

Course Information

Course Title:	Statics (62021)
Prerequisite:	Calculus-1 (0250101)
Credit Hours:	3 credit hours (16 weeks per semester, approximately 44 contact hours)
Textbook:	Engineering Mechanics-Statics-12 th edition by R. C. Hibbeler
References:	Statics-7 th edition by J. Meriam and L. Kraig
Website:	http://www.philadelphia.edu.jo/academics/nmusa
Course Description:	Force vectors, equilibrium of a particle, moment of a force, equilibrium of a rigid body. internal normal, shear forces, and bending moment. moment of inertia, and the centroid location.
Instructors:	Dr. Nabil Musa Email: nmusa@philadelphia.edu.jo Office: Engineering Building, room E61206, ext.:2343 Office hours: Sat, Sun, Mon Tues, 12:00-13:00 Mon
Course Coordinator:	Dr. Nabil Musa Email: nmusa@philadelphia.edu.jo Office: Engineering Building, room E61206, ext.:2343 Office hours: Sat, Sun, Mon Tues, 12:00-13:00 Mon
Technology Requirements:	<ul style="list-style-type: none">Personal computer, laptop, or mobile phone.Internet Connection.Access to Philadelphia University E-Learning Portal (MS Teams and Moodle)
Learning Style:	Blended
Communication:	<ul style="list-style-type: none">Announcement: the announcements will be posted in MS Teams or Moodle on a regular basis.Email.MS Teams or Moodle chats.
Course Objectives	<ul style="list-style-type: none">Introduction and Basic Concepts of Statics, Force vectors, 2-D, and 3-D scalar and vector formulation and its operations.Equilibrium of a particle, Moment of a force, couple of moments.Internal Forces, Shear force, and Bending Moment, and its

	<p>diagram.</p> <ul style="list-style-type: none"> Centroid, the center of gravity, and moment of inertia.
--	---

Course Learning Outcomes (CLO) and Relation to ABET Student Outcomes		
CLOs	Outcomes	ABET PLOs
K1, K2	Draw the free-body diagram for a particle and a rigid-body	1
K2	Understand the basic concepts of force vectors and the moment of a force	1
K2	Apply the above-mentioned three basic concepts and understand their respective advantages.	1
K2	Explain the geometry of the equilibrium of particles and rigid bodies.	1
K2	Effectively communicate in writing an assignment.	1

Grading Policy and Assessment Instruments					
Graded Item	Marks	Topic (s)	CLO(s)	Learning Portal (Teams/ Moodle/ F2F/ Others)	Week
Assignment 1	5	2-D, and 3-D equilibrium of a particle	K1, K2	F2F	5
Assignment 2	5		K1, K2	F2F	11
Quiz 1	5	2- D moment of a force	K1, K2	F2F	4
Quiz 2	5	Principle of moments	K1, K2	F2F	6
Quiz 3	5	Resultant force and couple system	K1, K2	F2F	10
Quiz 4	5	3- D moment and couple	K1, K2	F2F	12
Mid Exam	30%	Weeks 1-8	K1, K2	F2F	8
Final Exam	40%	Week 1-15	K1, K2	F2F	16
Total Marks	100%				
Notes:	<ul style="list-style-type: none"> Two written exams will be given. Copying homework is forbidden, any student caught copying the homework or any part of the homework will receive zero marks for that homework. Quizzes: 10-minute quizzes will be given to the students during the semester. These quizzes will cover material discussed during the previous lecture(s). Homework: Problem sets will be given to students. Homework should be solved individually and submitted before the due date. The final exam will cover all the class material. 				

Week	Lecture	Topic	CLOs	Learning Resources/ References/ Activities/ Assessment Method	Learning Style (F2F, Synchronous, Asynchronous)	Learning & Teaching Methods	Assessment Method
1	L1	Introduction and Basic Concepts of Statics	-	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	White board notes	-
	L2	Scalar and vectors	K1	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	White board notes	F2F questions
	L3	Vector operations	K1	Philadelphia University E-learning System (Moodle).	Asynchronous	Moodle	F2F questions
2	L1	Vector addition of forces	K1	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	White board note+ PPP	F2F questions
	L2	Addition of a system of coplanar forces	K2 , S2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	White board notes +PPP	F2F questions
	L3	Cartesian vectors	S2	Philadelphia University E-learning System (Moodle).	Asynchronous	Moodle + MS teams	-
3	L1	Position vectors	S2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	White board notes + PPP	F2F questions
	L2	2-D equilibrium of a particle	S2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	White board notes	F2F questions

				Kraig		+ PPP	
	L3	3-D equilibrium of a particle	S2	Philadelphia University E-learning System (Moodle).	Async chrono us	Mood le + MS teams	-
4	L1	Moment of a force Quiz 1	S2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	White board notes + PPP	F2F questions Quiz
	L2	Moment scalar formulation	S2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	White board notes + PPP	F2F questions
	L3	Moment vector formulation	S2	Philadelphia University E-learning System (Moodle).	Async chrono us	Mood le + MS teams	F2F Quiz next lecture
5	L1	Principle of moments	S2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions
	L2	Principle of moments scalar formulation	S2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions + student presentation
	L3	Principle of moments scalar formulation (lecture) Assignment 1	S2	Philadelphia University E-learning System (Moodle).	Async chrono us	Mood le + MS teams	Discussion Assignment
6	L1	Principle of moments vector formulation (lecture)	K2 , S2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F question
	L2	Principle of moments vector formulation (lecture) Quiz 2	K2 , S2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions + quiz

	L3	Moment of couple scalar formulation (problem-solving)	S2	Philadelphia University E-learning System (Moodle).	Async chrono us	PPP + white board	Discus sion in the class
7	L1	Moment of couple scalar formulation (problem-solving)	S2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questio ns + student s present ation
	L2	Moment of couple vector formulation (problem-solving)		Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig			
	L3	Moment of couple vector formulation (problem-solving)	S2	Philadelphia University E-learning System (Moodle).	Async chrono us	Mood le + MS teams	-
8	L1	Equivalent system of forces		Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	-	Writte n exam
	L2	Equivalent system of forces		Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig			
	L3	Equivalent system of forces (problem-solving)	S2	Philadelphia University E-learning System (Moodle).	Async chrono us	Mood le + MS teams	Report writing
9	L1	Equivalent system of forces (problem-solving)	K2 , S2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	-----
	L2	Equivalent system of forces (problem-solving)		Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig			
	L3	Resultant force and	S2	Philadelphia University E-learning System (Moodle).	Async chrono	Mood le +	--

		couple system (lecture)			us	MS teams	
10	L1	Resultant force and couple system (lecture) Quiz 3	K2 , S2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions + quiz
	L2	Resultant force and couple system (problem-solving)	K2 , S2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F question
	L3	Resultant force and couple system (problem-solving)	S2	Philadelphia University E-learning System (Moodle).	Async hronous	Moodle + MS teams	Class discussion
11	L1	Resultant force and couple system (problem-solving)	S2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions
	L2	Reduction of a force and couple system (lecture)	S2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions
	L3	Reduction of a force and couple system (lecture) Assignment 2	S2	Philadelphia University E-learning System (Moodle).	Async hronous	Moodle + MS teams	Discussion Assignment
12	L1	Reduction of a force and couple system (problem-solving)	S2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions
	L2	Reduction of a force and couple system (problem-solving) Quiz 4	K2 , S2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions + quiz
	L3	Reduction of a simple distributed loading (lecture)		Philadelphia University E-learning System (Moodle).	Async hronous	Moodle + MS teams	-----

	L1	Reduction of a simple distributed loading (problem-solving)	S2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions
13	L2	Equilibrium of rigid body	S2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions
	L3	Free body diagram and support reaction	S2	Philadelphia University E-learning System (Moodle).	Async hronous	Moodle + MS teams	--
	L1	Center of gravity and centroid	K2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions + students presentation
14	L2	Composite bodies	K2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions + students presentation
	L3	Axis of symmetry and reference axis	S2	Philadelphia University E-learning System (Moodle).	Async hronous	Moodle + MS teams	Report writing
	L1	Moment of inertia	S2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions + students presentation
15	L2	Moment of inertia for composite areas	S2	Engineering Mechanics- Statics-12 th edition by R. C. Hibbeler, and Statics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions + students presentation

16		Parallel-axis Theorem for an area	K2 , S2		F2F	PPP + white board	
----	--	--------------------------------------	---------------	--	-----	-------------------------	--

Notes:

For Blended and F2F Courses: L1 & L2 each 1 hour.

For Online Course: L1 and L2 each 1.5 hours.

Credit Hours Distribution Report	
Learning Style	Credit Hours
F2F	32
Synchronous	0
Asynchronous	16
Total	48
Academic Honesty/ Student Conduct	<ul style="list-style-type: none"> ○ As a student at Philadelphia University, you are expected to follow the university regulations and guidelines for academic honesty/student conduct found in the student handbook. ○ This means that you should not cheat, plagiarize, and let another student use your account in LMS learning portals.
Attendance Policy	Absence from classes and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse, acceptable to and approved by the Dean of the relevant college/faculty, shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

October 2023