Philadelphia University	PHILADELPHIA	Approval date:
Faculty of Science	UNIVERSITY	Issue:
Department of Math	THE WAY TO THE FUTURE	Credit hours: 3
Academic year 2024/2025	Course Syllabus	Bachelor

Course information

Course#	Course title			Prere	equisite	
0216122		Mathematics and Biostatistics			N	one
Course type			Class	time	Room #	
☐ University Requirement ☐ Faculty Requirement		quirement	Sun Tues	0.45 11	6304	
☐ Major Requirement ☐ El		\boxtimes Elective	\square Compulsory	Sun Tues	ソ.43-11	0304

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Noha alzubaidi	1018	2475	11:15-12:30	nalzubaidi@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method					
	Learning Model				
Duccontogo	Synchronous Asynchronous Physical				
Precentage	0%	0%	100%		

Course Description

Preliminaries: Numbers, Algebraic Manipulations. **Measurements and Calculations:** Scientific Notation, Units Conversion (Length, Volume, Mass, Temperature). **Functions and Sequences:** Essential Functions, Exponential Functions, Logarithms (Semilog and Log-Log Plots). **Descriptive Statistics:** Numerical Descriptions of Data (Types of data, Measures of Central Tendency and Spread), Graphical Descriptions of Data, Relationships between Variables (Regression), Populations, Samples, and Inference. **Probability:** Principles of Counting, What Is Probability? (Experiments, Outcomes, Events), Conditional Probability (Multiplication Rule, Independence), Discrete Random Variables, Continuous Random Variables. **Inferential Statistics:** The Sampling Distribution (of Mean and Standard Deviation), Confidence Intervals, Hypothesis Testing (*t*-test, *P*-value).

Week	Торіс	Learning Methods	Tasks	Learning Material
	Explanation of the study plan for the course, and what is expected to be accomplished by the	_		Course Syllabus
1	students. Preliminaries: Numbers, Algebraic Manipulations.	Lecture		Diagnostic Tests
	Measurements and Calculations: Scientific Notation, Units Conversion (Length,			Additional Sheet
2	Volume, Mass, Temperature). Four Ways to Represent a Function: Representations of Functions, Piecewise Defined Functions, Symmetry, Periodic Functions, Increasing and Decreasing Functions.	Lecture		Chapter 1
3	A Catalog of Essential Functions: Linear Models, Polynomials, Power Functions, Rational Functions, Algebraic Functions, Trigonometric Functions, Exponential Functions, Logarithmic Functions.	Lecture		Chapter 1
4	Exponential Functions: The Growth of Malarial Parasites, Exponential Functions, Exponential Growth, HIV Density and Exponential Decay, The Number <i>e</i> .	Lecture		Chapter 1
5	Logarithms; Semilog and Log-Log Plots: Inverse Functions, Logarithmic Functions, Natural Logarithms, Graph and Growth of the Natural Logarithm, Semilog Plots, Log-Log Plots.	Lecture		Chapter 1
6	Numerical Descriptions of Data: Types of Variables, Categorical Data, Numerical Data: Measures of Central Tendency, Numerical Data: Measures of Spread, Numerical Data: The Five-Number Summary, Outliers.	Lecture		Chapter 11
7	Graphical Descriptions of Data: Displaying Categorical Data, Displaying Numerical Data: Histograms, Interpreting Area in Histograms, The Normal Curve. Relationships between Variables: Two Categorical Variables, Categorical and Numerical Variables,	Lecture		Chapter 11
8	Two Numerical Variables. Populations, Samples, and Inference: Populations and Samples, Properties of Samples, Types of Data, Causation	Lecture		Chapter 11
9	Principles of Counting: Permutations, Combinations	Lecture		Chapter 12
10	What Is Probability? Experiments, Trials, Outcomes, and Events, Probability When Outcomes Are Equally Likely, Probability in General. Conditional Probability: Conditional Probability, The Multiplication Rule and Independence.	Lecture		Chapter 12
11	Discrete Random Variables:	Lecture		Chapter 12

	Describing Discrete Random Variables, Mean and Variance of Discrete Random Variables, Bernoulli Random Variables, Binomial Random Variables		
12	Continuous Random Variables: Describing Continuous Random Variables, Mean and Variance of Continuous Random Variables, Exponential Random Variables, Normal Random Variables.	Lecture	Chapter 12
13	The Sampling Distribution: Sums of Random Variables, The Sampling Distribution of the Mean, The Sampling Distribution of the Standard Deviation.	Lecture	Chapter 13
14	Confidence Intervals: Interval Estimates, Student's <i>t</i> -Distribution	Lecture	Chapter 13
15	Hypothesis Testing: The Null and Alternative Hypotheses, The <i>t</i> -Statistic, The <i>P</i> -Value.	Lecture	Chapter 13
16	Final Exam		

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes *
	Knowledge	
K1	Know the basic concepts of functions and the accompanying mathematical techniques and procedures.	1
K2	Organize and interpret data graphically and numerically.	1
К3	Understand the axioms of probability and use probability rules to evaluate probability of events.	1
K4	Perform hypothesis tests and construct confidence intervals on the mean and the variance of a normal distribution.	1
S1	Use computer software like GeoGebra and Google Sheets to do calculations.	9
S2	Ability to solve basic mathematical problems in medical, pharmaceutical, and life sciences.	2
C1	Thinking reasonably and the ability to make decisions.	3
C2	Work in a team to implement one of the tasks of the course.	11

^{*} According to learning outcomes of the faculty of pharmacy.

Learning Resources

Course textbook	Stewart, J. and Day, T. (2016) Biocalculus: Calculus, Probability,		
	and Statistics for the Life Sciences (1st ed.). Cengage Learning.		
Supporting References	• Greenwell, R. N., Ritchey, N. P., Lial M. L. (2015) Calculus for		
	the Life Sciences (2 nd ed.). Pearson.		
	• Samuels M. L., Witmer J. A., Schaffner A. (2016) Statistics for		
	the Life Sciences (5 th ed.). Pearson.		
Supporting websites	✓ GeoGebra: https://www.geogebra.org/		

	✓ Google Sheets: http://sheets.new/			
Teaching Environment	☑Classroom ☐ laboratory ☐Learning platform ☐Other			

Meetings and Subjects Timetable

Course Contributing to Learner Skill Development

	Using Technology		
•			
	Communication Skills		
•			
Application of Concepts Learnt			
•			

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	30%	11	K1, K2, C1
Various Assessments *	30%	Continuous	S1, S2, C1, C2
Final Exam	40%	16	K1, K2, K3, K4, C1
Total	100%		

^{*} Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning Method*	Assessment Method**
	Knowledge		
K1	Know the basic concepts of functions and the accompanying mathematical techniques and procedures.	Lecture	Exam
K2	Organize and interpret data graphically and numerically.	Lecture	Exam
К3	Understand the axioms of probability and use probability rules to evaluate probability of events.	Lecture	Exam
K4	Perform hypothesis tests and construct confidence intervals on the mean and the variance of a normal distribution.	Lecture	Exam
	Skills		
S1	Use computer software like GeoGebra and Google Sheets to do calculations.		

^{*} Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

S2	Ability to solve basic mathematical problems	
	in medical, pharmaceutical, and life sciences.	
	Competencies	
C1	Thinking reasonably and the ability to make	
	decisions.	
C2	Work in a team to implement one of the tasks	
	of the course.	

^{*} Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Polices

Policy	Policy Requirements
Passing Grade	The minimum passing grade for the course is (50%) and the minimum final mark recorded on transcript is (35%).
Missing Exams	 Missing an exam without a valid excuse will result in a zero grade to be assigned to the exam or assessment. A Student who misses an exam or scheduled assessment, for a legitimate reason, must submit an official written excuse within a week from an exam or assessment due date. A student who has an excuse for missing a final exam should submit the excuse to the dean within three days of the missed exam date.
Attendance	The student is not allowed to be absent more than (15%) of the total hours prescribed for the course, which equates to six lectures days (M, W) and seven lectures (S, T, T). If the student misses more than (15%) of the total hours prescribed for the course without a satisfactory excuse accepted by the dean of the faculty, s/he will be prohibited from taking the final exam and the grade in that course is considered (zero), but if the absence is due to illness or a compulsive excuse accepted by the dean of the college, then withdrawal grade will be recorded.
Academic Honesty	Philadelphia University pays special attention to the issue of academic integrity, and the penalties stipulated in the university's instructions are applied to those who are proven to have committed an act that violates academic integrity, such as: cheating, plagiarism (academic theft), collusion, and violating intellectual property rights.

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment

^{**} Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Assess	Assessment Rubric of the Program Learning Outcome				e