

Outline

- Top-down v.s. Bottom-up
- Top-down parsing
 - Recursive-descent parsing
 - LL(1) parsing
 - LL(1) parsing algorithm
 - First and follow sets
 - Constructing LL(1) parsing table
 - Error recovery

- Bottom-up parsing
 - Shift-reduce parsers
 - LR(0) parsing
 - LR(0) items
 - Finite automata of items
 - LR(0) parsing algorithm
 - LR(0) grammar
 - SLR(1) parsing
 - SLR(1) parsing algorithm
 - SLR(1) grammar
 - Parsing conflict

Introduction

- Parsing is a process that constructs a syntactic structure (i.e. parse tree) from the stream of tokens.
- We already learn how to describe the syntactic structure of a language using (context-free) grammar.
- So, a parser only need to do this?

Top–Down Parsing Bottom–Up Parsing

- A parse tree is created from root to leaves
- The traversal of parse trees is a preorder traversal
- Tracing leftmost derivation
- Two types:
 - Backtracking parser
 - Predictive parser

- A parse tree is created from leaves to root
- The traversal of parse trees is a reversal of postorder traversal
- Tracing rightmost derivation
- Try different structures and

ng

- backtrack if it does not matched the input
- Guess the structure of the parse tree from the next input

Parse Trees and Derivations

Top-down Parsing

What does a parser need to decide?

- Which production rule is to be used at each point of time ?
- How to guess?
- What is the guess based on?
 - What is the next token?
 - Reserved word if, open parentheses, etc.
 - What is the structure to be built?
 - If statement, expression, etc.

Top-down Parsing

Why is it difficult?

Cannot decide until later

- Next token: if Structure to be built: St
- St \rightarrow MatchedSt | UnmatchedSt
- UnmatchedSt \rightarrow

if (E) St| if (E) MatchedSt else UnmatchedSt

- MatchedSt \rightarrow if (E) MatchedSt else MatchedSt |...
- Production with empty string
 - Next token: id Structure to be built: par
 - par \rightarrow parList | λ
 - parList \rightarrow exp , parList | exp

Recursive-Descent

- Write one procedure for each set of productions with the same nonterminal in the LHS
- Each procedure recognizes a structure described by a nonterminal.
- A procedure calls other procedures if it need to recognize other structures.
- A procedure calls *match* procedure if it need to recognize a terminal.

Recursive-Descent: Example

$\begin{array}{ccc} E \rightarrow E \ O \ F \ | \ F & E \\ O \rightarrow + \ | \ - & O \\ F \rightarrow (E) \ | \ id & F \end{array}$

E ::= F {O F} O ::= + | -F ::= (E) | id

procedure F procedure E
{ switch token { E; O; F; }

- For this grammar:
 - We cannot decide which rule to use for E, and
 - If we choose $E \rightarrow E O F$, it leads to infinitely recursive loops.
- Rewrite the grammar into EBNF

```
procedure E
{ F;
while (token=+ or token=-)
{ O; F; }
```

Match procedure

procedure match(expTok)

- { if (token==expTok)
 - then getToken
 - else error
- }
- The token is not consumed until getToken is executed.

Problems in Recursive-Descent

- Difficult to convert grammars into EBNF
- Cannot decide which production to use at each point
- Cannot decide when to use λ -production $A \rightarrow \lambda$

LL(1) Parsing

LL(1)

- Read input from (L) left to right
- Simulate (L) leftmost derivation
- Iookahead symbol

Use stack to simulate leftmost derivation

- Part of sentential form produced in the leftmost derivation is stored in the stack.
- Top of stack is the leftmost nonterminal symbol in the fragment of sentential form.

Concept of LL(1) Parsing

- Simulate leftmost derivation of the input.
- Keep part of sentential form in the stack.
- If the symbol on the top of stack is a terminal, try to match it with the next input token and pop it out of stack.
- If the symbol on the top of stack is a nonterminal X, replace it with Y if we have a production rule $X \rightarrow Y$.
 - Which production will be chosen, if there are both $X \rightarrow Y$ and $X \rightarrow Z$?

Example of LL(1) Parsing

LL(1) Parsing Algorithm

Push the start symbol into the stack WHILE stack is not empty (\$ is not on top of stack) and the stream of tokens is not empty (the next input token is not \$) SWITCH (Top of stack, next token) CASE (terminal a, a): Pop stack; Get next token CASE (nonterminal A, terminal a): IF the parsing table entry M[A, a] is not empty THEN Get A \rightarrow X₁ X₂ ... X_n from the parsing table entry M[A, a] Pop stack; Push $X_n \dots X_2 X_1$ into stack in that order **ELSE** Error CASE (\$,\$): Accept OTHER: Error

LL(1) Parsing Table

- If the nonterminal *N* is on the top of stack and the next token is *t*, which production rule to use?
- Choose a rule $N \rightarrow X$ such that
 - $X \Rightarrow^* tY$ or
 - $X \Rightarrow^* \lambda$ and $S \Rightarrow^* WNtY$

First Set

• Let X be λ or be in V or T.

- First(X) is the set of the first terminal in any sentential form derived from X.
 - If X is a terminal or λ , then First(X) ={X}.
 - If X is a nonterminal and $X \rightarrow X_1 X_2 \dots X_n$ is a rule, then
 - First(X_{γ}) -{ λ } is a subset of First(X)
 - First(X_i)-{λ} is a subset of First(X) if for all j<i
 First(X_j) contains {λ}
 - λ is in First(X) if for all $j \le n$ First(X_j)contains λ

Examples of First Set

- $\begin{array}{rl} exp & \rightarrow exp \ addop \ term \mid \\ term \end{array}$
- addop \rightarrow + | -
- term → term mulop factor | factor
- mulop $\rightarrow *$
- factor \rightarrow (exp) | num
- First(addop) = {+, -}
 First(mulop) = {*}
 First(factor) = {(, num}
- First(term) = {(, num} First(exp) = {(, num}

st → ifst | other ifst → if (exp) st elsepart elsepart → else st | λ exp → 0 | 1

First(exp)= $\{0,1\}$ First(elsepart)= $\{else, \lambda\}$ First(ifst)= $\{if\}$ First(st)= $\{if, other\}$

Algorithm for finding First(A)

If A is a terminal or λ , For all terminals a, First(a) = {a} then $First(A) = \{A\}$. For all nonterminals A, First(A) := {} If A is a nonterminal, then for each rule A While there are changes to any First(A) \rightarrow X₁ X₂ ... X_n, First(A) For each rule $A \rightarrow X_1 X_2 \dots X_n$ contains First(X_1) - { λ }. If also for some i < n, For each X_i in $\{X_1, X_2, \dots, X_n\}$ First(X₁), First(X₂), ..., If for all j<i First(X_i) contains and First(X_i) contain λ , then First(A) contains λ, First(X_{i+1})-{ λ }. Then If First(X₁), First(X₂), ..., and First(X_n) contain λ , add First(X_i)-{ λ } to First(A then First(A) also If λ is in First(X₁), First(X₂), ..., contains λ . and First(X_n) 2301373 Then add λ to First(A)_{ha} 19

Finding First Set: An Example

 $exp \rightarrow term exp'$ $exp' \rightarrow addop term exp' \mid \lambda$ addop \rightarrow + | term \rightarrow factor term' term' \rightarrow mulop factor term' | λ mulop \rightarrow * factor \rightarrow (exp) | num

	First
exp	
exp'	λ
addop	+ -
term	(num
term'	λ
mulop	*
factor	(num

Follow Set

- Let \$ denote the end of input tokens
- If A is the start symbol, then \$ is in Follow(A).
- If there is a rule $B \rightarrow X A Y$, then First(Y) $\{\lambda\}$ is in Follow(A).
- If there is production $B \rightarrow X A Y$ and λ is in First(Y), then Follow(A) contains Follow(B).

Algorithm for Finding Follow(A)

 $Follow(S) = \{\}$ If A is the start symbol, then \$ is FOR each A in V-{S} in Follow(A). Follow(A)={} If there is a rule A \rightarrow WHILE change is made to some Follow sets Y X Z, then FOR each production $A \rightarrow X_1 X_2 \dots X_n$, First(Z) - $\{\lambda\}$ is in FOR each nonterminal X_i Follow(X). Add First($X_{i+1} X_{i+2} \dots X_n$)-{ λ } If there is production into Follow(X_i). $B \rightarrow X A Y and \lambda$ is in First(Y), then (NOTE: If i=n, $X_{i+1} X_{i+2} \dots X_n = \lambda$) Follow(A) contains IF λ is in First(X_{i+1} X_{i+2}...X_n) THEN Follow(B). Add Follow(A) to Follow(X_i)

Finding Follow Set: An Example

exp \rightarrow term exp' exp' \rightarrow addop term exp' | λ addop \rightarrow + | term \rightarrow factor term' term' \rightarrow mulop factor term' | λ mulop \rightarrow * factor \rightarrow (exp) | num

	First	Follow
ехр	(num	\$)
exp'	λ + -	\$)
addop	+ -	
term	(num	+-\$)
term'	λ *	
mulop	*	
factor	(num	

Constructing LL(1) Parsing Tables

FOR each nonterminal A and a production $A \rightarrow X$ FOR each token a in First(X) $A \rightarrow X$ is in M(A, a) IF λ is in First(X) THEN FOR each element a in Follow(A) Add $A \rightarrow X$ to M(A, a)

Example: Constructing LL(1) Parsing Table

LL(1) Grammar

A grammar is an LL(1) grammar if its LL(1) parsing table has at most one production in each table entry.

LL(1) Parsing Table for non-LL(1) Grammar

- $1 \exp \rightarrow \exp addop term$ $2 \exp \rightarrow term$ $3 term \rightarrow term mulop factor$ $4 term \rightarrow factor$ $5 factor \rightarrow (exp)$ $6 factor \rightarrow num$ $7 addop \rightarrow +$ $8 addop \rightarrow 9 mulop \rightarrow *$ factor = 100 for 100
- First(exp) = { (, num }
 First(term) = { (, num }
 First(factor) = { (, num }
 First(addop) = { +, }
 First(mulop) = { * }

	()	+		*	num	\$
exp	1,2					1,2	
term	3,4					3,4	
factor	5					6	
addop			7	8			
mulop					9		

Causes of Non-LL(1) Grammar

What causes grammar being non-LL(1)?

- Left-recursion
- Left factor

Left Recursion

- Immediate left recursion
 - $A \rightarrow A X | Y$ $A=Y X^*$
 - $A \rightarrow A X_1 | A X_2 | ... | A X_n | Y_1 | Y_2 | ... | Y_m$

$A = \{Y_1, Y_2, ..., Y_m\} \{X_1, X_2, ..., X_n\}^*$

- General left recursion
 - A => X =>* A Y

- Can be removed very easily
 - A \rightarrow Y A', A' \rightarrow X A'| λ
 - $A \rightarrow Y_1 A' \mid Y_2 A' \mid \dots \mid Y_m A',$ $A' \rightarrow X_1 A' \mid X_2 A' \mid \dots \mid X_n A' \mid \lambda$
- Can be removed when there is no empty-string production and no cycle in the grammar

Removal of Immediate Left Recursion

 $exp \rightarrow exp + term | exp - term | term$ term \rightarrow term * factor | factor factor \rightarrow (exp) | num Remove left recursion $exp \rightarrow term exp'$ $exp = term (\pm term)^*$ $\exp' \rightarrow + term \exp' |$ - term $\exp' | \lambda$ term \rightarrow factor term' term = factor (* factor)* term' \rightarrow * factor term' | λ factor \rightarrow (exp) | num

General Left Recursion

Bad News!

- Can only be removed when there is no emptystring production and no cycle in the grammar.
- Good News!!!!
 - Never seen in grammars of any programming languages

Left Factoring

Left factor causes non-LL(1)

Given A → X Y | X Z. Both A → X Y and A → X Z can be chosen when A is on top of stack and a token in First(X) is the next token.

$A \rightarrow X Y \mid X Z$ can be left-factored as $A \rightarrow X A' \text{ and } A' \rightarrow Y \mid Z$

Example of Left Factor

ifSt \rightarrow if (exp) st else st | if (exp) st can be left-factored as ifSt \rightarrow if (exp) st elsePart elsePart \rightarrow else st | λ

seq \rightarrow st ; seq | st can be left-factored as seq \rightarrow st seq'

seq' \rightarrow ; seq | λ