
Lecture 7: Introduction to Parsing (Syntax Analysis)

Lexical
Analysis

Lexical Analysis:

• Reads characters of the input program and produces 
tokens.
But:Are they syntactically correct?Are they valid

sentences of the input language?

Syntax
Analysis
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Today’s lecture

• context-free grammars,

• derivations,

• parse trees,

• ambiguity
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Not all languages can be described by Regular Expressions!!

The descriptive power of regular expressions has limits:

• REs cannot be used to describe balanced or nested constructs: E.g., set 

of all strings of balanced parentheses {(), (()), ((())), …}, or the set of 

all 0s followed by an equal number of 1s, {01, 0011, 000111, ...}.

• In regular expressions, a non-terminal symbol cannot be used before it 

has been fully defined.



8-Apr-20 COMP36512 Lecture 7 4

Chomsky’s hierarchy of Grammars:

• 1. Phrase structured.

• 2. Context Sensitive
number of Left Hand Side Symbols  number of Right Hand Side

Symbols

• 3. Context-Free
The Left Hand Side Symbol is a non-terminal

• 4. Regular
Only rules of the form: A, A a, ApB are allowed.

Regular Languages  Context-Free Languages  Cont.Sens.Ls  Phr.Str.Ls
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Expressing Syntax
• Context-free syntax is specified with a context-free grammar.

A grammar, G, is a 4-tuple G={S,N,T,P}, where:

S is a starting symbol;

N is a set of non-terminal symbols; 

T is a set of terminal symbols;

P is a set of production rules.
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Example:

CatNoiseCatNoise miau

| miau

rule 1

rule 2

– We can use the CatNoise grammar to create sentences: E.g.:
Rule Sentential Form
- CatNoise
1 CatNoise miau
2 miau miau

– Such a sequence of rewrites is called a derivation

The process of discovering a derivation for some sentence is called
parsing!
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Derivations and Parse Trees

Derivation: a sequence of derivation steps:

– At each step, we choose a non-terminal to replace.

– Different choices can lead to different derivations.

Two derivations are of interest:

– Leftmost derivation: at each step, replace the leftmost non-terminal.

– Rightmost derivation: at each step, replace the rightmost non-terminal

(we don’t care about randomly-ordered derivations!)



A parse tree

A parse tree is a graphical representation for a derivation

that filters out the choice regarding the replacement order.

Construction:
start with the starting symbol (root of the tree);
for each sentential form:
– add children nodes (for each symbol in the right-hand-side of the

production rule that was applied) to the node corresponding to the
left-hand-side symbol.

The leaves of the tree (read from left to right) constitute a sentential form
(fringe, or yield, or frontier, or ...)
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Find leftmost, rightmost derivation & parse tree for: x-2*y

1.Goal  Expr
2. Expr  Expr op Expr
3. | number
4. | id
5.Op  +
6. | -
7. | *
8. | /
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Find leftmost, rightmost derivation & parse tree for: x-2*y

1.Goal  Expr
2. Expr  Expr op Expr
3. | number
4. | id
5.Op  +
6. | -
7. | *
8. | /
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Derivations and Precedence
• The leftmost and the rightmost derivation in 

the previous slide give rise to different parse 

trees. Assuming a standard way of traversing, 

the former will evaluate to x – (2*y), but the 

latter will evaluate to (x – 2)*y.

• The two derivations point out a problem with 

the grammar: it has no notion of precedence 

(or implied order of evaluation).

• To add precedence: force parser to recognise

high-precedence subexpressions first.



8-Apr-20 COMP36512 Lecture 7 12

Ambiguity

A grammar that produces more than one parse tree for some

sentence is ambiguous. Or:

• If a grammar has more than one leftmost derivation for a

single sentential form, the grammar is ambiguous.

• If a grammar has more than one rightmost derivation for a

single sentential form, the grammar is ambiguous.

Example:

• Stmt  if Expr then Stmt | if Expr then Stmt else Stmt | …other…

• What are the derivations of:

– if E1 then if E2 then S1 else S2
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Example:

• Stmt  if Expr then Stmt | if Expr then Stmt else Stmt |

…other…

• What are the derivations of:

– if E1 then if E2 then S1 else S2
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Eliminating Ambiguity
• Rewrite the grammar to avoid the problem

• Match each else to innermost unmatched if:
– 1.

2.

– 3.

4.

– 5.

6.

Stmt

Stmt  IfwithElse
| IfnoElse

IfwithElse if Expr then IfwithElse else IfwithElse

| … other stmts…

IfnoElse if Expr then Stmt

| if Expr then IfwithElse else IfnoElse

(2)
(5)
(?)
(1)
(3)
(?)
(4)

(4)

IfnoElse
if Expr then Stmt
if E1 then Stmt
if E1 then IfwithElse
if E1 then if Expr then IfwithElse else IfwithElse 
if E1 then if E2 then IfwithElse else IfwithElse if
E1 then if E2 then S1 else IfwithElse
if E1 then if E2 then S1 else S2
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Eliminating Ambiguity
• Rewrite the grammar to avoid the problem

• Match each else to innermost unmatched if:
– 1.

2.

– 3.

4.

– 5.

6.

Stmt

Stmt  IfwithElse
| IfnoElse

IfwithElse if Expr then IfwithElse else IfwithElse

| … other stmts…

IfnoElse if Expr then Stmt

| if Expr then IfwithElse else IfnoElse
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Deeper Ambiguity
• Ambiguity usually refers to confusion in the CFG

• Overloading can create deeper ambiguity
– E.g.: a=b(3) : b could be either a function or a variable.

• Disambiguating this one requires context:
– An issue of type, not context-free syntax

– Needs values of declarations

– Requires an extra-grammatical solution

• Resolving ambiguity:
– if context-free: rewrite the grammar

– context-sensitive ambiguity: check with other means: needs knowledge

of types, declarations, … This is a language design problem

• Sometimes the compiler writer accepts an ambiguous

grammar: parsing techniques may do the “right thing”.
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Parsing techniques

• Top-down parsers:

• Bottom-up parsers:
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Top-down parsers

– Construct the top node of the tree and then the rest in pre-
order. (depth-first)

– Pick a production & try to match the input; if you fail,
backtrack.

– Essentially, we try to find a leftmost derivation for the input 
string (which we scan left-to-right).

– some grammars are backtrack-free (predictive parsing).
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Bottom-up parsers

– Construct the tree for an input string, beginning at the 
leaves and working up towards the top (root).

– Bottom-up parsing, using left-to-right scan of the input,
tries to construct a rightmost derivation in reverse.

– Handle a large class of grammars.



Top-down vs …
Has an analogy with two special cases of depth-first traversals:

• Pre-order: first traverse node x and then x’s subtrees in left-

to-right order. (action is done when we first visit a node)

• Post-order: first traverse node x’s subtrees in left-to-right 

order and then node x. (action is done just before we leave a

node for the last time)

id * id 

Expr * id 

Expr op id

Expr op Expr 

Expr

id

Expr

*

op

id

Expr

Expr

Expr op Expr

id*id

…bottom-up!

8-Apr-20
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Top-Down Recursive-Descent Parsing
• 1. Construct the root with the starting symbol of the grammar.

• 2. Repeat until the fringe of the parse tree matches the input string:

– Assuming a node labelledA, select a production withA on its left-hand-side 

and, for each symbol on its right-hand-side, construct the appropriate child.

– When a terminal symbol is added to the fringe and it doesn’t match the 

fringe, backtrack.

– Find the next node to be expanded.

The key is picking the right production in the first step: that choice should
be guided by the input string.
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Example: Parse x-2*y
Steps (one scenario from many)

Goal

Expr

- Term

Term * Factor

y
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Expr

Term

Factor Factor 

x 2

Other choices for expansion are possible:

•Wrong choice leads to non-termination!

•This is a bad property for a parser!

•Parser must make the right choice!

Rule Sentential Form Input
- Goal | x – 2*y

1 Expr | x – 2*y

2 Expr + Term | x – 2*y

2 Expr + Term + Term | x – 2*y

2 Expr + Term + Term + Term | x – 2*y

2 Expr + Term + Term + … + Term | x – 2*y



Example: Parse x-2*y
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Rule Sentential Form Input
- Goal | x – 2*y
1 Expr | x – 2*y

2 Expr + Term | x – 2*y

4 Term + Term | x – 2*y

7 Factor + Term | x – 2*y

9 id + Term | x – 2*y
Fail id + Term x | – 2*y

Back Expr | x – 2*y

3 Expr – Term | x – 2*y

4 Term – Term | x – 2*y

7 Factor – Term | x – 2*y

9 id – Term | x – 2*y

Match id – Term x – | 2*y

7 id – Factor x – | 2*y

9 id – num x – | 2*y

Fail id – num x – 2 | *y

Back id – Term x – | 2*y

5 id – Term * Factor x – | 2*y

7 id – Factor * Factor x – | 2*y

8 id – num * Factor x – | 2*y

match id – num * Factor x – 2* | y

9 id – num * id x – 2* | y

match id – num * id x – 2*y |
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Left-Recursive Grammars
• Definition: Agrammar is left-recursive if it has a non-terminal 

symbol A , such that there is a derivation AAa, for some

string a.

• A left-recursive grammar can cause a recursive-descent parser

to go into an infinite loop.

• Eliminating left-recursion: In many cases, it is sufficient to

replace AAa | b with A bA'

• Example:

Sum  Sum+number | number

would become:

Sum number | S'um

Sum' number Sum' | 

and A' aA' | 



Eliminating Left Recursion

Applying the transformation to the Grammar of the Example we get:

ExprTerm | Expr'
Expr' +Term Expr' | -Term Expr' | 
Term  Factor |Term'
Term' *Factor Term' | /Factor Term' | 
(Goal Expr and Factor number | id remain unchanged)

Non-intuitive, but it works!
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Eliminating Left Recursion
Algorithm

General algorithm: works for non-cyclic, no -productions

grammars
1. Arrange the non-terminal symbols in order:A1,A2,A3, …, An

2. For i=1 to n do
for j=1 to i-1 do

I) replace each production of the formA iA j

the productionsA i1  | 2  | … |k 

with

whereA j1 | 2 | … | k are all the currentA j productions

II) eliminate the immediate left recursion among theA i



Example

E E+T|T
TT*F|F
F (E)|id
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Where are we?

• We can produce a top-down parser, but:

– if it picks the wrong production rule it has to backtrack.

• Idea: look ahead in input and use context to

pick correctly.

• How much lookahead is needed?

– In general, an arbitrarily large amount.

– Fortunately, most programming language constructs

fall into subclasses of context-free grammars that

can be parsed with limited lookahead.
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Predictive Parsing
• Basic idea:

– For any production A a | b we would like to have a distinct way of

choosing the correct production to expand.

• FIRST sets:
– For any symbol A, FIRST(A) is defined as the set of terminal symbols

that appear as the first symbol of one or more strings derived from A.

E.g. for previous grammer: FIRST(Expr' )={+,-,},
{FIRST(Term' )={*,/,}, FIRST(Factor)={number, id

• The LL(1) property:
– If Aa and Ab both appear in the grammar, we would like to have: 

FIRST(a)FIRST(b) =. This would allow the parser to make a 

correct choice with a lookahead of exactly one symbol!



A
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Left Factoring
What if my grammar does not have the LL(1) property? 

Sometimes, we can transform a grammar to have this property. 

Algorithm:

1.For each non-terminalA, find the longest prefix, say a, common to
two or more of its alternatives

2.if a then replace all the A productions, Aab1|ab2|ab3|...|abn|,
where  is anything that does not begin with a, with AaZ |  and
Zb1|b2|b3|...|bn

Repeat the above until no common prefixes remain

Example: A ab1 | ab2 | ab3 would become A aZ and Z  b1|b2|b3

Note the graphical representation:
ab1

ab2

ab3

A

b3

b1

b2aZ



Example

SiEtS|iEtSeS|a
E b
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Example

Goal Expr
Expr Term +
Expr

| Term – Expr
| Term

Term  Factor *
Term

| Factor / Term
| Factor

Factor number
| id

We have a problem with the different rules for Expr as well as those for Term. In 

both cases, the first symbol of the right-hand side is the same (Term and Factor, 
respectively). E.g.:

FIRST(Term)=FIRST(Term)FIRST(Term)={number, id}.
FIRST(Factor)=FIRST(Factor)FIRST(Factor)={number, id}.

Applying left factoring:
Expr Term Expr´
Expr´ +Expr | – Expr | 

Term  Factor Term´
Term´ * Term | / Term | 

FIRST(+)={+}; FIRST(–)={–}; FIRST()={};

FIRST(–) FIRST(+)  FIRST()= =

FIRST(*)={*}; FIRST(/)={/}; FIRST()={};

FIRST(*) FIRST(/)  FIRST()= =



Parsing Table
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Example (cont.)
1. Goal Expr
2. ExprTerm Expr´
3. Expr´ +Expr
4. | - Expr
5. | 
6. Term Factor Term´
7. Term´ * Term
8. | / Term
9. | 
10. Factor number

11. | id

The next symbol 

determines each choice 

correctly. No backtracking 

needed.

Rule Sentential Form Input

- Goal | x – 2*y

1 Expr | x – 2*y

2 Term Expr´ | x – 2*y

6 Factor Term´ Expr´ | x – 2*y

11 id Term´ Expr´ | x – 2*y

Match id Term´ Expr´ x | – 2*y

9 id  Expr´ x | – 2*y

4 id – Expr x | – 2*y

Match id – Expr x – | 2*y

2 id – Term Expr´ x – | 2*y

6 id – Factor Term´ Expr´ x – | 2*y

10 id – num Term´ Expr´ x – | 2*y

Match id – num Term´ Expr´ x – 2 | *y

7 id – num * Term Expr´ x – 2 | *y

Match id – num * Term Expr´ x – 2* | y

6 id – num * Factor Term´ Expr´ x – 2* | y

11 id – num * id Term Expr´ x – 2* | y

Match id – num * id Term´ Expr´ x – 2*y |

9 id – num * id Expr´ x – 2*y |

5 id – num * id x – 2*y |
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Conclusion
• Top-down parsing:

– recursive with backtracking (not often used in practice)

– recursive predictive

• Given a Context Free Grammar that doesn’t meet the LL(1) 

condition, it is undecidable whether or not an equivalent LL(1) 

grammar exists.

• Next time: Bottom-Up Parsing


