Parsing

σ

Outline

- Top-down v.s. Bottom-up
- Top-down parsing
- Recursive-descent parsing
- LL(1) parsing
- LL(1) parsing algorithm
- First and follow sets
- Constructing LL(1) parsing table
- Error recovery
- Bottom-up parsing
- Shift-reduce parsers
- LR(0) parsing
- LR(0) items
- Finite automata of items
- LR(0) parsing algorithm
- LR(0) grammar
- SLR(1) parsing
- SLR(1) parsing algorithm
- SLR(1) grammar
- Parsing conflict

Introduction

- Parsing is a process that constructs a syntactic structure (i.e. parse tree) from the stream of tokens.
- We already learn how to describe the syntactic structure of a language using (context-free) grammar.
- So, a parser only need to do this?

Top-Down Parsing Bottom-Up Parsing

- A parse tree is created from root to leaves
- The traversal of parse trees is a preorder traversal
- Tracing leftmost derivation
- A parse tree is created from leaves to root
- The traversal of parse trees is a reversal of postorder traversal
- Tracing rightmost derivation
- Two types:
- Backtracking parser
- Predictive parser the input

Guess the structure of the parse tree
from the next input

Parse Trees and Derivations

Top-down parsing

$$
\begin{aligned}
E & \Rightarrow \mathrm{E}+\mathrm{E} \\
& \Rightarrow \mathrm{id}+\mathrm{E} \\
& \Rightarrow \mathrm{id}+\mathrm{E} * \mathrm{E} \\
& \Rightarrow \mathrm{id}+\mathrm{id} * \mathrm{E} \\
& \Rightarrow \mathrm{id}+\mathrm{id}{ }^{*} \mathrm{id}
\end{aligned}
$$

Top-down Parsing

- What does a parser need to decide?
- Which production rule is to be used at each point of time?
- How to guess?
- What is the guess based on?
- What is the next token?
- Reserved word if, open parentheses, etc.
- What is the structure to be built?
- If statement, expression, etc.

Top-down Parsing

- Why is it difficult?
- Cannot decide until later
- Next token: if Structure to be built: St
- St \rightarrow MatchedSt | UnmatchedSt
- UnmatchedSt \rightarrow if (E) St| if (E) MatchedSt else UnmatchedSt
- MatchedSt \rightarrow if (E) MatchedSt else MatchedSt |...
- Production with empty string
- Next token: id Structure to be built: par
- par \rightarrow parList | λ
- parList \rightarrow exp , parList \| exp

Recursive-Descent

- Write one procedure for each set of productions with the same nonterminal in the LHS
- Each procedure recognizes a structure described by a nonterminal.
- A procedure calls other procedures if it need to recognize other structures.
- A procedure calls match procedure if it need to recognize a terminal.

Recursive-Descent: Example

$$
\begin{array}{ll}
E \rightarrow E O F \mid F & E::=F\{O F\} \\
O \rightarrow+\mid- & O::=+\mid- \\
F \rightarrow(E) \mid \text { id } & F::=(E) \mid \text { id }
\end{array}
$$

- For this grammar:
- We cannot decide which rule to use for E, and
- If we choose $\mathrm{E} \rightarrow \mathrm{EOF}$, it leads to infinitely recursive loops.
- Rewrite the grammar into EBNF
case id: match(id); default: error;

Match procedure

procedure match (expTok)
\{ if (token==expTok)
then getToken
else error
\}

- The token is not consumed until getToken is executed.

Problems in Recursive-Descent

- Difficult to convert grammars into EBNF
- Cannot decide which production to use at each point
- Cannot decide when to use λ-production $A \rightarrow \lambda$

LL(1) Parsing

- LL(1)
- Read input from (L) left to right
- Simulate (L) leftmost derivation
- 1 lookahead symbol
- Use stack to simulate leftmost derivation
- Part of sentential form produced in the leftmost derivation is stored in the stack.
- Top of stack is the leftmost nonterminal symbol in the fragment of sentential form.

Concept of LL(1) Parsing

- Simulate leftmost derivation of the input.
- Keep part of sentential form in the stack.
- If the symbol on the top of stack is a terminal, try to match it with the next input token and pop it out of stack.
- If the symbol on the top of stack is a nonterminal X, replace it with Y if we have a production rule $\mathrm{X} \rightarrow \mathrm{Y}$.
- Which production will be chosen, if there are both $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{X} \rightarrow \mathrm{Z}$?

Example of LL(1) Parsing

LL(1) Parsing Algorithm

Push the start symbol into the stack
WHILE stack is not empty (\$ is not on top of stack) and the stream of tokens is not empty (the next input token is not \$) SWITCH (Top of stack, next token)

CASE (terminal a, a):
Pop stack; Get next token
CASE (nonterminal A, terminal a):
IF the parsing table entry M[A, a] is not empty THEN Get $A \rightarrow X_{1} X_{2} \ldots X_{n}$ from the parsing table entry M[A, a] Pop stack;
Push $X_{n} \ldots X_{2} X_{1}$ into stack in that order
ELSE Error
CASE (\$,\$): Accept
OTHER:

LL(1) Parsing Table

If the nonterminal N is on the top of stack and the next token is t, which production rule to use?

- Choose a rule $N \rightarrow X$ such that
- $X \Rightarrow^{*} t Y$ or
- $X \Rightarrow^{*} \lambda$ and $S \Rightarrow^{*}$ WNtY

First Set

- Let X be λ or be in V or T.
- First (X) is the set of the first terminal in any sentential form derived from X.
- If X is a terminal or λ, then $\operatorname{First}(X)=\{X\}$.
- If X is a nonterminal and $X \rightarrow X_{1} X_{2} \ldots X_{n}$ is a rule, then
- $\operatorname{First}\left(X_{1}\right)-\{\lambda\}$ is a subset of $\operatorname{First}(X)$
- $\operatorname{First}\left(X_{i}\right)-\{\lambda\}$ is a subset of $\operatorname{First}(X)$ if for all $j<i$ First $\left(X_{j}\right)$ contains $\{\lambda\}$
- λ is in $\operatorname{First}(\mathrm{X})$ if for all $j \leq n \operatorname{First}\left(X_{j}\right)$ contains λ

Examples of First Set

Algorithm for finding First(A)

For all terminals $\mathrm{a}, \operatorname{First}(\mathrm{a})=\{\mathrm{a}\} \hookleftarrow$ If A is a terminal or $\lambda_{\text {, }}$
For all nonterminals A, First(A) := \{\} While there are changes to any First(A)

For each rule $A \rightarrow X_{1} X_{2} \ldots X_{n}$
For each X_{i} in $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ then $\operatorname{First}(A)=\{A\}$. If A is a nonterminal, then for each rule A $\rightarrow X_{1} X_{2} \ldots X_{n}$, First(A) contains First $\left(X_{1}\right)-\{\lambda\}$. If also for some $\mathrm{i}<\mathrm{n}$, First $\left(X_{1}\right)$, First $\left(X_{2}\right), \ldots$, and First $\left(\mathrm{X}_{\mathrm{i}}\right)$ contain λ, then First(A) contains First $\left(X_{i+1}\right)-\{\lambda\}$.
Then
add First $\left(X_{i}\right)-\{\lambda\}$ _oFirst (A)
If λ is in First $\left(X_{1}\right)$, First $\left(X_{2}\right), \ldots$, and First $\left(X_{n}\right)$
${ }_{2301373}$ Then add λ to First $\left(A_{\text {d }}\right)_{\text {hapter }} 4$ Parsing

Finding First Set: An Example

$\exp \rightarrow$ term exp'
$\exp ^{\prime} \rightarrow$ addop term $\exp ^{\prime} \mid \lambda$
addop $\rightarrow+\mid-$
term \rightarrow factor term'
term' \rightarrow mulop factor term' $\mid \lambda$ mulop \rightarrow *
factor $\rightarrow(\exp) \mid$ num

	First
\exp	
$\exp ^{\prime}$	λ
addop	+-
term	$($ num
term'	λ
mulop	$*$
factor	(num

Follow Set

- Let \$ denote the end of input tokens
- If A is the start symbol, then \$ is in Follow(A).
- If there is a rule $B \rightarrow X A$ Y, then $\operatorname{First}(Y)$ $\{\lambda\}$ is in Follow(A).
- If there is production $B \rightarrow X A Y$ and λ is in First(Y), then Follow(A) contains Follow(B).

Algorithm for Finding Follow(A)

Follow(S) $=\{\$\}$
FOR each A in V-\{S\}
Follow(A)=\{\}
WHILE change is made to some Follow sets
FOR each production $A \rightarrow X_{1} X_{2} \ldots X_{n}$, FOR each nonterminal X_{i}

If A is the start symbol, then \$ is in Follow(A).
If there is a rule $\mathrm{A} \rightarrow$ Y X Z, then
First(Z) - $\{\lambda\}$ is in Follow(X).
Add First $\left(X_{i+1} X_{i+2} \ldots X_{n}\right)-\{\lambda\} \quad$ If there is production into Follow $\left(X_{i}\right)$. (NOTE: If $i=n, X_{i+1} X_{i+2} \ldots X_{n}=\lambda$)
IF λ is in First $\left(X_{i+1} X_{i+2} \ldots X_{n}\right)$ THEN Add Follow(A) to Follow(X_{i})

Finding Follow Set: An Example

exp \rightarrow term exp ${ }^{\prime}$ exp' \rightarrow addop term $\exp ^{\prime} \mid \lambda$ addop $\rightarrow+\mid-$
term \rightarrow factor term'
term $^{\prime} \rightarrow$ mulop factor term' $\mid \lambda$ mulop \rightarrow *
factor \rightarrow (exp $) \mid$ num

	First	Follow
\exp	$($ num	$\$)$
$\exp ^{\prime}$	$\lambda+-$	$\$)$
addop	+-	
term	$\left(\begin{array}{l}\text { num }\end{array}+-\infty\right.$	
term	$\lambda *$	
mulop	$*$	
factor	(num	

Constructing LL(1) Parsing Tables

FOR each nonterminal A and a production $A \rightarrow X$ FOR each token a in First(X)
$A \rightarrow X$ is in $M(A, a)$
IF λ is in First (X) THEN
FOR each element a in Follow(A)
Add $A \rightarrow X$ to $M(A, a)$

Example: Constructing LL(1) Parsing Table

exp	First $\{($, num $\}$			()		+	-	*	n	\$
exp'	$\{+,-, \lambda\}$										
addop	\{+,.\}			1						1	
term'	$\left\{{ }^{*}, \lambda\right\}$		exp ${ }^{\prime}$		3		2	2			3
mulop factor	$\begin{aligned} & \{*\} \\ & \{(, \text { num }\} \end{aligned}$						4	5			
$\begin{aligned} & 1 \text { exp } \rightarrow \text { term exp' } \\ & 2 \text { exp, } \rightarrow \text { addop term exp' } \\ & 3 \text { exp } \rightarrow \lambda \\ & 4 \text { addop } \rightarrow+ \\ & 5 \text { addop } \rightarrow- \\ & 6 \text { term } \rightarrow \text { factor term' } \\ & 7 \text { term, } \rightarrow \text { mulop factor term' } \\ & 8 \text { term' } \rightarrow \lambda \\ & 9 \text { mulop } \rightarrow{ }^{*} \\ & 10 \text { factor } \rightarrow \text { (exp }) \\ & 11 \text { factor } \rightarrow \text { num } \end{aligned}$											
			term	6						6	
			term'				8	8	7		8
			mulop						9		
			factor	10						11	

LL(1) Grammar

- A grammar is an $\mathrm{LL}(1)$ grammar if its $\mathrm{LL}(1)$ parsing table has at most one production in each table entry.

LL(1) Parsing Table for non-LL(1) Grammar

$1 \exp \rightarrow \exp$ addop term
2 exp \rightarrow term
3 term \rightarrow term mulop factor

4 term \rightarrow factor
5 factor \rightarrow (exp)
6 factor \rightarrow num
7 addop $\rightarrow+$
8 addop \rightarrow -
9 mulop \rightarrow *
First(exp) $=\{$ (, num $\}$

	$($	$)$	+	-	$*$	num	$\$$
\exp	1,2					1,2	
term	3,4					3,4	
factor	5					6	
addop			$\mathbf{7}$	$\mathbf{8}$			
mulop					$\mathbf{9}$		

First(term) $=\{($, num $\}$
First(factor) $=\{($, num $\}$
First(addop) $=\{+,-\}$
First(mulop) $=\{*\}$

Causes of Non-LL(1) Grammar

- What causes grammar being non-LL(1)?
- Left-recursion
- Left factor

Left Recursion

- Immediate left recursion
- $A \rightarrow A X \mid Y \quad A=Y X^{*}$
- $A \rightarrow A X_{1}\left|A X_{2}\right| \ldots \mid A X_{n}$ $\left|Y_{1}\right| Y_{2}|\ldots| Y_{m}$
$A=\left\{Y_{1}, Y_{2}, \ldots, Y_{m}\right\}\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}^{*}$
- General left recursion
- $A=>X=>*$ A
- Can be removed very easily
- $A \rightarrow Y A^{\prime}, A^{\prime} \rightarrow X A^{\prime} \mid \lambda$
- $A \rightarrow Y_{1} A^{\prime}\left|Y_{2} A^{\prime}\right| \ldots \mid Y_{m} A^{\prime}$,

$$
\mathrm{A}^{\prime} \rightarrow \mathrm{X}_{1} \mathrm{~A}^{\prime}\left|\mathrm{X}_{2} \mathrm{~A}^{\prime}\right| \ldots\left|\mathrm{X}_{\mathrm{n}} \mathrm{~A}^{\prime}\right| \lambda
$$

- Can be removed when there is no empty-string production and no cycle in the grammar

Removal of Immediate Left Recursion

 exp \rightarrow exp + term | exp - term | term term \rightarrow term * factor \mid factor factor \rightarrow (exp)| num- Remove left recursion $\exp \rightarrow$ term exp $\quad \exp =$ term $(\pm \text { term })^{*}$ $\exp ^{\prime} \rightarrow+$ term $\exp ^{\prime} \mid-$ term $\exp ^{\prime} \mid \lambda$ term \rightarrow factor term ${ }^{\prime} \quad$ term $=$ factor $(* \text { factor })^{*}$ term' \rightarrow^{*} factor term' $\mid \lambda$ factor \rightarrow (exp) | num

General Left Recursion

- Bad News!
- Can only be removed when there is no emptystring production and no cycle in the grammar.
- Good News!!!!
- Never seen in grammars of any programming languages

Left Factoring

- Left factor causes non-LL(1)

Given $A \rightarrow X Y \mid X Z$. Both $A \rightarrow X Y$ and $A \rightarrow X Z$ can be chosen when A is on top of stack and a token in $\operatorname{First}(X)$ is the next token.
$A \rightarrow X Y \mid X Z$
can be left-factored as
$\mathrm{A} \rightarrow \mathrm{XA} \mathrm{A}^{\prime}$ and $\mathrm{A}^{\prime} \rightarrow \mathrm{Y} \mid \mathrm{Z}$

Example of Left Factor

ifSt \rightarrow if (exp) st else st \| if (exp) st

can be left-factored as

ifSt \rightarrow if (exp) st elsePart elsePart \rightarrow else st \| λ
seq \rightarrow st ; seq \| st
can be left-factored as
seq \rightarrow st seq'
seq $^{\prime} \rightarrow$; seq \| λ

