site.org
mailto:barack.obama@whitehouse.gov

Applied Regular Expressions

●

●

Suppose our alphabet is a, @ , and ., where a

represents “some letter.”

A regular expression for email addresses is

a+ (.a+)* @ a+.a+ (.a+)*

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

mailto:cs143@cs.stanford.edu
mailto:first.middle.last@mail.site.org
mailto:barack.obama@whitehouse.gov

Applied Regular Expressions

●

●

Suppose our alphabet is a, @ , and ., where a

represents “some letter.”

A regular expression for email addresses is

a+ (.a+)* @ a+ (.a+)+

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

mailto:cs143@cs.stanford.edu
mailto:first.middle.last@mail.site.org
mailto:barack.obama@whitehouse.gov

Applied Regular Expressions

●

●

Suppose our alphabet is a, @ , and ., where a

represents “some letter.”

A regular expression for email addresses is

a+(.a+)*@a+(.a+)+

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

mailto:cs143@cs.stanford.edu
mailto:first.middle.last@mail.site.org
mailto:barack.obama@whitehouse.gov

Applied Regular Expressions

●

●

Suppose that our alphabet is all AS C I I
characters.

A regular expression for even numbers is

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)

Applied Regular Expressions

●

●

Suppose that our alphabet is all AS C I I
characters.

A regular expression for even numbers is

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)

42
+1370
-3248

-9999912

Applied Regular Expressions

●

●

Suppose that our alphabet is all AS C I I
characters.

A regular expression for even numbers is

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)

42
+1370
-3248

-9999912

Applied Regular Expressions

●

●

Suppose that our alphabet is all AS C I I
characters.

A regular expression for even numbers is

(+|-)?[0123456789]*[02468]

42
+1370
-3248

-9999912

Applied Regular Expressions

●

●

Suppose that our alphabet is all AS C I I
characters.

A regular expression for even numbers is

(+|-)?[0-9]*[02468]

42
+1370
-3248

-9999912

Matching Regular Expressions

Implementing Regular Expressions

●

●

Regular expressions can be implemented
using finite automata .

There are two main kinds of finite
automata:

●

●

NFA s (nondeterministic finite automata),
which we'll see in a second, and

DFAs (deterministic finite automata), which
we'll see later.

● Automata are best explained by example. . .

" "start

A,B,C,...,Z

A Simple Automaton

" "start

A,B,C,...,Z

Each circle is a s ta te o f the

auto mato n. T he auto mato n' s

conf igurat ion is determined

by what s t a t e (s) i t is in .

A Simple Automaton

" "start

A,B,C,...,Z

These arrows are called

t ransit ions . The automaton

chang es which sta t e (s) it is in

by fol lowing transi t ions.

A Simple Automaton

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

T he aut omat on ta kes a st r ing

as input and decides whether

t o accept o r r e j e c t the s t r i ng .

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

T he d oub le cir cle ind icat e s that th is

s tate is an accepting s t a t e . The

auto mato n accept s the st r ing if it

ends in an accepting s ta te .

" "start

A,B,C,...,Z

A Simple Automaton

" " " " " "

" "start

A,B,C,...,Z

A Simple Automaton

" " " " " "

" "start

A,B,C,...,Z

A Simple Automaton

" " " " " "

" "start

A,B,C,...,Z

A Simple Automaton

" " " " " "

" "start

A,B,C,...,Z

A Simple Automaton

" " " " " "

" "start

A,B,C,...,Z

A Simple Automaton

" " " " " "

" "start

A,B,C,...,Z

A Simple Automaton

" " " " " "

T her e is no transit ion on "

here, so the automaton

d ies and r ej ects.

" "start

A,B,C,...,Z

A Simple Automaton

" " " " " "

T her e is no transit ion on "

here, so the automaton

d ies and r ej ects.

" "start

A,B,C,...,Z

A Simple Automaton

" A B C

" "start

A,B,C,...,Z

A Simple Automaton

" A B C

" "start

A,B,C,...,Z

A Simple Automaton

" A B C

" "start

A,B,C,...,Z

A Simple Automaton

" A B C

" "start

A,B,C,...,Z

A Simple Automaton

" A B C

" "start

A,B,C,...,Z

A Simple Automaton

" A B C

" "start

A,B,C,...,Z

A Simple Automaton

" A B C

" "start

A,B,C,...,Z

A Simple Automaton

" A B C

T his is not an accept ing

sta t e , so the auto mato n

r e j ec t s .

A Mo r e Complex Automaton

0
1 0

1
0 1

start
0, 1

A Mo r e Complex Automaton

0
1 0

1
0 1

start
0, 1

Not ice t hat t her e ar e mul t iple t r ansit ions

def i ned her e on 0 and 1. I f we r ead a

0 or 1 her e, we f o llow b o t h t r ansit ions

and enter multiple s ta tes.

A Mo r e Complex Automaton

0
1 0

1
0 1

start
0, 1

0 1 1 1 0 1

A Mo r e Complex Automaton

0
1 0

1
0 1

start
0, 1

0 1 1 1 0 1

A Mo r e Complex Automaton

0
1 0

1
0 1

start
0, 1

0 1 1 1 0 1

A Mo r e Complex Automaton

0
1 0

1
0 1

start
0, 1

0 1 1 1 0 1

A Mo r e Complex Automaton

0
1 0

1
0 1

start
0, 1

0 1 1 1 0 1

A Mo r e Complex Automaton

0
1 0

1
0 1

start
0, 1

0 1 1 1 0 1

A Mo r e Complex Automaton

0
1 0

1
0 1

start
0, 1

0 1 1 1 0 1

A Mo r e Complex Automaton

0
1 0

1
0 1

start
0, 1

0 1 1 1 0 1

A Mo r e Complex Automaton

0
1 0

1
0 1

start
0, 1

0 1 1 1 0 1

A Mo r e Complex Automaton

0
1 0

1
0 1

start
0, 1

0 1 1 1 0 1

A Mo r e Complex Automaton

0
1 0

1
0 1

start
0, 1

0 1 1 1 0 1

A Mo r e Complex Automaton

0
1 0

1
0 1

start
0, 1

0 1 1 1 0 1

A Mo r e Complex Automaton

0
1 0

1
0 1

start
0, 1

0 1 1 1 0 1

A Mo r e Complex Automaton

0
1 0

1
0 1

start
0, 1

0 1 1 1 0 1

A Mo r e Complex Automaton

0
1 0

1
0 1

start
0, 1

A Mo r e Complex Automaton

0
1 0

1
0 1

start
0, 1

0 1 1 1 0 1
Since we are in a t least

one accep t ing sta t e , the

automaton accepts.

An Even More Complex Automaton

a, c

b, c

start

ε

ε

ε

a, b

c

b

a

An Even More Complex Automaton

a, c

b, c

start

ε

ε

ε

a, b

c

b

a

These are called ε - t rans i t ions . These

t r ansit ions ar e f ollo wed aut omat i cally and

without consuming any inpu t .

b c b a

An Even More Complex Automaton

a, c

b, c

start

ε

ε

ε

a, b

c

b

a

b c b a

An Even More Complex Automaton

a, c

b, c

start

ε

ε

ε

a, b

c

b

a

An Even More Complex Automaton

a, c

b c b a

b, c

start

ε

ε

ε

a, b

c

b

a

An Even More Complex Automaton

a, c

b c b a

b, c

start

ε

ε

ε

a, b

c

b

a

An Even More Complex Automaton

a, c

b c b a

b, c

start

ε

ε

ε

a, b

c

b

a

An Even More Complex Automaton

a, c

b c b a

b, c

start

ε

ε

ε

a, b

c

b

a

An Even More Complex Automaton

a, c

b c b a

b, c

start

ε

ε

ε

a, b

c

b

a

b c b a

An Even More Complex Automaton

a, c

b, c

start

ε

ε

ε

a, b

c

b

a

b c b a

An Even More Complex Automaton

a, c

b, c

start

ε

ε

ε

a, b

c

b

a

b c b a

An Even More Complex Automaton

a, c

b, c

start

ε

ε

ε

a, b

c

b

a

b c b a

An Even More Complex Automaton

a, c

b, c

start

ε

ε

ε

a, b

c

b

a

Simulating an N F A

●

●

Keep track of a set of states, initially the start
state and everything reachable by ε-moves.

For each character in the input:

●

●

● Maintain a set of next states, initially empty.

For each current state:

– Follow all transitions labeled with the current letter.

– Add these states to the set of new states.

Add every state reachable by an ε-move to the set of
next states.

● Complexity: O(mn2) for strings of length m and
automata with n states.

From Regular Expressions to NFAs

●

●

There is a (beautiful!) procedure from converting a
regular expression to an N FA .

Associate each regular expression with an N FA with
the following properties:

●

●

●

There is exactly one accepting state.

There are no transitions out of the accepting state.

There are no transitions into the starting state.

● These restrictions are stronger than necessary, but make the
construction easier.

start

Base C a s e s

εstart

Automaton for ε

astart

Automaton for single character a

Construction for R 1 R 2

R
1

Construction for R 1 R 2

R
2

start start

Construction for R 1 R 2

R
1

R
2

start

R
1

Construction for R 1 R 2

R
2

start

ε

R
1

Construction for R 1 R 2

R
2

start

ε

Construction for R 1 | R 2

Construction for R 1 | R 2

start

R
1

start

R
2

Construction for R 1 | R 2

start

R
1

start

start

R
2

Construction for R 1 | R 2

R
1start

ε

ε

R
2

Construction for R 1 | R 2

R
1start

ε

ε

R
2

Construction for R 1 | R 2

R
1start

ε

ε

ε

ε

R
2

Construction for R 1 | R 2

R
1start

ε

ε

ε

ε

R
2

Construction for R*

Construction for R*

R

start

Construction for R*

R

start
start

Construction for R*

R

start
start

ε

Construction for R*

R

start

ε

ε ε

Construction for R*

R

start

ε

ε ε

ε

Construction for R*

R

start

ε

ε ε

ε

Overall Result

●

●

●

Any regular expression of length n can
be converted into an N FA with O(n)
states.

C a n determine whether a string of length
m matches a regular expression of length
n in time O(mn2).

We'll see how to make this O(m) later
(this is independent of the complexity of
the regular expression!)

Chal lenges in Scanning

●

●

●

Ho w do we determine which lexemes are
associated with each token?

When there are multiple ways we could
scan the input, how do we know which
one to pick?

Ho w do we address these concerns
efficiently?

Chal lenges in Scanning

●

●

●

Ho w do we determine which lexemes are
associated with each token?

When there are multiple ways we could
scan the input, how do we know which
one to pick?

Ho w do we address these concerns
efficiently?

Lexing Ambiguities

T_For

T_Identifier

for

[A-Za-z_][A-Za-z0-9_]*

Lexing Ambiguities

T_For

T_Identifier

for

[A-Za-z_][A-Za-z0-9_]*

f o r t

Lexing Ambiguities

T_For

T_Identifier

for

[A-Za-z_][A-Za-z0-9_]*

f o r t

f o r t

f o r t

f o r t

f o r t

f o r t

f

f

f

f

o r t

o r t

o r t

o r t

Conflict Resolution

●

●

●

Assume all tokens are specified as
regular expressions.

Algorithm: Left-to-right scan .

Tiebreaking rule one: Max ima l munch .

● Always match the longest possible prefix of
the remaining text .

Lexing Ambiguities

T_For

T_Identifier

for

[A-Za-z_][A-Za-z0-9_]*

f o r t

f o r t

f o r t

f o r t

f o r t

f o r t

f

f

f

f

o r t

o r t

o r t

o r t

Lexing Ambiguities

T_For

T_Identifier

for

[A-Za-z_][A-Za-z0-9_]*

f o r t

f o r t

Implementing Maximal M u n c h

●

●

Given a set of regular expressions, how
can we use them to implement maximum
munch?

Idea:

●

●

●

Convert expressions to N FAs .

Run all NFAs in parallel, keeping track of the
last match.

When all automata get stuck, report the last
match and restart the search at that point.

T_Do

T_Double

T_Mystery

do

double

[A-Za-z]

Implementing Maximal M u n c h

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B D O U B L E

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B D O U B L E

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B D O U B L E

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B D O U B L E

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B D O U B L E

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B D O U B L E

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B D O U B L E

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B D O U B L E

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B D O U B L E

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B D O U B L E

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B D O U B L E

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B D O U B L E

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B D O U B L E

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B D O U B L E

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

U B D O U B L ED O

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

U B D O U B L ED O

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

U B D O U B L ED O

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

U B D O U B L ED O

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

U B D O U B L ED O

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

U B D O U B L ED O

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

U B D O U B L ED O

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

B D O U B L ED O U

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

B D O U B L ED O U

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

B D O U B L ED O U

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

B D O U B L ED O U

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

B D O U B L ED O U

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

B D O U B L ED O U

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B L ED O U B

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B L ED O U B

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B L ED O U B

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B L ED O U B

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B L ED O U B

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B L ED O U B

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B L ED O U B

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B L ED O U B

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B L ED O U B

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B L ED O U B

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B L ED O U B

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B L ED O U B

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B L ED O U B

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B L ED O U B

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B L ED O U B

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B L ED O U B

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B L ED O U B

do

double

[A-Za-z]

Implementing Maximal M u n c h

o

o u b l e

T_Do

T_Double

T_Mystery

start d

start d

start Σ

D O U B L ED O U B

A Minor Simplification

A Minor Simplification

start d o

start d o u b l e

start Σ

A Minor Simplification

o

o u b l e

start

start

start

d

d

Σ

A Minor Simplification

d o

d o u b l e

Σ

ε

ε

ε
start

A Minor Simplification

d o

d o u b l e

Σ

ε

ε

ε
start

Build a single automaton

t hat r uns all t he mat ching

automata in paral lel .

A Minor Simplification

d o

d o u b l e

Σ

ε

ε

ε
start

A Minor Simplification

d o

d o u b l e

Σ

ε

ε

ε
start

Annotate each accepting

st at e wi t h which aut omat on

i t came f r o m .

Other Conflicts

T_Do do

T_Double double

T_Identifier [A-Za-z_][A-Za-z0-9_]*

Other Conflicts

T_Do do

T_Double double

T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o u b l e

Other Conflicts

T_Do do

T_Double double

T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o u b l e

d o u b l e

d o u b l e

Mo r e Tiebreaking

●

●

When two regular expressions apply,
choose the one with the greater
“priority.”

Simple priority system: pick the rule

that was defined first.

Other Conflicts

T_Do do

T_Double double

T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o u b l e

d o u b l e

d o u b l e

Other Conflicts

T_Do do

T_Double double

T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o u b l e

d o u b l e

Other Conflicts

T_Do

T_Double

do

double

T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o u b l e

d o u b l e
Why isn ' t

this a

problem?

O n e Last Detail . . .

●

●

●

We know what to do if multiple rules
match.

What if nothing matches?

Trick: Add a “catch-all” rule that matches
any character and reports an error.

Summary of Conflict Resolution

●

●

●

●

●

Construct an automaton for each regular
expression.

M e r g e them into one automaton by
adding a new start state.

S c a n the input, keeping track of the last
known match.

Break ties by choosing higher-
precedence matches.

Have a catch-all rule to handle errors.

Chal lenges in Scanning

●

●

●

Ho w do we determine which lexemes are
associated with each token?

When there are multiple ways we could
scan the input, how do we know which
one to pick?

Ho w do we address these concerns
efficiently?

Chal lenges in Scanning

●

●

●

Ho w do we determine which lexemes are
associated with each token?

When there are multiple ways we could
scan the input, how do we know which
one to pick?

Ho w do we address these concerns
efficiently?

D FAs

●

●

The automata we've seen so far have all
been N FAs .

A DFA is like an N F A , but with tighter
restrictions:

●

●

Every state must have exactly one

transition defined for every letter.

ε-moves are not allowed.

A Sample DFA

A Sample DFA

start

0 0

1

1

0 0

1

1

A Sample DFA

D

start

0 0

1

1

0 0

1

A

C

B
1

A Sample DFA

D

start

0 0

1

1

0 0

1

A

C

B
1

A. C B

B. D A

C. A D

D. B C

0 1

C o d e for DFAs

int kTransitionTable[kNumStates][kNumSymbols] = {
{0, 0, 1, 3, 7, 1, …},
…

};
bool kAcceptTable[kNumStates] = {

false,
true,
true,
…

};
bool simulateDFA(string input) {

int state = 0;
for (char ch: input)

state = kTransitionTable[state][ch];
return kAcceptTable[state];

}

C o d e for DFAs

int kTransitionTable[kNumStates][kNumSymbols] = {
{0, 0, 1, 3, 7, 1, …},
…

};
bool kAcceptTable[kNumStates] = {

false,
true,
true,
…

};
bool simulateDFA(string input) {

int state = 0;
for (char ch: input)

state = kTransitionTable[state][ch];
return kAcceptTable[state];

}

Runs in t ime O(m)

on a str ing o f

length m .

Speeding up Matching

●

●

●

In the worst-case, an N FA with n states
takes time O(mn2) to match a string of
length m .

DFAs, on the other hand, take only O(m).

There is another (beautiful!) algorithm to
convert N FAs to DFAs.

Lexical
Specification

Regular
Expressions

NFA DFA
Table-Driven

DFA

Subset Construction

●

●

●

●

N FA s can be in many states at once, while
DFAs can only be in a single state at a time.

Key idea: M a k e the DFA s imulate the
NFA .

H ave the states of the DFA correspond to
the sets of states of the N FA .

Transitions between states of DFA
correspond to transitions between sets of
states in the N FA .

From N F A to DFA

From N F A to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

1211 Σ

0

ε

ε

ε
start

From N F A to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

1211 Σ

0

ε

ε

ε
start

From N F A to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

1211 Σ

0

ε

ε

ε
start

0, 1, 4, 11start

From N F A to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

1211 Σ

0

ε

ε

ε
start

0, 1, 4, 11start

From N F A to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

1211 Σ

0

ε

ε

ε
start

0, 1, 4, 11start 2, 5, 12
d

From N F A to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

1211 Σ

0

ε

ε

ε
start

0, 1, 4, 11start 2, 5, 12
d

From N F A to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

1211 Σ

0

ε

ε

ε
start

0, 1, 4, 11start 2, 5, 12
d

From N F A to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

1211 Σ

0

ε

ε

ε
start

0, 1, 4, 11start 2, 5, 12
d

From N F A to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

1211 Σ

0

ε

ε

ε
start

0, 1, 4, 11start 2, 5, 12
d

Σ – d

12

From N F A to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

1211 Σ

0

ε

ε

ε
start

0, 1, 4, 11start 2, 5, 12
d

Σ – d

12

From N F A to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

1211 Σ

0

ε

ε

ε
start

0, 1, 4, 11start 2, 5, 12
d

Σ – d

12

From N F A to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

1211 Σ

0

ε

ε

ε
start

0, 1, 4, 11start 2, 5, 12
d

Σ – d

12

From N F A to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

1211 Σ

0

ε

ε

ε
start

0, 1, 4, 11start 2, 5, 12
d

Σ – d

o
3, 6

12

From N F A to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

1211 Σ

0

ε

ε

ε
start

0, 1, 4, 11start 2, 5, 12
d

Σ – d

o
3, 6

12

From N F A to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

1211 Σ

0

ε

ε

ε
start

0, 1, 4, 11start 2, 5, 12
d

Σ – d

o
3, 6 7 8 9 10

u b l e

12

From N F A to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

1211 Σ

0

ε

ε

ε
start

0, 1, 4, 11start 2, 5, 12
d

Σ – d

o
3, 6 7 8 9 10

u b l e

Σ – o
Σ – u Σ – b Σ – l Σ – e

Σ

Σ
12

Σ

From N F A to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

1211 Σ

0

ε

ε

ε
start

0, 1, 4, 11start 2, 5, 12
d

Σ – d

o
3, 6 7 8 9 10

u b l e

Σ – o
Σ – u Σ – b Σ – l Σ – e

Σ

Σ
12

Σ

Modified Subset Construction

●

●

●

Instead of marking whether a state is
accepting, remember which token type it
matches.

Break ties with priorities.

When using DFA as a scanner, consider
the DFA “stuck” if it enters the state
corresponding to the empty set .

Performance Concerns

●

●

The NFA-to-DFA construction can
introduce exponentially many states.

Time/memory tradeoff:

●

●

Low-memory N FA has higher scan time.

High-memory DFA has lower scan time.

● Could use a hybrid approach by
simplifying N FA before generating code.

Real-World Scanning: Python

+

while (ip < z)

++ip;

w h i l e (i p < z) \n \t + + i p ;

T_While (T_Ident < T_Ident) ++ T_Ident

ip z ip

While

++<

Ident

ip

Ident

z

Ident

ip

Python Blocks

● Scoping handled by whitespace:

if w == z:

a = b

c = d

else:

e = f

g = h

● What does that mean for the scanner?

Whitespace Tokens

●

●

●

●

●

Special tokens inserted to indicate changes in
levels of indentation.

N E W L I N E marks the end of a line.

I N D E N T indicates an increase in
indentation.

D E D E N T indicates a decrease in indentation.

N ote that I N D E N T and D E D E N T encode
change in indentation, not the total amount of
indentation.

if w == z:

a = b

c = d

else:

e = f

g = h

Scanning Python

if w == z:

a = b

c = d

else:

e = f

g = h

if ident

w

== ident

z

: NEWLINE

INDENT

a b

ident = ident NEWLINE

c d

ident = ident NEWLINE

DEDENT else :

INDENT

e f

ident = ident NEWLINE

Scanning Python

NEWLINE

DEDENT ident

g

= ident

h

NEWLINE

if w == z: {

a = b;

c = d;

} else {

e = f;

}

g = h;

if ident

w

== ident

z

: NEWLINE

INDENT ident

a

ident

c

= ident NEWLINE

b

= ident

d

NEWLINE

DEDENT else :

INDENT

e f

ident = ident NEWLINE

Scanning Python

NEWLINE

DEDENT ident

g

= ident

h

NEWLINE

if w == z: {

a = b;

c = d;

} else {

e = f;

}

g = h;

if ident

w

== ident

z

:

{

a

;

ident

c

ident = ident

b

= ident

d

;

} else :

e

ident = ident

f

;

Scanning Python

{

} ident

g

= ident

h

;

Where to I N D E N T / D E D E N T ?

●

●

●

Scanner maintains a stack of line indentations
keeping track of all indented contexts so far.

Initially, this stack contains 0, since initially the
contents of the file aren't indented.

O n a newline:

●

●

S e e how m u c h whitespace is at the start of the line.

If this value exceeds the top of the stack:

–

–

Push the value onto the stack.

Emit an I N D E N T token.

● Otherwise, while the value is less than the top of the stack:

–

–

Pop the stack.

Emit a D E D E N T token.

Source: http://docs.python.org/reference/lexical_analysis.html

http://docs.python.org/reference/lexical_analysis.html

Interesting Observation

●

●

Normally, more text on a line translates
into more tokens.

With D E D E N T , less text on a line often
means more tokens:

if cond1:

if cond2:

if cond3:

if cond4:

if cond5:

statement1

statement2

S umm ary

●

●

●

●

●

Lexical analysis splits input text into tokens

holding a lexeme and an attribute .

Lexemes are sets of strings often defined
with regular expressions .

Regular expressions can be converted to
NFAs and from there to DFAs .

Max ima l -munch using an automaton allows
for fast scanning.

N ot all tokens come directly from the source
code.

Next Time

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine

Code

(Plus a li t t le b i t her e)

