
Parsing

2301373 Chapter 4 Parsing 2

Outline

Top-down v.s. Bottom-up

Top-down parsing

 Recursive-descent
parsing

 LL(1) parsing

 LL(1) parsing
algorithm

 First and follow sets

 Constructing LL(1)
parsing table

 Error recovery

Bottom-up parsing

 Shift-reduce parsers

 LR(0) parsing

 LR(0) items

 Finite automata of items

 LR(0) parsing algorithm

 LR(0) grammar

 SLR(1) parsing

 SLR(1) parsing algorithm

 SLR(1) grammar

 Parsing conflict

2301373 Chapter 4 Parsing 3

Introduction

Parsing is a process that constructs a
syntactic structure (i.e. parse tree) from the
stream of tokens.

We already learn how to describe the
syntactic structure of a language using
(context-free) grammar.

So, a parser only need to do this?

Stream of tokens

Context-free grammar
Parser Parse tree

2301373 Chapter 4 Parsing 4

Top–Down Parsing Bottom–Up Parsing

A parse tree is created
from root to leaves

The traversal of parse
trees is a preorder
traversal

Tracing leftmost
derivation

Two types:

 Backtracking parser

 Predictive parser

A parse tree is created
from leaves to root

The traversal of parse
trees is a reversal of
postorder traversal

Tracing rightmost
derivation

More powerful than
top-down parsing

Try different structures and

backtrack if it does not matched

the input

Guess the structure of the parse tree

from the next input

2301373 Chapter 4 Parsing 5

Parse Trees and Derivations

E E + E
 id + E
 id + E * E
 id + id * E
 id + id * id

E E + E
 E + E * E
 E + E * id
 E + id * id
 id + id * id

Top-down parsing

Bottom-up parsing

id

E *E

id

id

+

E

E E

+

*

id

E

E

id

E

E

id

E

2301373 Chapter 4 Parsing 6

Top-down Parsing

What does a parser need to decide?

 Which production rule is to be used at each point
of time ?

How to guess?

What is the guess based on?

 What is the next token?

 Reserved word if, open parentheses, etc.

 What is the structure to be built?

 If statement, expression, etc.

2301373 Chapter 4 Parsing 7

Top-down Parsing

Why is it difficult?

 Cannot decide until later

 Next token: if Structure to be built: St
 St MatchedSt | UnmatchedSt

 UnmatchedSt

if (E) St| if (E) MatchedSt else UnmatchedSt

 MatchedSt if (E) MatchedSt else MatchedSt |...

 Production with empty string

 Next token: id Structure to be built: par
 par parList |

 parList exp , parList | exp

2301373 Chapter 4 Parsing 8

Recursive-Descent

Write one procedure for each set of
productions with the same nonterminal in
the LHS

Each procedure recognizes a structure
described by a nonterminal.

A procedure calls other procedures if it need
to recognize other structures.

A procedure calls match procedure if it need
to recognize a terminal.

2301373 Chapter 4 Parsing 9

Recursive-Descent: Example

E E O F | F

O + | -

F (E) | id

procedure F

{ switch token

{ case (: match(‘(‘);

E;

match(‘)’);

case id: match(id);

default: error;

}

}

For this grammar:
 We cannot decide which

rule to use for E, and
 If we choose E E O F,

it leads to infinitely
recursive loops.

Rewrite the grammar
into EBNF

procedure E

{ F;

while (token=+ or token=-)

{ O; F; }

}

procedure E
{ E; O; F; }

E ::= F {O F}

O ::= + | -
F ::= (E) | id

2301373 Chapter 4 Parsing 10

Match procedure

procedure match(expTok)

{ if (token==expTok)

then getToken

else error

}

The token is not consumed until getToken

is executed.

2301373 Chapter 4 Parsing 11

Problems in Recursive-Descent

Difficult to convert grammars into EBNF

Cannot decide which production to use at
each point

Cannot decide when to use -production
A

2301373 Chapter 4 Parsing 12

LL(1) Parsing

LL(1)

 Read input from (L) left to right

 Simulate (L) leftmost derivation

 1 lookahead symbol

Use stack to simulate leftmost derivation

 Part of sentential form produced in the leftmost
derivation is stored in the stack.

 Top of stack is the leftmost nonterminal symbol
in the fragment of sentential form.

2301373 Chapter 4 Parsing 13

Concept of LL(1) Parsing

Simulate leftmost derivation of the input.

Keep part of sentential form in the stack.

If the symbol on the top of stack is a
terminal, try to match it with the next input
token and pop it out of stack.

If the symbol on the top of stack is a
nonterminal X, replace it with Y if we have a
production rule X Y.
 Which production will be chosen, if there are

both X Y and X Z ?

2301373 Chapter 4 Parsing 14

Example of LL(1) Parsing

(n + (n)) * n $

$

E

ETX

XATX |
A + | -
TFN

NMFN |
M *
F (E) | n

T

X

F

N

)

E

(T

X

F

N

n A

T

X

+ F

N

(

E

)

T

X

F

N

n

M

F

N

*

n

Finished

E TX
FNX
(E)NX
(TX)NX
(FNX)NX
(nNX)NX
(nX)NX
(nATX)NX
(n+TX)NX
(n+FNX)NX
(n+(E)NX)NX
(n+(TX)NX)NX
(n+(FNX)NX)NX
(n+(nNX)NX)NX
(n+(nX)NX)NX
(n+(n)NX)NX
(n+(n)X)NX
(n+(n))NX
(n+(n))MFNX
(n+(n))*FNX
(n+(n))*nNX
(n+(n))*nX
(n+(n))*n

2301373 Chapter 4 Parsing 15

LL(1) Parsing Algorithm

Push the start symbol into the stack

WHILE stack is not empty ($ is not on top of stack) and the
stream of tokens is not empty (the next input token is not $)

SWITCH (Top of stack, next token)

CASE (terminal a, a):

Pop stack; Get next token

CASE (nonterminal A, terminal a):

IF the parsing table entry M[A, a] is not empty THEN

Get A X1 X2 ... Xn from the parsing table entry M[A,
a] Pop stack;

Push Xn ... X2 X1 into stack in that order

ELSE Error

CASE ($,$): Accept

OTHER: Error

2301373 Chapter 4 Parsing 16

LL(1) Parsing Table

If the nonterminal N is on
the top of stack and the
next token is t, which
production rule to use?

Choose a rule N X
such that

 X * tY or

 X * and S * WNtY

N

Q

t … … …

X Y

t

Y

t

N X

2301373 Chapter 4 Parsing 17

First Set

Let X be or be in V or T.

First(X) is the set of the first terminal in any
sentential form derived from X.

 If X is a terminal or , then First(X) ={X }.

 If X is a nonterminal and X X1 X2 ... Xn is a
rule, then

 First(X1) -{} is a subset of First(X)

 First(Xi)-{} is a subset of First(X) if for all j<i
First(Xj) contains {}

 is in First(X) if for all j≤n First(Xj)contains

2301373 Chapter 4 Parsing 18

Examples of First Set

exp exp addop term |

term

addop + | -

term term mulop factor |
factor

mulop *

factor (exp) | num

First(addop) = {+, -}

First(mulop) = {*}

First(factor) = {(, num}

First(term) = {(, num}

First(exp) = {(, num}

st ifst | other
ifst if (exp) st elsepart
elsepart else st |
exp 0 | 1

First(exp) = {0,1}

First(elsepart) = {else, }

First(ifst) = {if}

First(st) = {if, other}

2301373 Chapter 4 Parsing 19

Algorithm for finding First(A)

For all terminals a, First(a) = {a}

For all nonterminals A, First(A) := {}

While there are changes to any First(A)

For each rule A X1 X2 ... Xn

For each Xi in {X1, X2, …, Xn }

If for all j<i First(Xj) contains
,

Then

add First(Xi)-{} to First(A)

If is in First(X1), First(X2), ...,
and First(Xn)

Then add to First(A)

If A is a terminal or ,
then First(A) = {A}.

If A is a nonterminal,
then for each rule A
X1 X2 ... Xn, First(A)
contains First(X1) - {}.

If also for some i<n,
First(X1), First(X2), ...,
and First(Xi) contain ,
then First(A) contains
First(Xi+1)-{}.

If First(X1), First(X2), ...,
and First(Xn) contain ,
then First(A) also
contains .

2301373 Chapter 4 Parsing 20

Finding First Set: An Example

exp term exp’

exp’ addop term exp’ |

addop + | -

term factor term’

term’ mulop factor term’ |

mulop *

factor (exp) | num

First

exp

exp’

addop

term

term’

mulop

factor

+ -

*

(num

+ -

(num

*

(num

2301373 Chapter 4 Parsing 21

Follow Set

Let $ denote the end of input tokens

If A is the start symbol, then $ is in
Follow(A).

If there is a rule B X A Y, then First(Y) -
{} is in Follow(A).

If there is production B X A Y and is in
First(Y), then Follow(A) contains Follow(B).

2301373 Chapter 4 Parsing 22

Algorithm for Finding Follow(A)

Follow(S) = {$}

FOR each A in V-{S}

Follow(A)={}

WHILE change is made to some Follow sets

FOR each production A X1 X2 ... Xn,

FOR each nonterminal Xi

Add First(Xi+1 Xi+2...Xn)-{}

into Follow(Xi).

(NOTE: If i=n, Xi+1 Xi+2...Xn=)

IF is in First(Xi+1 Xi+2...Xn) THEN

Add Follow(A) to Follow(Xi)

If A is the start
symbol, then $ is
in Follow(A).

If there is a rule A
Y X Z, then
First(Z) - {} is in
Follow(X).

If there is production
B X A Y and
is in First(Y), then
Follow(A) contains
Follow(B).

2301373 Chapter 4 Parsing 23

Finding Follow Set: An Example

exp term exp’

exp’ addop term exp’ |

addop + | -

term factor term’

term’ mulop factor term’ |

mulop *

factor (exp) | num

First

exp

exp’

addop

term

term’

mulop

factor

+ -

*

(num

+ -

(num

*

(num

Follow
)

+ -

$(num

(num

+ -

*

$

(num

$

*

+ -

$

$+ - $

))

)

))

)

2301373 Chapter 4 Parsing 24

Constructing LL(1) Parsing Tables

FOR each nonterminal A and a production A X

FOR each token a in First(X)

A X is in M(A, a)

IF is in First(X) THEN

FOR each element a in Follow(A)

Add A X to M(A, a)

2301373 Chapter 4 Parsing 25

Example: Constructing LL(1) Parsing Table

First Follow
exp {(, num} {$,)}
exp’ {+,-, } {$,)}
addop {+,-} {(,num}
term {(,num} {+,-,),$}
term’ {*, } {+,-,),$}
mulop {*} {(,num}
factor {(, num} {*,+,-,),$}

1 exp term exp’
2 exp’ addop term exp’
3 exp’
4 addop +
5 addop -
6 term factor term’
7 term’ mulop factor term’
8 term’
9 mulop *
10 factor (exp)
11 factor num

() + - * n $

exp

exp’

addop

term

term’

mulop

factor

1 1

2 23 3

4 5

6 6

78 8 8 8

9

10 11

2301373 Chapter 4 Parsing 26

LL(1) Grammar

A grammar is an LL(1) grammar if its LL(1)

parsing table has at most one production in
each table entry.

2301373 Chapter 4 Parsing 27

LL(1) Parsing Table for non-LL(1) Grammar

1 exp exp addop term
2 exp term
3 term term mulop factor
4 term factor
5 factor (exp)
6 factor num
7 addop +
8 addop -
9 mulop *

First(exp) = { (, num }
First(term) = { (, num }
First(factor) = { (, num }
First(addop) = { +, - }
First(mulop) = { * }

() + - * num $
exp 1,2 1,2

term 3,4 3,4
factor 5 6

addop 7 8

mulop 9

2301373 Chapter 4 Parsing 28

Causes of Non-LL(1) Grammar

What causes grammar being non-LL(1)?

 Left-recursion

 Left factor

2301373 Chapter 4 Parsing 29

Left Recursion

Immediate left
recursion

 A A X | Y

 A A X1 | A X2 |…| A Xn

| Y1 | Y2 |... | Ym

General left recursion

 A => X =>* A Y

Can be removed very
easily

 A Y A’, A’ X A’|

 A Y1 A’ | Y2 A’ |...| Ym A’,
A’ X1 A’| X2 A’|…| Xn A’|

Can be removed when
there is no empty-string
production and no cycle
in the grammar

A=Y X*

A={Y1, Y2,…, Ym} {X1, X2, …, Xn}*

2301373 Chapter 4 Parsing 30

Removal of Immediate Left Recursion

exp exp + term | exp - term | term

term term * factor | factor

factor (exp) | num

Remove left recursion

exp term exp’

exp’ + term exp’ | - term exp’ |

term factor term’

term’ * factor term’ |

factor (exp) | num

exp = term (term)*

term = factor (* factor)*

2301373 Chapter 4 Parsing 31

General Left Recursion

Bad News!

 Can only be removed when there is no empty-
string production and no cycle in the grammar.

Good News!!!!

 Never seen in grammars of any programming
languages

2301373 Chapter 4 Parsing 32

Left Factoring

Left factor causes non-LL(1)

 Given A X Y | X Z. Both A X Y and A X Z
can be chosen when A is on top of stack and a
token in First(X) is the next token.

A X Y | X Z

can be left-factored as

A X A’ and A’ Y | Z

2301373 Chapter 4 Parsing 33

Example of Left Factor

ifSt if (exp) st else st | if (exp) st

can be left-factored as

ifSt if (exp) st elsePart

elsePart else st |

seq st ; seq | st

can be left-factored as

seq st seq’

seq’ ; seq |

