Direct Methods for Solving Linear Systems

Linear Algebra & Matrix Inversion

Numerical Analysis (9th Edition) R L Burden & J D Faires

Beamer Presentation Slides prepared by John Carroll Dublin City University

© 2011 Brooks/Cole, Cengage Learning

(ロ) (四) (注) (注) (注) (注)

Matrix Arithmetic	Matrix Products	Square Matrices	Inverse Matrices	Matrix Transpose
Outline				

< 17 ▶

< ≣ >

2 Matrix-Vector & Matrix-Matrix Products

→ ∃ → < ∃</p>

< 🗇 🕨

Matrix-Vector & Matrix-Matrix Products 2

Categories of Square Matrices 3

< 🗇 >

- 2 Matrix-Vector & Matrix-Matrix Products
- 3 Categories of Square Matrices
- 4 Inverse Matrices

.⊒...>

< A

Outline

- 2 Matrix-Vector & Matrix-Matrix Products
- 3 Categories of Square Matrices
 - 4 Inverse Matrices

-

- 2 Matrix-Vector & Matrix-Matrix Products
- 3 Categories of Square Matrices
- 4 Inverse Matrices
- 5 Transpose of a Matrix

< 🗇 🕨

Linear Algebra & Matrix Inversion: Matrices

Definition of a Matrix

An $n \times m$ (*n* by *m*) matrix is a rectangular array of elements with *n* rows and *m* columns in which not only is the value of an element important, but also its position in the array.

Linear Algebra & Matrix Inversion: Matrices

Definition of a Matrix

An $n \times m$ (*n* by *m*) matrix is a rectangular array of elements with *n* rows and *m* columns in which not only is the value of an element important, but also its position in the array.

Notation

The notation for an $n \times m$ matrix will be a capital letter such as A for the matrix and lowercase letters with double subscripts, such as a_{ij} , to refer to the entry at the intersection of the *i*th row and *j*th column; that is:

$$A = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}$$

Linear Algebra & Matrix Inversion

Definition: Equality of Matrices

Two matrices *A* and *B* are equal if they have the same number of rows and columns, say $n \times m$, and if $a_{ij} = b_{ij}$, for each i = 1, 2, ..., n and j = 1, 2, ..., m.

Linear Algebra & Matrix Inversion

Definition: Equality of Matrices

Two matrices *A* and *B* are equal if they have the same number of rows and columns, say $n \times m$, and if $a_{ij} = b_{ij}$, for each i = 1, 2, ..., n and j = 1, 2, ..., m.

This definition means, for example, that

$$\begin{bmatrix} 2 & -1 & 7 \\ 3 & 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 2 & 3 \\ -1 & 1 \\ 7 & 0 \end{bmatrix}$$

because they differ in dimension.

< ロ > < 同 > < 三 > < 三 >

Definition: Addition of 2 Matrices

If *A* and *B* are both $n \times m$ matrices, then the sum of *A* and *B*, denoted A + B, is the $n \times m$ matrix whose entries are $a_{ij} + b_{ij}$, for each i = 1, 2, ..., n and j = 1, 2, ..., m.

.

Definition: Addition of 2 Matrices

If *A* and *B* are both $n \times m$ matrices, then the sum of *A* and *B*, denoted A + B, is the $n \times m$ matrix whose entries are $a_{ij} + b_{ij}$, for each i = 1, 2, ..., n and j = 1, 2, ..., m.

Definition: Scalar Multiplication

If *A* is an $n \times m$ matrix and λ is a real number, then the scalar multiplication of λ and *A*, denoted λA , is the $n \times m$ matrix whose entries are λa_{ij} , for each i = 1, 2, ..., n and j = 1, 2, ..., m.

Numerical Analysis (Chapter 6)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

Determine A + B and λA when

$$A = \begin{bmatrix} 2 & -1 & 7 \\ 3 & 1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & 2 & -8 \\ 0 & 1 & 6 \end{bmatrix} \quad \text{and} \quad \lambda = -2$$

★週 ▶ ★ 臣 ▶ ★ 臣

Example

Determine A + B and λA when

$$A = \begin{bmatrix} 2 & -1 & 7 \\ 3 & 1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & 2 & -8 \\ 0 & 1 & 6 \end{bmatrix} \quad \text{and} \quad \lambda = -2$$

Solution

We have

$$A+B = \begin{bmatrix} 2+4 & -1+2 & 7-8 \\ 3+0 & 1+1 & 0+6 \end{bmatrix} = \begin{bmatrix} 6 & 1 & -1 \\ 3 & 2 & 6 \end{bmatrix}$$

Numerical Analysis (Chapter 6)

Linear Algebra & Matrix Inversion

R L Burden & J D Faires 7 / 47

Example

Determine A + B and λA when

$$A = \begin{bmatrix} 2 & -1 & 7 \\ 3 & 1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & 2 & -8 \\ 0 & 1 & 6 \end{bmatrix} \quad \text{and} \quad \lambda = -2$$

Solution

We have

$$A+B = \begin{bmatrix} 2+4 & -1+2 & 7-8 \\ 3+0 & 1+1 & 0+6 \end{bmatrix} = \begin{bmatrix} 6 & 1 & -1 \\ 3 & 2 & 6 \end{bmatrix}$$

and

$$\lambda A = \begin{bmatrix} -2(2) & -2(-1) & -2(7) \\ -2(3) & -2(1) & -2(0) \end{bmatrix} = \begin{bmatrix} -4 & 2 & -14 \\ -6 & -2 & 0 \end{bmatrix}$$

Numerical Analysis (Chapter 6)

Note: In what follows, O denotes a matrix all of whose entries are 0 and -A denotes the matrix whose entries are $-a_{ij}$.

→ ∃ → < ∃</p>

Note: In what follows, O denotes a matrix all of whose entries are 0 and -A denotes the matrix whose entries are $-a_{ij}$.

Theorem: Addition & Scalar Multiplication

Let A, B, and C be $n \times m$ matrices and λ and μ be real numbers.

Note: In what follows, O denotes a matrix all of whose entries are 0 and -A denotes the matrix whose entries are $-a_{ij}$.

Theorem: Addition & Scalar Multiplication

Let *A*, *B*, and *C* be $n \times m$ matrices and λ and μ be real numbers. The following properties of addition and scalar multiplication hold:

Note: In what follows, O denotes a matrix all of whose entries are 0 and -A denotes the matrix whose entries are $-a_{ij}$.

Theorem: Addition & Scalar Multiplication

Let *A*, *B*, and *C* be $n \times m$ matrices and λ and μ be real numbers. The following properties of addition and scalar multiplication hold:

(i) A+B=B+A,

Note: In what follows, O denotes a matrix all of whose entries are 0 and -A denotes the matrix whose entries are $-a_{ij}$.

Theorem: Addition & Scalar Multiplication

Let *A*, *B*, and *C* be $n \times m$ matrices and λ and μ be real numbers. The following properties of addition and scalar multiplication hold:

(i)
$$A + B = B + A$$
, (ii) $(A + B) + C = A + (B + C)$

Note: In what follows, O denotes a matrix all of whose entries are 0 and -A denotes the matrix whose entries are $-a_{ij}$.

Theorem: Addition & Scalar Multiplication

Let *A*, *B*, and *C* be $n \times m$ matrices and λ and μ be real numbers. The following properties of addition and scalar multiplication hold:

(i)
$$A + B = B + A$$
, (ii) $(A + B) + C = A + (B + C)$,

(iii) A + O = O + A = A,

Note: In what follows, O denotes a matrix all of whose entries are 0 and -A denotes the matrix whose entries are $-a_{ij}$.

Theorem: Addition & Scalar Multiplication

Let *A*, *B*, and *C* be $n \times m$ matrices and λ and μ be real numbers. The following properties of addition and scalar multiplication hold:

(i)
$$A + B = B + A$$
, (ii) $(A + B) + C = A + (B + C)$,

(iii) A + O = O + A = A, (iv) A + (-A) = -A + A = 0,

Note: In what follows, O denotes a matrix all of whose entries are 0 and -A denotes the matrix whose entries are $-a_{ii}$.

Theorem: Addition & Scalar Multiplication

Let A, B, and C be $n \times m$ matrices and λ and μ be real numbers. The following properties of addition and scalar multiplication hold:

- (i) A + B = B + A.
- (iii) A + O = O + A = A.

(ii)
$$(A+B) + C = A + (B+C)$$

(iv)
$$A + (-A) = -A + A = 0$$
,

(v) $\lambda(A+B) = \lambda A + \lambda B$,

Note: In what follows, O denotes a matrix all of whose entries are 0 and -A denotes the matrix whose entries are $-a_{ii}$.

Theorem: Addition & Scalar Multiplication

Let A, B, and C be $n \times m$ matrices and λ and μ be real numbers. The following properties of addition and scalar multiplication hold:

- (i) A + B = B + A. (ii) (A+B) + C = A + (B+C),
- (iii) A + O = O + A = A.
 - (v) $\lambda(A+B) = \lambda A + \lambda B$, (vi) $(\lambda + \mu)A = \lambda A + \mu A$,

(iv) A + (-A) = -A + A = 0,

Note: In what follows, O denotes a matrix all of whose entries are 0 and -A denotes the matrix whose entries are $-a_{ii}$.

Theorem: Addition & Scalar Multiplication

Let A, B, and C be $n \times m$ matrices and λ and μ be real numbers. The following properties of addition and scalar multiplication hold:

(i) A + B = B + A.

(iii)
$$A + O = O + A = A$$
, (

(v)
$$\lambda(A+B) = \lambda A + \lambda B$$
,

(vii)
$$\lambda(\mu A) = (\lambda \mu) A$$
,

(II)
$$(A+B)+C = A + (B+C),$$

iv)
$$A + (-A) = -A + A = 0$$
,

vi)
$$(\lambda + \mu)A = \lambda A + \mu A$$
,

Note: In what follows, O denotes a matrix all of whose entries are 0 and -A denotes the matrix whose entries are $-a_{ii}$.

Theorem: Addition & Scalar Multiplication

Let A, B, and C be $n \times m$ matrices and λ and μ be real numbers. The following properties of addition and scalar multiplication hold:

(ii) (A + B) + C = A + (B + C)(i) A + B = B + A.

(iii)
$$A + O = O + A = A$$
,

(v)
$$\lambda(\mathbf{A} + \mathbf{B}) = \lambda \mathbf{A} + \lambda \mathbf{B},$$

(vii) $\lambda(\mu A) = (\lambda \mu) A$,

(ii)
$$(A+B) + C = A + (B+C)$$

iv)
$$A + (-A) = -A + A = 0$$
,

vi)
$$(\lambda + \mu)A = \lambda A + \mu A$$
,

(viii)
$$1A = A$$

Note: In what follows, O denotes a matrix all of whose entries are 0 and -A denotes the matrix whose entries are $-a_{ij}$.

Theorem: Addition & Scalar Multiplication

Let *A*, *B*, and *C* be $n \times m$ matrices and λ and μ be real numbers. The following properties of addition and scalar multiplication hold:

- (i) A + B = B + A, (ii) (A + B) + C = A + (B + C),
- (iii) A + O = O + A = A, (iv) A + (-A) = -A + A = 0,
- (v) $\lambda(A+B) = \lambda A + \lambda B$, (vi) $(\lambda + \mu)A = \lambda A + \mu A$,
- (vii) $\lambda(\mu A) = (\lambda \mu)A$, (viii) 1A = A.

All these properties follow from similar results concerning the real numbers.

Numerical Analysis (Chapter 6)

Linear Algebra & Matrix Inversion

Outline

2 Matrix-Vector & Matrix-Matrix Products

- 3 Categories of Square Matrices
- 4 Inverse Matrices
- 5 Transpose of a Matrix

< 🗇 🕨

Definition: Matrix-Vector Product

Let *A* be an $n \times m$ matrix and **b** an *m*-dimensional column vector. The matrix-vector product of *A* and **b**, denoted *A***b**, is an *n*-dimensional column vector given by

$$A\mathbf{b} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^m a_{1i}b_i \\ \sum_{i=1}^m a_{2i}b_i \\ \vdots \\ \sum_{i=1}^m a_{ni}b_i \end{bmatrix}$$

.

4 A N

Definition: Matrix-Vector Product

Let *A* be an $n \times m$ matrix and **b** an *m*-dimensional column vector. The matrix-vector product of *A* and **b**, denoted *A***b**, is an *n*-dimensional column vector given by

$$A\mathbf{b} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^m a_{1i}b_i \\ \sum_{i=1}^m a_{2i}b_i \\ \vdots \\ \sum_{i=1}^m a_{ni}b_i \end{bmatrix}$$

Note: For this product to be defined the number of columns of the matrix *A* must match the number of rows of the vector **b**, and the result is another column vector with the number of rows matching the number of rows in the matrix.

Numerical Analysis (Chapter 6)

Linear Algebra & Matrix Inversion

Example

Determine the product
$$A\mathbf{b}$$
 if $A = \begin{bmatrix} 3 & 2 \\ -1 & 1 \\ 6 & 4 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$.

Example

Determine the product
$$A\mathbf{b}$$
 if $A = \begin{bmatrix} 3 & 2 \\ -1 & 1 \\ 6 & 4 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$.

Solution

Because A has dimension 3×2 and **b** has dimension 2×1 , the product is defined and is a vector with three rows.

Example

Determine the product
$$A\mathbf{b}$$
 if $A = \begin{bmatrix} 3 & 2 \\ -1 & 1 \\ 6 & 4 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$.

Solution

Because A has dimension 3×2 and **b** has dimension 2×1 , the product is defined and is a vector with three rows. These are

$$3(3) + 2(-1) = 7$$
, $(-1)(3) + 1(-1) = -4$, and $6(3) + 4(-1) = 14$

Numerical Analysis (Chapter 6)

Example

Determine the product
$$A\mathbf{b}$$
 if $A = \begin{bmatrix} 3 & 2 \\ -1 & 1 \\ 6 & 4 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$.

Solution

Because A has dimension 3×2 and **b** has dimension 2×1 , the product is defined and is a vector with three rows. These are

$$3(3) + 2(-1) = 7$$
, $(-1)(3) + 1(-1) = -4$, and $6(3) + 4(-1) = 14$

That is,

$$A\mathbf{b} = \begin{bmatrix} 3 & 2 \\ -1 & 1 \\ 6 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 7 \\ -4 \\ 14 \end{bmatrix}$$

Numerical Analysis (Chapter 6)

Linear Algebra & Matrix Inversion

Describing a Linear System

The introduction of the matrix-vector product permits us to view the linear system

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1,$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2,$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

as the matrix equation

$$A\mathbf{x} = \mathbf{b}$$

Numerical Analysis (Chapter 6)

A (10) > A (10) > A (10)
Linear Algebra: Matrix-Vector Products

Describing a Linear System (Cont'd)

where

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

because all the entries in the product Ax must match the corresponding entries in the vector **b**.

Linear Algebra: Matrix-Vector Products

Describing a Linear System (Cont'd)

where

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

because all the entries in the product Ax must match the corresponding entries in the vector **b**.

 In essence, then, an n × m matrix is a function with domain the set of m-dimensional column vectors and range a subset of the n-dimensional column vectors.

We can use matrix-vector multiplication to define general matrix-matrix multiplication.

< 17 ▶

We can use matrix-vector multiplication to define general matrix-matrix multiplication.

Definition: Matrix-Matrix Product

Let *A* be an $n \times m$ matrix and *B* an $m \times p$ matrix. The matrix product of *A* and *B*, denoted *AB*, is an $n \times p$ matrix *C* whose entries c_{ij} are

$$c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \cdots + a_{im} b_{mj},$$

for each i = 1, 2, ..., n, and j = 1, 2, ..., p.

Row by Column Multiplication

The computation of c_{ij} can be viewed as the multiplication of the entries of the *i*th row of *A* with corresponding entries in the *j*th column of *B*, followed by a summation; that is,

$$\begin{bmatrix} a_{i1}, a_{i2}, \dots, a_{im} \end{bmatrix} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{mj} \end{bmatrix} = c_{ij}$$

Numerical Analysis (Chapter 6)

Linear Algebra & Matrix Inversion

Row by Column Multiplication

The computation of c_{ij} can be viewed as the multiplication of the entries of the *i*th row of *A* with corresponding entries in the *j*th column of *B*, followed by a summation; that is,

$$\begin{bmatrix} a_{i1}, a_{i2}, \dots, a_{im} \end{bmatrix} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{mj} \end{bmatrix} = c_{ij}$$
where
$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{im}b_{mj} = \sum_{k=1}^{m} a_{ik}b_{kj}$$

Row by Column Multiplication

The computation of c_{ij} can be viewed as the multiplication of the entries of the *i*th row of *A* with corresponding entries in the *j*th column of *B*, followed by a summation; that is,

$$\begin{bmatrix} a_{i1}, a_{i2}, \dots, a_{im} \end{bmatrix} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{mj} \end{bmatrix} = c_{ij}$$
where
$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{im}b_{mj} = \sum_{k=1}^{m} a_{ik}b_{kj}$$

This explains why the number of columns of *A* must equal the number of rows of *B* for the product *AB* to be defined.

Numerical Analysis (Chapter 6)

Linear Algebra & Matrix Inversion

Example

Determine all possible products of the matrices

$$A = \begin{bmatrix} 3 & 2 \\ -1 & 1 \\ 1 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 1 & -1 \\ 3 & 1 & 2 \end{bmatrix}$$
$$C = \begin{bmatrix} 2 & 1 & 0 & 1 \\ -1 & 3 & 2 & 1 \\ 1 & 1 & 2 & 0 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$$

Solution (1/2)

The size of the matrices are

$$\begin{array}{cccc} A & B & C & D \\ 3 \times 2 & 2 \times 3 & 3 \times 4 & 2 \times 2 \end{array}$$

Numerical Analysis (Chapter 6)

Linear Algebra & Matrix Inversion

R L Burden & J D Faires

17/47

Solution (1/2)

The size of the matrices are

$$\begin{array}{cccc} A & B & C & D \\ 3 \times 2 & 2 \times 3 & 3 \times 4 & 2 \times 2 \end{array}$$

The products that can be defined, and their dimensions, are:

AB	BA	AD	BC	DB	DD
3×3	2×2	3 imes 2	2 imes 4	2 imes 3	2 imes 2

17/47

Solution (2/2)

These products are

$$AB = \begin{bmatrix} 12 & 5 & 1 \\ 1 & 0 & 3 \\ 14 & 5 & 7 \end{bmatrix}$$

Solution (2/2)

These products are

$$AB = \begin{bmatrix} 12 & 5 & 1 \\ 1 & 0 & 3 \\ 14 & 5 & 7 \end{bmatrix} \qquad BA = \begin{bmatrix} 4 & 1 \\ 10 & 15 \end{bmatrix}$$

Numerical Analysis (Chapter 6)

Solution (2/2)

These products are

$$AB = \begin{bmatrix} 12 & 5 & 1 \\ 1 & 0 & 3 \\ 14 & 5 & 7 \end{bmatrix} \qquad BA = \begin{bmatrix} 4 & 1 \\ 10 & 15 \end{bmatrix}$$
$$AD = \begin{bmatrix} 7 & -5 \\ 1 & 0 \\ 9 & -5 \end{bmatrix}$$

Solution (2/2)

These products are

$$AB = \begin{bmatrix} 12 & 5 & 1 \\ 1 & 0 & 3 \\ 14 & 5 & 7 \end{bmatrix} \qquad BA = \begin{bmatrix} 4 & 1 \\ 10 & 15 \end{bmatrix}$$
$$AD = \begin{bmatrix} 7 & -5 \\ 1 & 0 \\ 9 & -5 \end{bmatrix} \qquad BC = \begin{bmatrix} 2 & 4 & 0 & 3 \\ 7 & 8 & 6 & 4 \end{bmatrix}$$

Solution (2/2)

These products are

$$AB = \begin{bmatrix} 12 & 5 & 1 \\ 1 & 0 & 3 \\ 14 & 5 & 7 \end{bmatrix} \qquad BA = \begin{bmatrix} 4 & 1 \\ 10 & 15 \end{bmatrix}$$
$$AD = \begin{bmatrix} 7 & -5 \\ 1 & 0 \\ 9 & -5 \end{bmatrix} \qquad BC = \begin{bmatrix} 2 & 4 & 0 & 3 \\ 7 & 8 & 6 & 4 \end{bmatrix}$$
$$DB = \begin{bmatrix} -1 & 0 & -3 \\ 1 & 1 & -4 \end{bmatrix}$$

Solution (2/2)

These products are

$$AB = \begin{bmatrix} 12 & 5 & 1 \\ 1 & 0 & 3 \\ 14 & 5 & 7 \end{bmatrix} \qquad BA = \begin{bmatrix} 4 & 1 \\ 10 & 15 \end{bmatrix}$$
$$AD = \begin{bmatrix} 7 & -5 \\ 1 & 0 \\ 9 & -5 \end{bmatrix} \qquad BC = \begin{bmatrix} 2 & 4 & 0 & 3 \\ 7 & 8 & 6 & 4 \end{bmatrix}$$
$$DB = \begin{bmatrix} -1 & 0 & -3 \\ 1 & 1 & -4 \end{bmatrix} \qquad DD = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$AB = \left[\begin{array}{rrrr} 12 & 5 & 1 \\ 1 & 0 & 3 \\ 14 & 5 & 7 \end{array} \right]$$

$$BA = \left[\begin{array}{cc} 4 & 1 \\ 10 & 15 \end{array} \right]$$

Non-Commutativity

Numerical Analysis (Chapter 6)

Linear Algebra & Matrix Inversion

R L Burden & J D Faires 19 / 47

1 5

Linear Algebra: Matrix-Matrix Products

$$AB = \begin{bmatrix} 12 & 5 & 1 \\ 1 & 0 & 3 \\ 14 & 5 & 7 \end{bmatrix} \qquad BA = \begin{bmatrix} 4 \\ 10 & 1 \end{bmatrix}$$

Non-Commutativity

• Notice that although the matrix products *AB* and *BA* are both defined, their results are very different; they do not even have the same dimension.

$$AB = \begin{bmatrix} 12 & 5 & 1 \\ 1 & 0 & 3 \\ 14 & 5 & 7 \end{bmatrix} \qquad BA = \begin{bmatrix} 4 & 1 \\ 10 & 15 \end{bmatrix}$$

Non-Commutativity

- Notice that although the matrix products AB and BA are both defined, their results are very different; they do not even have the same dimension.
- In mathematical language, we say that the matrix product operation is not commutative, that is, products in reverse order can differ.

$$AB = \begin{bmatrix} 12 & 5 & 1 \\ 1 & 0 & 3 \\ 14 & 5 & 7 \end{bmatrix} \qquad BA = \begin{bmatrix} 4 & 1 \\ 10 & 15 \end{bmatrix}$$

Non-Commutativity

- Notice that although the matrix products AB and BA are both defined, their results are very different; they do not even have the same dimension.
- In mathematical language, we say that the matrix product operation is not commutative, that is, products in reverse order can differ.
- This is the case even when both products are defined and are of the same dimension. Almost any example will show this.

Linear Algebra & Matrix Inversion

Certain important operations involving matrix product do hold, however, as indicated in the following result.

- 同 ト - 三 ト - 三

Certain important operations involving matrix product do hold, however, as indicated in the following result.

Theorem

Let *A* be an $n \times m$ matrix, *B* be an $m \times k$ matrix, *C* be a $k \times p$ matrix, *D* be an $m \times k$ matrix, and λ be a real number. The following properties hold:

- (a) A(BC) = (AB)C
- (b) A(B+D) = AB + AD
- (c) $\lambda(AB) = (\lambda A)B = A(\lambda B)$

Certain important operations involving matrix product do hold, however, as indicated in the following result.

Theorem

Let *A* be an $n \times m$ matrix, *B* be an $m \times k$ matrix, *C* be a $k \times p$ matrix, *D* be an $m \times k$ matrix, and λ be a real number. The following properties hold:

- (a) A(BC) = (AB)C
- (b) A(B+D) = AB + AD
- (c) $\lambda(AB) = (\lambda A)B = A(\lambda B)$

The verification of the property in part (a) will only be presented here in order to show the method involved. The other parts can be shown in a similar manner.

Numerical Analysis (Chapter 6)

20/47

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A(BC) = (AB)C: Proof (1/3)

Numerical Analysis (Chapter 6)

A(BC) = (AB)C: Proof (1/3)

To show that A(BC) = (AB)C, compute the *ij*-entry of each side of the equation. *BC* is an $m \times p$ matrix with *ij*-entry

$$(BC)_{sj} = \sum_{l=1}^{k} b_{sl} c_{lj}$$

$\overline{A(BC)} = (AB)C$: Proof (1/3)

To show that A(BC) = (AB)C, compute the *ij*-entry of each side of the equation. *BC* is an $m \times p$ matrix with *ij*-entry

$$(BC)_{sj} = \sum_{l=1}^{k} b_{sl} c_{lj}$$

Thus, A(BC) is an $n \times p$ matrix with entries

$$[A(BC)]_{ij} = \sum_{s=1}^{m} a_{is}(BC)_{sj} = \sum_{s=1}^{m} a_{is}\left(\sum_{l=1}^{k} b_{sl}c_{lj}\right) = \sum_{s=1}^{m} \sum_{l=1}^{k} a_{is}b_{sl}c_{lj}$$

A(BC) = (AB)C: Proof (2/3)

Numerical Analysis (Chapter 6)

A(BC) = (AB)C: Proof (2/3)

Similarly, AB is an $n \times k$ matrix with entries

$$(AB)_{il} = \sum_{s=1}^m a_{is} b_{sl}$$

A(BC) = (AB)C: Proof (2/3)

Similarly, AB is an $n \times k$ matrix with entries

$$(AB)_{il} = \sum_{s=1}^m a_{is} b_{sl}$$

so (AB)C is an $n \times p$ matrix with entries

$$[(AB)C]_{ij} = \sum_{l=1}^{k} (AB)_{il} c_{lj} = \sum_{l=1}^{k} \left(\sum_{s=1}^{m} a_{is} b_{sl} \right) c_{lj} = \sum_{l=1}^{k} \sum_{s=1}^{m} a_{is} b_{sl} c_{lj}$$

Numerical Analysis (Chapter 6)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$[(AB)C]_{ij} = \sum_{l=1}^{k} (AB)_{il} c_{lj} = \sum_{l=1}^{k} \left(\sum_{s=1}^{m} a_{is} b_{sl} \right) c_{lj} = \sum_{l=1}^{k} \sum_{s=1}^{m} a_{is} b_{sl} c_{lj}$$

A(BC) = (AB)C: Proof (3/3)

Numerical Analysis (Chapter 6)

$$[(AB)C]_{ij} = \sum_{l=1}^{k} (AB)_{il} c_{lj} = \sum_{l=1}^{k} \left(\sum_{s=1}^{m} a_{is} b_{sl} \right) c_{lj} = \sum_{l=1}^{k} \sum_{s=1}^{m} a_{is} b_{sl} c_{lj}$$

A(BC) = (AB)C: Proof (3/3)

Interchanging the order of summation on the right side gives

$$[(AB)C]_{ij} = \sum_{s=1}^{m} \sum_{l=1}^{k} a_{is} b_{sl} c_{lj} = [A(BC)]_{ij}$$

for each i = 1, 2, ..., n and j = 1, 2, ..., p. So A(BC) = (AB)C.

< ロ > < 同 > < 回 > < 回 > .

- Matrix Arithmetic
- 2) Matrix-Vector & Matrix-Matrix Products
- Categories of Square Matrices
 - 4 Inverse Matrices
 - 5 Transpose of a Matrix

A 3 > 4 3

< 🗇 🕨

Definition: Square, Diagonal & Idenity Matrices

(i) A square matrix has the same number of rows as columns.

★ ∃ →

4 A N

Definition: Square, Diagonal & Idenity Matrices

- (i) A square matrix has the same number of rows as columns.
- (ii) A diagonal matrix $D = [d_{ij}]$ is a square matrix with $d_{ij} = 0$ whenever $i \neq j$.

< 回 ト < 三 ト < 三

Definition: Square, Diagonal & Idenity Matrices

- (i) A square matrix has the same number of rows as columns.
- (ii) A diagonal matrix $D = [d_{ij}]$ is a square matrix with $d_{ij} = 0$ whenever $i \neq j$.
- (iii) The identity matrix of order *n*, $I_n = [\delta_{ij}]$, is a diagonal matrix whose diagonal entries are all 1s. When the size of I_n is clear, this matrix is generally written simply as *I*.

Definition: Square, Diagonal & Idenity Matrices

- (i) A square matrix has the same number of rows as columns.
- (ii) A diagonal matrix $D = [d_{ij}]$ is a square matrix with $d_{ij} = 0$ whenever $i \neq j$.
- (iii) The identity matrix of order *n*, $I_n = [\delta_{ij}]$, is a diagonal matrix whose diagonal entries are all 1s. When the size of I_n is clear, this matrix is generally written simply as *I*.

For example, a diagonal matrix *D* of order 3 and an identity matrix *I* of order 3 are:

$$D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix} \text{ and } I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
Definition: Upper- & Lower-Triangular Matrices

An upper-triangular $n \times n$ matrix $U = [u_{ij}]$ has, for each j = 1, 2, ..., n, the entries

$$u_{ij} = 0$$
, for each $i = j + 1, j + 2, ..., n$

・ 同 ト ・ ヨ ト ・ ヨ

Definition: Upper- & Lower-Triangular Matrices

An upper-triangular $n \times n$ matrix $U = [u_{ij}]$ has, for each j = 1, 2, ..., n, the entries

$$u_{ij}=0,$$
 for each $i=j+1,j+2,\ldots,n$

and a lower-triangular matrix $L = [I_{ij}]$ has, for each j = 1, 2, ..., n, the entries

$$I_{ij} = 0$$
, for each $i = 1, 2, \dots, j-1$

Numerical Analysis (Chapter 6)

Definition: Upper- & Lower-Triangular Matrices

An upper-triangular $n \times n$ matrix $U = [u_{ij}]$ has, for each j = 1, 2, ..., n, the entries

$$u_{ij} = 0$$
, for each $i = j + 1, j + 2, \dots, n$

and a lower-triangular matrix $L = [I_{ij}]$ has, for each j = 1, 2, ..., n, the entries

$$I_{ij} = 0$$
, for each $i = 1, 2, \dots, j-1$

A diagonal matrix, then, is both both upper triangular and lower triangular because its only nonzero entries must lie on the main diagonal.

Numerical Analysis (Chapter 6)

Linear Algebra & Matrix Inversion

R L Burden & J D Faires 26 / 47

3

イロン イ理 とく ヨン イヨン

Example

Consider the identity matrix of order three,

$$I_3 = \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Numerical Analysis (Chapter 6)

Example

Consider the identity matrix of order three,

$$V_3 = \left[egin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}
ight]$$

If A is any 3×3 matrix, then

$$AI_3 = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Example

Consider the identity matrix of order three,

$$V_3 = \left[egin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}
ight]$$

If A is any 3×3 matrix, then

$$AI_{3} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

27/47

Example

Consider the identity matrix of order three,

$$V_3 = \left[egin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}
ight]$$

If A is any 3×3 matrix, then

$$AI_{3} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = A$$

Example

Consider the identity matrix of order three,

$$V_3 = \left[egin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}
ight]$$

If A is any 3×3 matrix, then

$$AI_{3} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = A$$

The identity matrix I_n commutes with any $n \times n$ matrix A; that is, the order of multiplication does not matter, $I_n A = A = A I_n$. Keep in mind that this property is not true in general, even for square matrices.

Numerical Analysis (Chapter 6)

Linear Algebra & Matrix Inversion

27 / 47

Outline

- Matrix Arithmetic
- 2 Matrix-Vector & Matrix-Matrix Products
- 3 Categories of Square Matrices
- 4 Inverse Matrices
- 5 Transpose of a Matrix

(1)

- **A**

Definition: Matrix Invesre

An $n \times n$ matrix A is said to be nonsingular (or invertible) if an $n \times n$ matrix A^{-1} exists with $AA^{-1} = A^{-1}A = I$. The matrix A^{-1} is called the inverse of A. A matrix without an inverse is called singular (or noninvertible).

A (10) A (10) A (10)

Definition: Matrix Invesre

An $n \times n$ matrix A is said to be nonsingular (or invertible) if an $n \times n$ matrix A^{-1} exists with $AA^{-1} = A^{-1}A = I$. The matrix A^{-1} is called the inverse of A. A matrix without an inverse is called singular (or noninvertible).

Theorem: Properties of the Matrix Invere

For any nonsingular $n \times n$ matrix A:

- (i) A^{-1} is unique
- (ii) A^{-1} is nonsingular and $(A^{-1})^{-1} = A$

(iii) If *B* is also a nonsingular $n \times n$ matrix, then $(AB)^{-1} = B^{-1}A^{-1}$

Example

Let

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} -\frac{2}{9} & \frac{5}{9} & -\frac{1}{9} \\ \frac{4}{9} & -\frac{1}{9} & \frac{2}{9} \\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Numerical Analysis (Chapter 6)

Linear Algebra & Matrix Inversion

R L Burden & J D Faires

30/47

Example

Let

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} -\frac{2}{9} & \frac{5}{9} & -\frac{1}{9} \\ \frac{4}{9} & -\frac{1}{9} & \frac{2}{9} \\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Show that $B = A^{-1}$,

Numerical Analysis (Chapter 6)

Linear Algebra & Matrix Inversion

R L Burden & J D Faires

30/47

Example

Let

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} -\frac{2}{9} & \frac{5}{9} & -\frac{1}{9} \\ \frac{4}{9} & -\frac{1}{9} & \frac{2}{9} \\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Show that $B = A^{-1}$, and that the solution to the linear system described by

$$x_1 + 2x_2 - x_3 = 2,$$

 $2x_1 + x_2 = 3,$
 $-x_1 + x_2 + 2x_3 = 4$

is given by the entries in *B***b**, where **b** is the column vector with entries 2, 3, and 4.

Solution (1/3)

First note that

$$AB = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} -\frac{2}{9} & \frac{5}{9} & -\frac{1}{9} \\ \frac{4}{9} & -\frac{1}{9} & \frac{2}{9} \\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Numerical Analysis (Chapter 6)

Solution (1/3)

First note that

$$AB = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} -\frac{2}{9} & \frac{5}{9} & -\frac{1}{9} \\ \frac{4}{9} & -\frac{1}{9} & \frac{2}{9} \\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Numerical Analysis (Chapter 6)

Solution (1/3)

First note that

$$AB = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} -\frac{2}{9} & \frac{5}{9} & -\frac{1}{9} \\ \frac{4}{9} & -\frac{1}{9} & \frac{2}{9} \\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3$$

Numerical Analysis (Chapter 6)

Solution (1/3)

First note that

$$AB = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} -\frac{2}{9} & \frac{5}{9} & -\frac{1}{9} \\ \frac{4}{9} & -\frac{1}{9} & \frac{2}{9} \\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3$$

In a similar manner, $BA = I_3$, so A and B are both nonsingular with $B = A^{-1}$ and $A = B^{-1}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Solution (2/3)

Now convert the given linear system to the matrix equation

$$\begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$

Numerical Analysis (Chapter 6)

・ 同 ト ・ ヨ ト ・ ヨ

Solution (2/3)

Now convert the given linear system to the matrix equation

$$\begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$

and multiply both sides by B, the inverse of A. Because we have both

$$B(A\mathbf{x}) = (BA)\mathbf{x} = I_3\mathbf{x} = \mathbf{x}$$
 and $B(A\mathbf{x}) = \mathbf{b}$

Solution (3/3)

we have

$$BA\mathbf{x} = \left(\begin{bmatrix} -\frac{2}{9} & \frac{5}{9} & -\frac{1}{9} \\ \frac{4}{9} & -\frac{1}{9} & \frac{2}{9} \\ -\frac{3}{9} & \frac{3}{9} & \frac{3}{9} \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} \right) \mathbf{x} = \mathbf{x}$$

Numerical Analysis (Chapter 6)

э

イロン イロン イヨン イヨン

Solution (3/3)

we have

and

$$BA\mathbf{x} = \left(\begin{bmatrix} -\frac{2}{9} & \frac{5}{9} & -\frac{1}{9} \\ \frac{4}{9} & -\frac{1}{9} & \frac{2}{9} \\ -\frac{3}{9} & \frac{3}{9} & \frac{3}{9} \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} \right) \mathbf{x} = \mathbf{x}$$
$$BA\mathbf{x} = B(\mathbf{b}) = \begin{bmatrix} -\frac{2}{9} & \frac{5}{9} & -\frac{1}{9} \\ \frac{4}{9} & -\frac{1}{9} & \frac{2}{9} \\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$

Numerical Analysis (Chapter 6)

э

ヘロン 人間 とくほ とくほう

Solution (3/3)

we have

and

$$BA\mathbf{x} = \left(\begin{bmatrix} -\frac{2}{9} & \frac{5}{9} & -\frac{1}{9} \\ \frac{4}{9} & -\frac{1}{9} & \frac{2}{9} \\ -\frac{3}{9} & \frac{3}{9} & \frac{3}{9} \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} \right) \mathbf{x} = \mathbf{x}$$
$$BA\mathbf{x} = B(\mathbf{b}) = \begin{bmatrix} -\frac{2}{9} & \frac{5}{9} & -\frac{1}{9} \\ \frac{4}{9} & -\frac{1}{9} & \frac{2}{9} \\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} \frac{7}{9} \\ \frac{13}{9} \\ \frac{5}{3} \end{bmatrix}$$

Numerical Analysis (Chapter 6)

э

ヘロン 人間 とくほ とくほう

Solution (3/3)

we have

and

$$BA\mathbf{x} = \left(\begin{bmatrix} -\frac{2}{9} & \frac{5}{9} & -\frac{1}{9} \\ \frac{4}{9} & -\frac{1}{9} & \frac{2}{9} \\ -\frac{3}{9} & \frac{3}{9} & \frac{3}{9} \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} \right) \mathbf{x} = \mathbf{x}$$
$$BA\mathbf{x} = B(\mathbf{b}) = \begin{bmatrix} -\frac{2}{9} & \frac{5}{9} & -\frac{1}{9} \\ \frac{4}{9} & -\frac{1}{9} & \frac{2}{9} \\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} \frac{7}{9} \\ \frac{13}{9} \\ \frac{5}{3} \end{bmatrix}$$
plies that $\mathbf{x} = B\mathbf{b}$ and gives the solution $x_1 = 7/9, x_2 = 13$

This implies that $\mathbf{x} = B\mathbf{b}$ and gives the solution $x_1 = 7/9$, $x_2 = 13/9$, and $x_3 = 5/3$.

33/47

ヘロン ヘロン ヘヨン ヘヨン

A Method to Compute the Matrix Inverse

To find a method of computing A^{-1} assuming A is nonsingular, let us look again at matrix multiplication.

- 同 ト - 三 ト - 三

A Method to Compute the Matrix Inverse

To find a method of computing A^{-1} assuming A is nonsingular, let us look again at matrix multiplication. Let B_j be the *j*th column of the $n \times n$ matrix B,

$$B_{j} = \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix}$$

E

▲ 祠 ▶ ▲ 国 ▶ ▲ 国

A Method to Compute the Matrix Inverse (Cont'd)

If AB = C, then the *j*th column of C is given by the product

$$\begin{bmatrix} c_{1j} \\ c_{2j} \\ \vdots \\ c_{nj} \end{bmatrix} = C_j = AB_j = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix}$$

・ 同 ト ・ ヨ ト ・ ヨ

A Method to Compute the Matrix Inverse (Cont'd)

If AB = C, then the *j*th column of C is given by the product

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A Method to Compute the Matrix Inverse (Cont'd)

Suppose that A^{-1} exists and that $A^{-1} = B = (b_{ij})$.

A Method to Compute the Matrix Inverse (Cont'd)

Suppose that A^{-1} exists and that $A^{-1} = B = (b_{ij})$. Then AB = I and

where the value 1 appears in the *j*th row

A Method to Compute the Matrix Inverse (Cont'd)

Suppose that A^{-1} exists and that $A^{-1} = B = (b_{ij})$. Then AB = I and

To find *B* we need to solve *n* linear systems in which the *j*th column of the inverse is the solution of the linear system with right-hand side the *j*th column of *I*.

Example

Determine the inverse of the matrix

$$A = \left[\begin{array}{rrrr} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{array} \right]$$

Numerical Analysis (Chapter 6)

Linear Algebra & Matrix Inversion

R L Burden & J D Faires

・ 同 ト ・ ヨ ト ・ ヨ

37 / 47

Solution (1/5)

We first consider the product *AB*, where *B* is an arbitrary 3×3 matrix.

$$AB = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

< ロ > < 同 > < 三 > < 三 >

Solution (1/5)

We first consider the product *AB*, where *B* is an arbitrary 3×3 matrix.

$$AB = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$
$$= \begin{bmatrix} b_{11} + 2b_{21} - b_{31} & b_{12} + 2b_{22} - b_{32} & b_{13} + 2b_{23} - b_{33} \\ 2b_{11} + b_{21} & 2b_{12} + b_{22} & 2b_{13} + b_{23} \\ -b_{11} + b_{21} + 2b_{31} & -b_{12} + b_{22} + 2b_{32} & -b_{13} + b_{23} + 2b_{33} \end{bmatrix}$$

< ロ > < 同 > < 三 > < 三 >

Solution (1/5)

We first consider the product *AB*, where *B* is an arbitrary 3×3 matrix.

$$AB = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$
$$= \begin{bmatrix} b_{11} + 2b_{21} - b_{31} & b_{12} + 2b_{22} - b_{32} & b_{13} + 2b_{23} - b_{33} \\ 2b_{11} + b_{21} & 2b_{12} + b_{22} & 2b_{13} + b_{23} \\ -b_{11} + b_{21} + 2b_{31} & -b_{12} + b_{22} + 2b_{32} & -b_{13} + b_{23} + 2b_{33} \end{bmatrix}$$
If $B = A^{-1}$, then $AB = I$.

< ロ > < 同 > < 三 > < 三 >

Solution (2/5)

If $B = A^{-1}$, then AB = I.

Numerical Analysis (Chapter 6)

Linear Algebra & Matrix Inversion

R L Burden & J D Faires 3

ヘロン 人間 とくほ とくほう

39/47

э
Solution (2/5)

If $B = A^{-1}$, then AB = I. Therefore:

$$b_{11} + 2b_{21} - b_{31} = 1$$

$$b_{12} + 2b_{22} - b_{32} = 0$$

$$b_{13} + 2b_{23} - b_{33} = 0$$

$$2b_{11}+b_{21} = 0$$

$$2b_{12} + b_{22} = 1$$

$$2b_{13} + b_{23} = 0$$

$$-b_{11} + b_{21} + 2b_{31} = 0$$

$$-b_{12}+b_{22}+2b_{32} = 0$$

$$-b_{13} + b_{23} + 2b_{33} =$$

Numerical Analysis (Chapter 6)

э

・ロン ・聞と ・ヨン・モン・

Solution (3/5)

 Notice that the coefficients in each of the systems of equations are the same, the only change in the systems occurs on the right side of the equations.

< ロ > < 同 > < 回 > < 回 >

Solution (3/5)

- Notice that the coefficients in each of the systems of equations are the same, the only change in the systems occurs on the right side of the equations.
- As a consequence, Gaussian elimination can be performed on a larger augmented matrix formed by combining the matrices for each of the systems:

< ロ > < 同 > < 回 > < 回 >

Solution (4/5)

First, performing $(E_2 - 2E_1) \rightarrow (E_2)$

Numerical Analysis (Chapter 6)

э

・ロト ・ 同ト ・ ヨト ・ ヨト

Solution (4/5)

First, performing $(E_2 - 2E_1) \rightarrow (E_2)$ and $(E_3 + E_1) \rightarrow (E_3)$,

Numerical Analysis (Chapter 6)

Linear Algebra & Matrix Inversion

R L Burden & J D Faires 41 / 47

э

イロン イロン イヨン イヨン

Solution (4/5)

First, performing $(E_2 - 2E_1) \rightarrow (E_2)$ and $(E_3 + E_1) \rightarrow (E_3)$, followed by $(E_3 + E_2) \rightarrow (E_3)$

э

(a)

Solution (4/5)

First, performing $(E_2 - 2E_1) \rightarrow (E_2)$ and $(E_3 + E_1) \rightarrow (E_3)$, followed by $(E_3 + E_2) \rightarrow (E_3)$ produces

$$\begin{bmatrix} 1 & 2 & -1 & | & 1 & 0 & 0 \\ 0 & -3 & 2 & | & -2 & 1 & 0 \\ 0 & 3 & 1 & | & 1 & 0 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 2 & -1 & | & 1 & 0 & 0 \\ 0 & -3 & 2 & | & -2 & 1 & 0 \\ 0 & 0 & 3 & | & -1 & 1 & 1 \end{bmatrix}$$

э

(a)

Solution (4/5)

First, performing $(E_2 - 2E_1) \rightarrow (E_2)$ and $(E_3 + E_1) \rightarrow (E_3)$, followed by $(E_3 + E_2) \rightarrow (E_3)$ produces

$$\begin{bmatrix} 1 & 2 & -1 & | & 1 & 0 & 0 \\ 0 & -3 & 2 & | & -2 & 1 & 0 \\ 0 & 3 & 1 & | & 1 & 0 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 2 & -1 & | & 1 & 0 & 0 \\ 0 & -3 & 2 & | & -2 & 1 & 0 \\ 0 & 0 & 3 & | & -1 & 1 & 1 \end{bmatrix}$$

Backward substitution is performed on each of the three augmented matrices:

$$\begin{bmatrix} 1 & 2 & -1 & | & 1 \\ 0 & -3 & 2 & | & -2 \\ 0 & 0 & 3 & | & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 & | & 0 \\ 0 & -3 & 2 & | & 1 \\ 0 & 0 & 3 & | & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 & | & 0 \\ 0 & -3 & 2 & | & 0 \\ 0 & 0 & 3 & | & 1 \end{bmatrix}$$

(a)

э

Solution (5/5)

Backsubstitution eventually gives

$$b_{11} = -\frac{2}{9} \qquad b_{12} = \frac{5}{9} \qquad b_{13} = -\frac{1}{9}$$
$$b_{21} = \frac{4}{9} \qquad b_{22} = -\frac{1}{9} \qquad \text{and} \qquad b_{23} = \frac{2}{9}$$
$$b_{31} = -\frac{1}{3} \qquad b_{32} = \frac{1}{3} \qquad b_{32} = \frac{1}{3}$$

э

Solution (5/5)

Backsubstitution eventually gives

$$b_{11} = -\frac{2}{9}$$
 $b_{12} = \frac{5}{9}$ $b_{13} = -\frac{1}{9}$ $b_{21} = \frac{4}{9}$ $b_{22} = -\frac{1}{9}$ and $b_{23} = \frac{2}{9}$ $b_{31} = -\frac{1}{3}$ $b_{32} = \frac{1}{3}$ $b_{32} = \frac{1}{3}$

As shown in an earlier example, these are the entries of A^{-1} :

$$B = A^{-1} = \begin{bmatrix} -\frac{2}{9} & \frac{5}{9} & -\frac{1}{9} \\ \frac{4}{9} & -\frac{1}{9} & \frac{2}{9} \\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

4 A N

Outline

- Matrix Arithmetic
- 2 Matrix-Vector & Matrix-Matrix Products
- 3 Categories of Square Matrices
- 4 Inverse Matrices

5 Transpose of a Matrix

(3)

- **A**

Definition: Matrix Transpose

The transpose of an $n \times m$ matrix $A = [a_{ij}]$ is the $m \times n$ matrix $A^t = [a_{ji}]$, where for each *i*, the *i*th column of A^t is the same as the *i*th row of *A*. A square matrix *A* is called symmetric if $A = A^t$.

A (10) > A (10) > A (10)

Illustration

The matrices

$$A = \begin{bmatrix} 7 & 2 & 0 \\ 3 & 5 & -1 \\ 0 & 5 & -6 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 4 & 7 \\ 3 & -5 & -1 \end{bmatrix}, \quad C = \begin{bmatrix} 6 & 4 & -3 \\ 4 & -2 & 0 \\ -3 & 0 & 1 \end{bmatrix}$$

Illustration

The matrices

$$A = \begin{bmatrix} 7 & 2 & 0 \\ 3 & 5 & -1 \\ 0 & 5 & -6 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 4 & 7 \\ 3 & -5 & -1 \end{bmatrix}, \quad C = \begin{bmatrix} 6 & 4 & -3 \\ 4 & -2 & 0 \\ -3 & 0 & 1 \end{bmatrix}$$

have transposes

$$A^{t} = \begin{bmatrix} 7 & 3 & 0 \\ 2 & 5 & 5 \\ 0 & -1 & -6 \end{bmatrix}, \quad B^{t} = \begin{bmatrix} 2 & 3 \\ 4 & -5 \\ 7 & -1 \end{bmatrix}, \quad C^{t} = \begin{bmatrix} 6 & 4 & -3 \\ 4 & -2 & 0 \\ -3 & 0 & 1 \end{bmatrix}$$

Numerical Analysis (Chapter 6)

Illustration

The matrices

$$A = \begin{bmatrix} 7 & 2 & 0 \\ 3 & 5 & -1 \\ 0 & 5 & -6 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 4 & 7 \\ 3 & -5 & -1 \end{bmatrix}, \quad C = \begin{bmatrix} 6 & 4 & -3 \\ 4 & -2 & 0 \\ -3 & 0 & 1 \end{bmatrix}$$

have transposes

$$A^{t} = \begin{bmatrix} 7 & 3 & 0 \\ 2 & 5 & 5 \\ 0 & -1 & -6 \end{bmatrix}, \quad B^{t} = \begin{bmatrix} 2 & 3 \\ 4 & -5 \\ 7 & -1 \end{bmatrix}, \quad C^{t} = \begin{bmatrix} 6 & 4 & -3 \\ 4 & -2 & 0 \\ -3 & 0 & 1 \end{bmatrix}$$

The matrix C is symmetric because $C^t = C$.

Illustration

The matrices

$$A = \begin{bmatrix} 7 & 2 & 0 \\ 3 & 5 & -1 \\ 0 & 5 & -6 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 4 & 7 \\ 3 & -5 & -1 \end{bmatrix}, \quad C = \begin{bmatrix} 6 & 4 & -3 \\ 4 & -2 & 0 \\ -3 & 0 & 1 \end{bmatrix}$$

have transposes

$$A^{t} = \begin{bmatrix} 7 & 3 & 0 \\ 2 & 5 & 5 \\ 0 & -1 & -6 \end{bmatrix}, \quad B^{t} = \begin{bmatrix} 2 & 3 \\ 4 & -5 \\ 7 & -1 \end{bmatrix}, \quad C^{t} = \begin{bmatrix} 6 & 4 & -3 \\ 4 & -2 & 0 \\ -3 & 0 & 1 \end{bmatrix}$$

The matrix *C* is symmetric because $C^t = C$. The matrices *A* and *B* are not symmetric.

Numerical Analysis (Chapter 6)

Linear Algebra & Matrix Inversion

45/47

The proof of the next result follows directly from the definition of the transpose.

The proof of the next result follows directly from the definition of the transpose.

Theorem

The following operations involving the transpose of a matrix hold whenever the operation is possible:

The proof of the next result follows directly from the definition of the transpose.

Theorem

The following operations involving the transpose of a matrix hold whenever the operation is possible:

(i)
$$(A^t)^t = A^t$$

The proof of the next result follows directly from the definition of the transpose.

Theorem

The following operations involving the transpose of a matrix hold whenever the operation is possible:

(i)
$$(A^t)^t = A$$

(ii)
$$(A+B)^t = A^t + B^t$$

The proof of the next result follows directly from the definition of the transpose.

Theorem

The following operations involving the transpose of a matrix hold whenever the operation is possible:

(i)
$$(A^t)^t = A^t$$

(ii)
$$(A+B)^t = A^t + B^t$$

(iii) $(AB)^t = B^t A^t$

< ロ > < 同 > < 三 > < 三 >

The proof of the next result follows directly from the definition of the transpose.

Theorem

The following operations involving the transpose of a matrix hold whenever the operation is possible:

(i)
$$(A^t)^t = A^t$$

(ii)
$$(A+B)^t = A^t + B^t$$

(iii)
$$(AB)^t = B^t A^t$$

(iv) if A^{-1} exists, then $(A^{-1})^t = (A^t)^{-1}$

< ロ > < 同 > < 三 > < 三 >

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで