Lecture 7: Introduction to Parsing (Syntax Analysis)

Lexical Analysis:

• Reads characters of the input program and produces tokens.

But: Are they syntactically correct? Are they valid sentences of the input language?

Today's lecture

- context-free grammars,
- derivations,
- parse trees,
- ambiguity

Not all languages can be described by Regular Expressions!! The descriptive power of regular expressions has limits:

- REs cannot be used to describe balanced or nested constructs: E.g., set of all strings of balanced parentheses {(), (()), ((())), ...}, or the set of all 0s followed by an equal number of 1s, {01, 0011, 000111, ...}.
- In regular expressions, a non-terminal symbol cannot be used before it has been fully defined.

Chomsky's hierarchy of Grammars:

- 1. Phrase structured.
- 2. Context Sensitive

number of Left Hand Side Symbols ≤ number of Right Hand Side Symbols

• 3. Context-Free

The Left Hand Side Symbol is a non-terminal

• 4. Regular

Only rules of the form: $A \rightarrow \varepsilon$, $A \rightarrow a$, $A \rightarrow pB$ are allowed.

 $Regular \ Languages \subset Context-Free \ Languages \subset Cont.Sens.Ls \subset Phr.Str.Ls$

Expressing Syntax

• Context-free syntax is specified with a context-free grammar. A grammar, G, is a 4-tuple G={S,N,T,P}, where:

> S is a starting symbol; N is a set of non-terminal symbols; T is a set of terminal symbols; P is a set of production rules.

Example:

CatNoise→CatNoise miau	rule 1
<i> miau</i>	rule 2
– We can use the CatNoise Rule	grammar to create sentences: E.g.: Sentential Form
-	CatNoise
$\frac{1}{2}$	CatNoise miau miau miau
	maa maa

- Such a sequence of rewrites is called a derivation

The process of discovering a derivation for some sentence is called parsing!

Derivations and Parse Trees

Derivation: a sequence of derivation steps:

- At each step, we choose a non-terminal to replace.
- Different choices can lead to different derivations.

Two derivations are of interest:

- <u>Leftmost derivation</u>: at each step, replace the leftmost non-terminal.
- <u>Rightmost derivation</u>: at each step, replace the rightmost non-terminal (we don't care about randomly-ordered derivations!)

A parse tree

A parse tree is a graphical representation for a derivation that filters out the choice regarding the replacement order. *Construction:*

start with the starting symbol (root of the tree); for each sentential form:

- add children nodes (for each symbol in the right-hand-side of the production rule that was applied) to the node corresponding to the left-hand-side symbol.

The leaves of the tree (read from left to right) constitute a sentential form (fringe, or yield, or frontier, or ...)

Find leftmost, rightmost derivation & parse tree for: x-2*y

```
1.Goal \rightarrow Expr

2. Expr \rightarrow Expr op Expr

3. | number

4. | id

5.Op \rightarrow +

6. | -

7. | *

8. | /
```

Find leftmost, rightmost derivation & parse tree for: x-2*y

```
1.Goal \rightarrow Expr

2. Expr \rightarrow Expr op Expr

3. | number

4. | id

5.Op \rightarrow +

6. | -

7. | *

8. | /
```

Derivations and Precedence

- The leftmost and the rightmost derivation in the previous slide give rise to different parse trees. Assuming a standard way of traversing, the former will evaluate to *x* − (2*y), but the latter will evaluate to (*x* − 2)*y.
- The two derivations point out a problem with the grammar: it has no notion of precedence (or implied order of evaluation).
- To add precedence: force parser to recognise high-precedence subexpressions first.

Ambiguity

A grammar that produces more than one parse tree for some sentence is ambiguous. Or:

- If a grammar has more than one leftmost derivation for a single sentential form, the grammar is ambiguous.
- If a grammar has more than one rightmost derivation for a single sentential form, the grammar is ambiguous.

Example:

- Stmt \rightarrow if Expr then Stmt | if Expr then Stmt else Stmt | ...other...
- What are the derivations of:
 - if E1 then if E2 then S1 else S2

Example:

- Stmt \rightarrow if Expr then Stmt | if Expr then Stmt else Stmt | ...other...
- What are the derivations of:
 - if E1 then if E2 then S1 else S2

Eliminating Ambiguity

- Rewrite the grammar to avoid the problem
- Match each else to innermost unmatched if:
 - -1. Stmt \rightarrow If with Else
 - | IfnoElse
 - $3. If with Else \rightarrow if Expr then If with Else else If with Else$
 - 4. | ... other stmts...
 - 5. If no Else \rightarrow if Expr then Stmt
 - 6. | if Expr then If with Else else If no Else

Stmt

(2) IfnoElse

2.

- (5) if Expr then Stmt
- (?) if E1 then Stmt
- (1) if E1 then If with Else
- (3) if E1 then if Expr then If with Else else If with Else
- (?) if E1 then if E2 then If with Else else If with Else if
- (4) E1 then if E2 then S1 else IfwithElse
- (4) if E1 then if E2 then S1 else S2

Eliminating Ambiguity

- Rewrite the grammar to avoid the problem
- Match each else to innermost unmatched if:
 - -1. Stmt \rightarrow If with Else
 - | IfnoElse
 - $\begin{array}{ccc} & 3. & If with Else \rightarrow if Expr then If with Else else If with Else \\ 4. & 0 & 0 & 0 \\ \end{array}$
 - -5. If no Else \rightarrow if Expr then Stmt
 - 6. | if Expr then If with Else else If no Else

Stmt

2.

Deeper Ambiguity

- Ambiguity usually refers to confusion in the CFG
- Overloading can create deeper ambiguity
 - E.g.: a=b(3): b could be either a function or a variable.
- Disambiguating this one requires context:
 - An issue of type, not context-free syntax
 - Needs values of declarations
 - Requires an extra-grammatical solution
- Resolving ambiguity:
 - if context-free: rewrite the grammar
 - context-sensitive ambiguity: check with other means: needs knowledge of types, declarations, ... This is a language design problem
- Sometimes the compiler writer accepts an ambiguous grammar: parsing techniques may do the "right thing".

Parsing techniques

• Top-down parsers:

• Bottom-up parsers:

Top-down parsers

- Construct the top node of the tree and then the rest in <u>pre-order</u>. (depth-first)
- Pick a production & try to match the input; if you fail, backtrack.
- Essentially, we try to find a **leftmost** derivation for the input string (which we scan left-to-right).
- some grammars are backtrack-free (predictive parsing).

Bottom-up parsers

- Construct the tree for an input string, beginning at the leaves and working up towards the top (root).
- Bottom-up parsing, using left-to-right scan of the input, tries to construct a <u>rightmost</u> derivation in reverse.
- Handle a large class of grammars.

Top-down vs ...

Has an analogy with two special cases of depth-first traversals:

- Pre-order: first traverse node x and then x's subtrees in leftto-right order. (action is done when we first visit a node)
- Post-order: first traverse node x's subtrees in left-to-right order and then node x. (action is done just before we leave a node for the last time)

Top-Down Recursive-Descent Parsing

- 1. Construct the root with the starting symbol of the grammar.
- 2. Repeat until the fringe of the parse tree matches the input string:
 - Assuming a node labelled A, select a production with A on its left-hand-side and, for each symbol on its right-hand-side, construct the appropriate child.
 - When a terminal symbol is added to the fringe and it doesn't match the fringe, backtrack.
 - Find the next node to be expanded.

The key is picking the right production in the first step: that choice should be guided by the input string.

Example:1. Goal $\rightarrow Expr$ 2. Expr $\rightarrow Expr + Term$ 3. / Expr - Term4. / Term

5. Term \rightarrow Term * Factor 6. / Term / Factor 7. / Factor 8. Factor \rightarrow number 9. / id

Example: Parse *x*-2**y*

Steps (one scenario from many)

Other choices for expansion are possible:

Rule	Sentential Form	Input
-	Goal	x - 2*y
1	Expr	x - 2*y
2	Expr + Term	x - 2*y
2	<i>Expr</i> + <i>Term</i> + <i>Term</i>	x - 2*y
2	<i>Expr</i> + <i>Term</i> + <i>Term</i> + <i>Term</i>	x - 2*y
2	<i>Expr</i> + <i>Term</i> + <i>Term</i> + + <i>Term</i>	$ x - 2^*y $

Wrong choice leads to non-termination!This is a bad property for a parser!Parser must make the right choice!

COMP36512 Lecture 7

Example: Parse $x-2^*y$

Rule	Sentential Form	Input
-	Goal	x - 2*y
1	Expr	$ x - 2^*y $
2	Expr + Term	x - 2*y
4	Term + Term	x - 2*y
7	Factor + Term	x - 2*y
9	<i>id + Term</i>	$ x - 2^*y $
Fail	id + Term	x - 2*y
Back	Expr	x - 2*y
3	Expr – Term	x - 2*y
4	Term – Term	x - 2*y
7	Factor – Term	x - 2*y
9	id – Term	x - 2*y
Match	id – Term	$x - 2^*y $
7	id – Factor	$x - 2^*y $
9	id – num	x - 2*y
Fail	id – num	x-2 *y
Back	id – Term	x - 2*y
5	id – Term * Factor	x - 2*y
7	id – Factor * Factor	x - 2*y
8	id – num * Factor	x - 2*y
match	id – num * Factor	$x - 2^* y$
9	id – num * id	$x - 2^* y$
match	id – num * id	x - 2*y

Example:	
-	-

1.	$Goal \rightarrow Expr$
2.	$Expr \rightarrow Expr + Term$
3.	/ Expr – Term
4.	/ Term

5. Term	$a \rightarrow Term * Factor$
6.	/ Term / Factor
7.	/ Factor
8. Facto	$r \rightarrow number$
9.	/

Left-Recursive Grammars

- **Definition**: A grammar is left-recursive if it has a non-terminal symbol A, such that there is a derivation $A \Rightarrow Aa$, for some string a.
- A left-recursive grammar can cause a recursive-descent parser to go into an infinite loop.
- Eliminating left-recursion: In many cases, it is sufficient to replace $A \rightarrow Aa/b$ with $A \rightarrow bA'$ and $A' \rightarrow aA'/\varepsilon$
- Example:

Sum→*Sum*+*number*/*number*

would become:

 $Sum \rightarrow number / S'um$

 $Sum' \rightarrow +number Sum'/\varepsilon$

Eliminating Left Recursion

Example:1. Goal $\rightarrow Expr$ 2. $Expr \rightarrow Expr + Term$ 3. / Expr - Term4. / Term

5. Term \rightarrow Term * Factor 6. / Term / Factor 7. / Factor 8. Factor \rightarrow number 9. / id

Applying the transformation to the Grammar of the Example we get: $Expr \rightarrow Term / Expr'$ $Expr' \rightarrow +Term Expr' / -Term Expr' / \varepsilon$ $Term \rightarrow Factor /Term'$ $Term' \rightarrow *Factor Term' / /Factor Term' / \varepsilon$ $(Goal \rightarrow Expr \text{ and } Factor \rightarrow number / id \text{ remain unchanged})$ Non-intuitive, but it works!

Eliminating Left Recursion Algorithm

<u>General algorithm</u>: works for non-cyclic, no ε -productions

grammars

1. Arrange the non-terminal symbols in order: $A_1, A_2, A_3, \dots, A_n$ 2. For i=1 to n do

> for *j*=1 to *i*-1 do I) replace each production of the form $A_i \rightarrow A_j \gamma$ with the productions $A_i \rightarrow \delta_1 \gamma / \delta_2 \gamma / \dots / \delta_k \gamma$ where $A_j \rightarrow \delta_1 / \delta_2 / \dots / \delta_k$ are all the current A_j productions II) eliminate the immediate left recursion among the A_i

Example

 $E \rightarrow E+T|T$ $T \rightarrow T^*F|F$ $F \rightarrow (E)|id$

Where are we?

- We can produce a top-down parser, but:
 if it picks the wrong production rule it has to backtrack.
- <u>Idea</u>: look ahead in input and use context to pick correctly.
- How much lookahead is needed?
 - In general, an arbitrarily large amount.
 - Fortunately, most programming language constructs fall into subclasses of context-free grammars that can be parsed with limited lookahead.

Predictive Parsing

- Basic idea:
 - For any production $A \rightarrow a/b$ we would like to have a distinct way of choosing the correct production to expand.
- *FIRST* sets:
 - For any symbol A, *FIRST(A)* is defined as <u>the set of terminal symbols</u> that appear as the first symbol of one or more strings derived from A.
 E.g. for previous grammer: *FIRST(Expr')={+,-,ε}, {FIRST(Term')={*,/,ε}, FIRST(Factor)={number, id*
- The LL(1) property:
 - If $A \rightarrow a$ and $A \rightarrow b$ both appear in the grammar, we would like to have: $FIRST(a) \cap FIRST(b) = \emptyset$. This would allow the parser to make a correct choice with a lookahead of exactly one symbol!

Left Factoring

What if my grammar does not have the LL(1) property?

Sometimes, we can transform a grammar to have this property.

Algorithm:

1.For each non-terminal A, find the longest prefix, say a, common to two or more of its alternatives

2.if $a \neq \varepsilon$ then replace all the A productions, $A \rightarrow ab_1/ab_2/ab_3/.../ab_n/\gamma$, where γ is anything that does not begin with a, with $A \rightarrow aZ/\gamma$ and $Z \rightarrow b_1/b_2/b_3/.../b_n$

Repeat the above until no common prefixes remain **Example**: $A \rightarrow ab_1 / ab_2 / ab_3$ would become $A \rightarrow aZ$ and $Z \rightarrow b_1 / b_2 / b_3$

Note the graphical representation:

30

Example

S→iEtS|iEtSeS|a E→ b

We have a problem with the different rules for *Expr* as well as those for *Term*. In both cases, the first symbol of the right-hand side is the same (*Term* and *Factor*, respectively). E.g.: $FIRST(Term)=FIRST(Term) \cap FIRST(Term)=\{number, id\}.$ $FIRST(Factor)=FIRST(Factor) \cap FIRST(Factor)=\{number, id\}.$

Applying left factoring:

 $Expr \rightarrow Term Expr'$ $Expr' \rightarrow + Expr / - Expr / \varepsilon$

Term \rightarrow Factor Term' Term' \rightarrow * Term // Term / ε $FIRST(+)=\{+\}; FIRST(-)=\{-\}; FIRST(\varepsilon)=\{\varepsilon\};$ $FIRST(-) \cap FIRST(+) \cap FIRST(\varepsilon)==\emptyset$

 $FIRST(*)=\{ *\}; FIRST(/)=\{/\}; FIRST(\varepsilon)=\{\varepsilon\};$ $FIRST(*) \cap FIRST(/) \cap FIRST(\varepsilon)==\emptyset$

Parsing Table

Example (cont.)

1. Goal \rightarrow Expr
2. Expr \rightarrow Term Expr'
3. $Expr' \rightarrow + Expr$
<i>4. /- Expr</i>
5. / <i>ɛ</i>
6. Term \rightarrow Factor Term'
7. Term´→ * Term
<i>8.</i> // <i>Term</i>
9. /E
10. Factor \rightarrow number
11. /id
'

The next symbol determines each choice correctly. No backtracking needed.

Rule	Sentential Form	Input
-	Goal	x - 2*y
1	Expr	x - 2*y
2	Term Expr´	x - 2*y
6	Factor Term' Expr'	x - 2*y
11	id Term' Expr'	x - 2*y
Match	id Term´ Expr´	x - 2*y
9	id & Expr´	x -2*y
4	id – Expr	x - 2*y
Match	<i>id – Expr</i>	x - 2*y
2	id – Term Expr´	x - 2*y
6	id – Factor Term´ Expr´	x - 2*y
10	id – num Term´Expr´	x - 2*y
Match	id – num Term´Expr´	x - 2 *y
7	id – num * Term Expr´	x-2 *y
Match	id – num * Term Expr´	$x - 2^* y$
6	id – num * Factor Term´ Expr´	$x - 2^* y$
11	id – num * id Term' Expr'	$ x - 2^* y $
Match	id – num * id Term´ Expr´	x - 2*y
9	id – num * id Expr´	$ x - 2^*y $
5	id – num * id	$ x - 2^*y $

Conclusion

- Top-down parsing:
 - recursive with backtracking (not often used in practice)
 - recursive predictive

- Given a Context Free Grammar that doesn't meet the LL(1) condition, it is undecidable whether or not an equivalent LL(1) grammar exists.
- <u>Next time</u>: Bottom-Up Parsing