
Lecture 7: Introduction to Parsing (Syntax Analysis)

Lexical
Analysis

Lexical Analysis:

• Reads characters of the input program and produces
tokens.
But:Are they syntactically correct?Are they valid

sentences of the input language?

Syntax
Analysis

8-Apr-20 COMP36512 Lecture 7 1

8-Apr-20 COMP36512 Lecture 7 2

Today’s lecture

• context-free grammars,

• derivations,

• parse trees,

• ambiguity

8-Apr-20 COMP36512 Lecture 7 3

Not all languages can be described by Regular Expressions!!

The descriptive power of regular expressions has limits:

• REs cannot be used to describe balanced or nested constructs: E.g., set

of all strings of balanced parentheses {(), (()), ((())), …}, or the set of

all 0s followed by an equal number of 1s, {01, 0011, 000111, ...}.

• In regular expressions, a non-terminal symbol cannot be used before it

has been fully defined.

8-Apr-20 COMP36512 Lecture 7 4

Chomsky’s hierarchy of Grammars:

• 1. Phrase structured.

• 2. Context Sensitive
number of Left Hand Side Symbols number of Right Hand Side

Symbols

• 3. Context-Free
The Left Hand Side Symbol is a non-terminal

• 4. Regular
Only rules of the form: A, A a, ApB are allowed.

Regular Languages Context-Free Languages Cont.Sens.Ls Phr.Str.Ls

8-Apr-20 COMP36512 Lecture 7 5

Expressing Syntax
• Context-free syntax is specified with a context-free grammar.

A grammar, G, is a 4-tuple G={S,N,T,P}, where:

S is a starting symbol;

N is a set of non-terminal symbols;

T is a set of terminal symbols;

P is a set of production rules.

8-Apr-20 COMP36512 Lecture 7 6

Example:

CatNoiseCatNoise miau

| miau

rule 1

rule 2

– We can use the CatNoise grammar to create sentences: E.g.:
Rule Sentential Form
- CatNoise
1 CatNoise miau
2 miau miau

– Such a sequence of rewrites is called a derivation

The process of discovering a derivation for some sentence is called
parsing!

8-Apr-20 COMP36512 Lecture 7 7

Derivations and Parse Trees

Derivation: a sequence of derivation steps:

– At each step, we choose a non-terminal to replace.

– Different choices can lead to different derivations.

Two derivations are of interest:

– Leftmost derivation: at each step, replace the leftmost non-terminal.

– Rightmost derivation: at each step, replace the rightmost non-terminal

(we don’t care about randomly-ordered derivations!)

A parse tree

A parse tree is a graphical representation for a derivation

that filters out the choice regarding the replacement order.

Construction:
start with the starting symbol (root of the tree);
for each sentential form:
– add children nodes (for each symbol in the right-hand-side of the

production rule that was applied) to the node corresponding to the
left-hand-side symbol.

The leaves of the tree (read from left to right) constitute a sentential form
(fringe, or yield, or frontier, or ...)

8-Apr-20 COMP36512 Lecture 7 8

8-Apr-20 COMP36512 Lecture 7 9

Find leftmost, rightmost derivation & parse tree for: x-2*y

1.Goal Expr
2. Expr Expr op Expr
3. | number
4. | id
5.Op +
6. | -
7. | *
8. | /

8-Apr-20 COMP36512 Lecture 7 10

Find leftmost, rightmost derivation & parse tree for: x-2*y

1.Goal Expr
2. Expr Expr op Expr
3. | number
4. | id
5.Op +
6. | -
7. | *
8. | /

8-Apr-20 COMP36512 Lecture 7 11

Derivations and Precedence
• The leftmost and the rightmost derivation in

the previous slide give rise to different parse

trees. Assuming a standard way of traversing,

the former will evaluate to x – (2*y), but the

latter will evaluate to (x – 2)*y.

• The two derivations point out a problem with

the grammar: it has no notion of precedence

(or implied order of evaluation).

• To add precedence: force parser to recognise

high-precedence subexpressions first.

8-Apr-20 COMP36512 Lecture 7 12

Ambiguity

A grammar that produces more than one parse tree for some

sentence is ambiguous. Or:

• If a grammar has more than one leftmost derivation for a

single sentential form, the grammar is ambiguous.

• If a grammar has more than one rightmost derivation for a

single sentential form, the grammar is ambiguous.

Example:

• Stmt if Expr then Stmt | if Expr then Stmt else Stmt | …other…

• What are the derivations of:

– if E1 then if E2 then S1 else S2

8-Apr-20 COMP36512 Lecture 7 13

Example:

• Stmt if Expr then Stmt | if Expr then Stmt else Stmt |

…other…

• What are the derivations of:

– if E1 then if E2 then S1 else S2

8-Apr-20 COMP36512 Lecture 7 14

Eliminating Ambiguity
• Rewrite the grammar to avoid the problem

• Match each else to innermost unmatched if:
– 1.

2.

– 3.

4.

– 5.

6.

Stmt

Stmt IfwithElse
| IfnoElse

IfwithElse if Expr then IfwithElse else IfwithElse

| … other stmts…

IfnoElse if Expr then Stmt

| if Expr then IfwithElse else IfnoElse

(2)
(5)
(?)
(1)
(3)
(?)
(4)

(4)

IfnoElse
if Expr then Stmt
if E1 then Stmt
if E1 then IfwithElse
if E1 then if Expr then IfwithElse else IfwithElse
if E1 then if E2 then IfwithElse else IfwithElse if
E1 then if E2 then S1 else IfwithElse
if E1 then if E2 then S1 else S2

8-Apr-20 COMP36512 Lecture 7 15

Eliminating Ambiguity
• Rewrite the grammar to avoid the problem

• Match each else to innermost unmatched if:
– 1.

2.

– 3.

4.

– 5.

6.

Stmt

Stmt IfwithElse
| IfnoElse

IfwithElse if Expr then IfwithElse else IfwithElse

| … other stmts…

IfnoElse if Expr then Stmt

| if Expr then IfwithElse else IfnoElse

8-Apr-20 COMP36512 Lecture 7 16

Deeper Ambiguity
• Ambiguity usually refers to confusion in the CFG

• Overloading can create deeper ambiguity
– E.g.: a=b(3) : b could be either a function or a variable.

• Disambiguating this one requires context:
– An issue of type, not context-free syntax

– Needs values of declarations

– Requires an extra-grammatical solution

• Resolving ambiguity:
– if context-free: rewrite the grammar

– context-sensitive ambiguity: check with other means: needs knowledge

of types, declarations, … This is a language design problem

• Sometimes the compiler writer accepts an ambiguous

grammar: parsing techniques may do the “right thing”.

8-Apr-20 COMP36512 Lecture 7 17

Parsing techniques

• Top-down parsers:

• Bottom-up parsers:

8-Apr-20 COMP36512 Lecture 7 18

Top-down parsers

– Construct the top node of the tree and then the rest in pre-
order. (depth-first)

– Pick a production & try to match the input; if you fail,
backtrack.

– Essentially, we try to find a leftmost derivation for the input
string (which we scan left-to-right).

– some grammars are backtrack-free (predictive parsing).

8-Apr-20 COMP36512 Lecture 7 19

Bottom-up parsers

– Construct the tree for an input string, beginning at the
leaves and working up towards the top (root).

– Bottom-up parsing, using left-to-right scan of the input,
tries to construct a rightmost derivation in reverse.

– Handle a large class of grammars.

Top-down vs …
Has an analogy with two special cases of depth-first traversals:

• Pre-order: first traverse node x and then x’s subtrees in left-

to-right order. (action is done when we first visit a node)

• Post-order: first traverse node x’s subtrees in left-to-right

order and then node x. (action is done just before we leave a

node for the last time)

id * id

Expr * id

Expr op id

Expr op Expr

Expr

id

Expr

*

op

id

Expr

Expr

Expr op Expr

id*id

…bottom-up!

8-Apr-20

8-Apr-21

Top-Down Recursive-Descent Parsing
• 1. Construct the root with the starting symbol of the grammar.

• 2. Repeat until the fringe of the parse tree matches the input string:

– Assuming a node labelledA, select a production withA on its left-hand-side

and, for each symbol on its right-hand-side, construct the appropriate child.

– When a terminal symbol is added to the fringe and it doesn’t match the

fringe, backtrack.

– Find the next node to be expanded.

The key is picking the right production in the first step: that choice should
be guided by the input string.

8-Apr-20 COMP36512 Lecture 7 22

Example: Parse x-2*y
Steps (one scenario from many)

Goal

Expr

- Term

Term * Factor

y

8-Apr-20 COMP36512 Lecture 7 23

Expr

Term

Factor Factor

x 2

Other choices for expansion are possible:

•Wrong choice leads to non-termination!

•This is a bad property for a parser!

•Parser must make the right choice!

Rule Sentential Form Input
- Goal | x – 2*y

1 Expr | x – 2*y

2 Expr + Term | x – 2*y

2 Expr + Term + Term | x – 2*y

2 Expr + Term + Term + Term | x – 2*y

2 Expr + Term + Term + … + Term | x – 2*y

Example: Parse x-2*y

8-Apr-20 COMP36512 Lecture 7 24

Rule Sentential Form Input
- Goal | x – 2*y
1 Expr | x – 2*y

2 Expr + Term | x – 2*y

4 Term + Term | x – 2*y

7 Factor + Term | x – 2*y

9 id + Term | x – 2*y
Fail id + Term x | – 2*y

Back Expr | x – 2*y

3 Expr – Term | x – 2*y

4 Term – Term | x – 2*y

7 Factor – Term | x – 2*y

9 id – Term | x – 2*y

Match id – Term x – | 2*y

7 id – Factor x – | 2*y

9 id – num x – | 2*y

Fail id – num x – 2 | *y

Back id – Term x – | 2*y

5 id – Term * Factor x – | 2*y

7 id – Factor * Factor x – | 2*y

8 id – num * Factor x – | 2*y

match id – num * Factor x – 2* | y

9 id – num * id x – 2* | y

match id – num * id x – 2*y |

8-Apr-20 COMP36512 Lecture 8 25

Left-Recursive Grammars
• Definition: Agrammar is left-recursive if it has a non-terminal

symbol A , such that there is a derivation AAa, for some

string a.

• A left-recursive grammar can cause a recursive-descent parser

to go into an infinite loop.

• Eliminating left-recursion: In many cases, it is sufficient to

replace AAa | b with A bA'

• Example:

Sum Sum+number | number

would become:

Sum number | S'um

Sum' number Sum' |

and A' aA' |

Eliminating Left Recursion

Applying the transformation to the Grammar of the Example we get:

ExprTerm | Expr'
Expr' +Term Expr' | -Term Expr' |
Term Factor |Term'
Term' *Factor Term' | /Factor Term' |
(Goal Expr and Factor number | id remain unchanged)

Non-intuitive, but it works!

8-Apr-20 COMP36512 Lecture 8 26

8-Apr-20 COMP36512 Lecture 7 27

Eliminating Left Recursion
Algorithm

General algorithm: works for non-cyclic, no -productions

grammars
1. Arrange the non-terminal symbols in order:A1,A2,A3, …, An

2. For i=1 to n do
for j=1 to i-1 do

I) replace each production of the formA iA j

the productionsA i1 | 2 | … |k

with

whereA j1 | 2 | … | k are all the currentA j productions

II) eliminate the immediate left recursion among theA i

Example

E E+T|T
TT*F|F
F (E)|id

8-Apr-20 COMP36512 Lecture 8 29

Where are we?

• We can produce a top-down parser, but:

– if it picks the wrong production rule it has to backtrack.

• Idea: look ahead in input and use context to

pick correctly.

• How much lookahead is needed?

– In general, an arbitrarily large amount.

– Fortunately, most programming language constructs

fall into subclasses of context-free grammars that

can be parsed with limited lookahead.

8-Apr-20 COMP36512 Lecture 8 30

Predictive Parsing
• Basic idea:

– For any production A a | b we would like to have a distinct way of

choosing the correct production to expand.

• FIRST sets:
– For any symbol A, FIRST(A) is defined as the set of terminal symbols

that appear as the first symbol of one or more strings derived from A.

E.g. for previous grammer: FIRST(Expr')={+,-,},
{FIRST(Term')={*,/,}, FIRST(Factor)={number, id

• The LL(1) property:
– If Aa and Ab both appear in the grammar, we would like to have:

FIRST(a)FIRST(b) =. This would allow the parser to make a

correct choice with a lookahead of exactly one symbol!

A
8-Apr-20 COMP36512 Lecture 8 30

Left Factoring
What if my grammar does not have the LL(1) property?

Sometimes, we can transform a grammar to have this property.

Algorithm:

1.For each non-terminalA, find the longest prefix, say a, common to
two or more of its alternatives

2.if a then replace all the A productions, Aab1|ab2|ab3|...|abn|,
where is anything that does not begin with a, with AaZ | and
Zb1|b2|b3|...|bn

Repeat the above until no common prefixes remain

Example: A ab1 | ab2 | ab3 would become A aZ and Z b1|b2|b3

Note the graphical representation:
ab1

ab2

ab3

A

b3

b1

b2aZ

Example

SiEtS|iEtSeS|a
E b

8-Apr-20 COMP36512 Lecture 8 33

Example

Goal Expr
Expr Term +
Expr

| Term – Expr
| Term

Term Factor *
Term

| Factor / Term
| Factor

Factor number
| id

We have a problem with the different rules for Expr as well as those for Term. In

both cases, the first symbol of the right-hand side is the same (Term and Factor,
respectively). E.g.:

FIRST(Term)=FIRST(Term)FIRST(Term)={number, id}.
FIRST(Factor)=FIRST(Factor)FIRST(Factor)={number, id}.

Applying left factoring:
Expr Term Expr´
Expr´ +Expr | – Expr |

Term Factor Term´
Term´ * Term | / Term |

FIRST(+)={+}; FIRST(–)={–}; FIRST()={};

FIRST(–) FIRST(+) FIRST()= =

FIRST(*)={*}; FIRST(/)={/}; FIRST()={};

FIRST(*) FIRST(/) FIRST()= =

Parsing Table

8-Apr-20 COMP36512 Lecture 8 35

Example (cont.)
1. Goal Expr
2. ExprTerm Expr´
3. Expr´ +Expr
4. | - Expr
5. |
6. Term Factor Term´
7. Term´ * Term
8. | / Term
9. |
10. Factor number

11. | id

The next symbol

determines each choice

correctly. No backtracking

needed.

Rule Sentential Form Input

- Goal | x – 2*y

1 Expr | x – 2*y

2 Term Expr´ | x – 2*y

6 Factor Term´ Expr´ | x – 2*y

11 id Term´ Expr´ | x – 2*y

Match id Term´ Expr´ x | – 2*y

9 id Expr´ x | – 2*y

4 id – Expr x | – 2*y

Match id – Expr x – | 2*y

2 id – Term Expr´ x – | 2*y

6 id – Factor Term´ Expr´ x – | 2*y

10 id – num Term´ Expr´ x – | 2*y

Match id – num Term´ Expr´ x – 2 | *y

7 id – num * Term Expr´ x – 2 | *y

Match id – num * Term Expr´ x – 2* | y

6 id – num * Factor Term´ Expr´ x – 2* | y

11 id – num * id Term Expr´ x – 2* | y

Match id – num * id Term´ Expr´ x – 2*y |

9 id – num * id Expr´ x – 2*y |

5 id – num * id x – 2*y |

COMP36512 Lecture 8 36

Conclusion
• Top-down parsing:

– recursive with backtracking (not often used in practice)

– recursive predictive

• Given a Context Free Grammar that doesn’t meet the LL(1)

condition, it is undecidable whether or not an equivalent LL(1)

grammar exists.

• Next time: Bottom-Up Parsing

