

Course Information

Course Title:	dynamics (620212)
Prerequisite:	Statics (620211)
Credit Hours:	3 credit hours (16 weeks per semester, approximately 44 contact hours)
Textbook:	Engineering Mechanics-Dynamics-14 th edition by R. C. Hibbeler
References:	Dynamics-7 th edition by J. Meriam and L. Kraig
Website:	http://www.philadelphia.edu.jo/academics/nmusa
Course Description:	The study of plane motion and force systems on the particle, system of particles, and rigid bodies. It will be an overview of the application of Newton's Laws to rectilinear and curvilinear motions. Work-energy principle, and impulse momentum, will also be studied.
Instructors:	Dr. Nabil Musa Email: nmusa@philadelphia.edu.jo Office: Engineering Building, room E61206, ext.:2343 Office hours: Sat, Sun, Mon Tues, 12:00-13:00 Mon
Course Coordinator:	Dr. Nabil Musa Email: nmusa@philadelphia.edu.jo Office: Engineering Building, room E61206, ext.:2343 Office hours: Sat, Sun, Mon Tues, 12:00-13:00 Mon
Technology Requirements:	<ul style="list-style-type: none">Personal computer, laptop, or mobile phone.Internet Connection.Access to Philadelphia University E-Learning Portal (MS Teams and Moodle)
Learning Style:	Blended
Communication:	<ul style="list-style-type: none">Announcement: the announcements will be posted in MS Teams or Moodle on a regular basis.Email.MS Teams or Moodle chats.
Course Objectives	<ul style="list-style-type: none">Introduction to dynamic, Rectilinear Kinematics, Continuous Motion General Curvilinear Motion of Particles.Motion of projectile, normal and tangential components, absolute Dependent Motion of Two ParticlesRelative motion of two Particles using Translating axes, equation of Motion: Rectangular Coordinates, Equation of

	<p>Motion for a System of Particles, Normal and Tangential Coordinates</p> <ul style="list-style-type: none"> • Work of a force, the principle of work and energy, conservative Forces, and Potential Energy • Planer kinematics of rigid bodies instantaneous center method
--	--

Course Learning Outcomes (CLO) and Relation to ABET Student Outcomes

CLOs	Outcomes	ABET PLOs
K1,K2	Perform kinematic analysis on particles undergoing a rectilinear or curvilinear motion	1
K1,K2	Perform kinematic analysis on rigid bodies based on the relative motion principle	1
K1,K2	Perform kinetic analysis on particles using Newton's second law of motion , the " work and energy " principle, and the " impulse and momentum " principle	1
K1,K2	Perform kinetic analysis on rigid bodies using equations of motion	1

Grading Policy and Assessment Instruments

Graded Item	Marks	Topic (s)	CLO(s)	Learning Portal (Teams/ Moodle/ F2F/ Others)	Week
Assignment 1	5	Relative motion, kinetic of particle	K1,K2	F2F	5
Assignment 2	5	Relative motion, kinetic of particle	K1,K2	F2F	11
Quiz 1	5	Curvilinear motion, and absolute depending motion.	K1,K2	F2F	4
Quiz 2	5	Rectangular, normal, and tangential coordinate	K1,K2	F2F	6
Quiz 3	5	Power and efficiency	K1,K2	F2F	10
Quiz 4	5	Impulse and momentum	K1,K2	F2F	12
Mid Exam	30%	Weeks 1-8	K1,K2	F2F	8
Final Exam	40%	Week 1-15	K1,K2	F2F	16
Total Marks	100%				
Notes:		<ul style="list-style-type: none"> • Two written exams will be given. • Copying homework is forbidden, any student caught copying the homework or any part of the homework will receive zero marks for that homework. • Quizzes: 10-minute quizzes will be given to the students during the semester. These quizzes will cover material discussed during the previous lecture(s). • Homework: Problem sets will be given to students. Homework should be solved individually and submitted before the due date. • The final exam will cover all the class material. 			

Course Content: Learning Resources/ References/ Activities/ Assessment Methods							
Week	Lecture	Topic	CLOs	Learning Resources/ References/ Activities/ Assessment Method	Learning Style (F2F, Synchronous, Asynchronous)	Learning & Teaching Methods	Assessment Method
1	L1	Rectilinear kinematics, straight-line motion	-	Engineering Mechanics- Dynamics-14 th edition by R. C. Hibbeler, and Dynamics- 7 th edition by J. Meriam and L. Kraig	F2F	White board notes	-
	L2	Rectilinear kinematics, erratic motion	K1	Engineering Mechanics- Dynamics-14 th edition by R. C. Hibbeler, and Dynamics- 7 th edition by J. Meriam and L. Kraig	F2F	White board notes	F2F questions
	L3	Curvilinear motion, rectangular components	K1	Philadelphia University E-learning System (Moodle).	Asynchronous	Moodle	F2F questions
2	L1	Motion of projectile (lecture)	K1	Engineering Mechanics- Dynamics-14 th edition by R. C. Hibbeler, and Dynamics- 7 th edition by J. Meriam and L. Kraig	F2F	White board note+ PPP	F2F questions
	L2	Motion of projectile (problem-solving)	K2, S2	Engineering Mechanics- Dynamics-14 th edition by R. C. Hibbeler, and Dynamics- 7 th edition by J. Meriam and L. Kraig	F2F	White board notes +PPP	F2F questions
	L3	Motion of projectile (problem-solving)	S2	Philadelphia University E-learning System (Moodle).	Asynchronous	Moodle + MS teams	-
3	L1	Curvilinear motion, normal and tangential components (lecture)	S2	Engineering Mechanics- Dynamics-14 th edition by R. C. Hibbeler, and Dynamics- 7 th edition by J. Meriam and L. Kraig	F2F	White board notes + PPP	F2F questions
	L2	Curvilinear motion, normal and tangential components (problem-solving)	S2	Engineering Mechanics- Dynamics-14 th edition by R. C. Hibbeler, and Dynamics- 7 th edition by J. Meriam and L. Kraig	F2F	White board notes	F2F questions

				L. Kraig		+ PPP	
	L3	Absolute dependent motion (lecture)	S2	Philadelphia University E-learning System (Moodle).	Async chrono us	Mood le + MS teams	-
4	L1	Absolute dependent motion (problem-solving) Quiz 1	S2	Engineering Mechanics-Dynamics-14 th edition by R. C. Hibbeler, and Dynamics-7 th edition by J. Meriam and L. Kraig	F2F	White board notes + PPP	F2F questions Quiz
	L2	Relative motion (lecture)	S2	Engineering Mechanics-Dynamics-14 th edition by R. C. Hibbeler, and Dynamics-7 th edition by J. Meriam and L. Kraig	F2F	White board notes + PPP	F2F questions
	L3	Relative motion (problem-solving)	S2	Philadelphia University E-learning System (Moodle).	Async chrono us	Mood le + MS teams	F2F Quiz next lecture
5	L1	Newton's laws of motion	S2	Engineering Mechanics-Dynamics-14 th edition by R. C. Hibbeler, and Dynamics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions
	L2	The equations of motion	S2	Engineering Mechanics-Dynamics-14 th edition by R. C. Hibbeler, and Dynamics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions + student presentation
	L3	The equations of motion: rectangular coordinates Assignment 1	S2	Philadelphia University E-learning System (Moodle).	Async chrono us	Mood le + MS teams	Discussion Assignment
6	L1	The equations of motion: normal and tangential coordinate (lecture)	K2 , S2	Engineering Mechanics-Dynamics-14 th edition by R. C. Hibbeler, and Dynamics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F question
	L2	The equations of motion: normal and tangential coordinate (problem-solving)	K2 , S2	Engineering Mechanics-Dynamics-14 th edition by R. C. Hibbeler, and Dynamics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions + quiz

		Quiz 2					
	L3	The work of the force (lecture)	S2	Philadelphia University E-learning System (Moodle).	Async chronous	PPP + white board	Discussion in the class
7	L1	Principle of work and energy (lecture)	S2	Engineering Mechanics-Dynamics-14 th edition by R. C. Hibbeler, and Dynamics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions + students presentation
	L2	Principle of work and energy (problem-solving)		Engineering Mechanics-Dynamics-14 th edition by R. C. Hibbeler, and Dynamics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions + students presentation
	L3	Principle of work and energy (problem-solving)	S2	Philadelphia University E-learning System (Moodle).	Async chronous	Moodle + MS teams	-
8	L1	Power and efficiency (lecture)		Engineering Mechanics-Dynamics-14 th edition by R. C. Hibbeler, and Dynamics-7 th edition by J. Meriam and L. Kraig	F2F	-	Written exam
	L2	Power and efficiency (problem-solving)		Engineering Mechanics-Dynamics-14 th edition by R. C. Hibbeler, and Dynamics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions + students presentation
	L3	Power and efficiency (problem-solving)	S2	Philadelphia University E-learning System (Moodle).	Async chronous	Moodle + MS teams	Report writing
9	L1	Conservative forces and potential energy	K2 , S2	Engineering Mechanics-Dynamics-14 th edition by R. C. Hibbeler, and Dynamics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	-----
	L2	Conservative forces and potential energy (problem-solving)		Engineering Mechanics-Dynamics-14 th edition by R. C. Hibbeler, and Dynamics-7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions

	L3	Conservative forces and potential energy (problem-solving)	S2	Philadelphia University E-learning System (Moodle).	Async hronous	Mood le + MS teams	--
10	L1	Principle of linear impulse and momentum Quiz	K2 , S2	Engineering Mechanics- Dynamics-14 th edition by R. C. Hibbeler, and Dynamics- 7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions + quiz
	L2	Principle of linear impulse and momentum (lecture)	K2 , S2	Engineering Mechanics- Dynamics-14 th edition by R. C. Hibbeler, and Dynamics- 7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F question
	L3	Principle of linear impulse and momentum (problem-solving)	S2	Philadelphia University E-learning System (Moodle).	Async hronous	Mood le + MS teams	Class discussion
11	L1	Principle of linear impulse and momentum (problem-solving)	S2	Engineering Mechanics- Dynamics-14 th edition by R. C. Hibbeler, and Dynamics- 7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions
	L2	conservation of linear impulse and momentum (lecture)	S2	Engineering Mechanics- Dynamics-14 th edition by R. C. Hibbeler, and Dynamics- 7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions
	L3	linear impulse and momentum (lecture) Assignment 2	S2	Philadelphia University E-learning System (Moodle).	Async hronous	Mood le + MS teams	Discussion Assignment
12	L1	linear impulse and momentum (problem-solving)	S2	Engineering Mechanics- Dynamics-14 th edition by R. C. Hibbeler, and Dynamics- 7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions
	L2	linear impulse and momentum (problem-solving) Quiz	K2 , S2	Engineering Mechanics- Dynamics-14 th edition by R. C. Hibbeler, and Dynamics- 7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions + quiz
	L3	introduction to rigid body motion		Philadelphia University E-learning System (Moodle).	Async hronous	Mood le + MS	-----

						teams	
13	L1	Rotation body about a fixed axis	S2	Engineering Mechanics- Dynamics-14 th edition by R. C. Hibbeler, and Dynamics- 7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions
	L2	Absolute motion analysis for rigid body rotation about a fixed axis	S2	Engineering Mechanics- Dynamics-14 th edition by R. C. Hibbeler, and Dynamics- 7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions
	L3	Absolute motion analysis for rigid body rotation about a fixed axis (problem-solving)	S2	Philadelphia University E-learning System (Moodle).	Async hronous	Mood le + MS teams	--
14	L1	Relative motion analysis velocity of rigid body	K2	Engineering Mechanics- Dynamics-14 th edition by R. C. Hibbeler, and Dynamics- 7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions + students presentation
	L2	Relative motion analysis velocity of a rigid body (problem-solving)	K2	Engineering Mechanics- Dynamics-14 th edition by R. C. Hibbeler, and Dynamics- 7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions + students presentation
	L3	Instantaneous center of zero velocity	S2	Philadelphia University E-learning System (Moodle).	Async hronous	Mood le + MS teams	Report writing
15	L1	Instantaneous center of zero velocity (problem-solving)	S2	Engineering Mechanics- Dynamics-14 th edition by R. C. Hibbeler, and Dynamics- 7 th edition by J. Meriam and L. Kraig	F2F	PPP + white board	F2F questions + students presentation
	L2	Relative motion analysis and acceleration of the rigid	S2	Engineering Mechanics- Dynamics-14 th edition by R. C. Hibbeler, and Dynamics-	F2F	PPP + white	F2F questions + student

		body		7 th edition by J. Meriam and L. Kraig		board	s presentation
16		Final exam	K2 , S2		F2F	PPP + white board	

Notes:

For Blended and F2F Courses: L1 & L2 each 1 hour.

For Online Course: L1 and L2 each 1.5 hours.

Credit Hours Distribution Report	
Learning Style	Credit Hours
F2F	32
Synchronous	0
Asynchronous	16
Total	48
Academic Honesty/ Student Conduct	<ul style="list-style-type: none"> ○ As a student at Philadelphia University, you are expected to follow the university regulations and guidelines for academic honesty/student conduct found in the student handbook. ○ This means that you should not cheat, plagiarize, and let another student use your account in LMS learning portals.
Attendance Policy	Absence from classes and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse, acceptable to and approved by the Dean of the relevant college/faculty, shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

October 2023