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Newton’s Method

Context
Newton’s (or the Newton-Raphson) method is one of the most powerful
and well-known numerical methods for solving a root-finding problem.

Various ways of introducing Newton’s method
Graphically, as is often done in calculus.
As a technique to obtain faster convergence than offered by other
types of functional iteration.
Using Taylor polynomials. We will see there that this particular
derivation produces not only the method, but also a bound for the
error of the approximation.
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Newton’s Method

Derivation

Suppose that f ∈ C2[a, b]. Let p0 ∈ [a, b] be an approximation to p
such that f ′(p0) 6= 0 and |p − p0| is “small.”
Consider the first Taylor polynomial for f (x) expanded about p0
and evaluated at x = p.

f (p) = f (p0) + (p − p0)f ′(p0) +
(p − p0)

2

2
f ′′(ξ(p)),

where ξ(p) lies between p and p0.
Since f (p) = 0, this equation gives

0 = f (p0) + (p − p0)f ′(p0) +
(p − p0)

2

2
f ′′(ξ(p)).
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Newton’s Method

0 = f (p0) + (p − p0)f ′(p0) +
(p − p0)

2

2
f ′′(ξ(p)).

Derivation (Cont’d)

Newton’s method is derived by assuming that since |p − p0| is
small, the term involving (p − p0)

2 is much smaller, so

0 ≈ f (p0) + (p − p0)f ′(p0).

Solving for p gives

p ≈ p0 −
f (p0)

f ′(p0)
≡ p1.
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Newton’s Method

p ≈ p0 −
f (p0)

f ′(p0)
≡ p1.

Newton’s Method

This sets the stage for Newton’s method, which starts with an initial
approximation p0 and generates the sequence {pn}∞n=0, by

pn = pn−1 −
f (pn−1)

f ′(pn−1)
for n ≥ 1
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Newton’s Method: Using Successive Tangents

xx

y

(p0, f (p0))

(p1, f (p1))

p0

p1
p2

p
Slope f 9(p0)

y 5 f (x)Slope f 9(p1)
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Newton’s Algorithm
To find a solution to f (x) = 0 given an initial approximation p0:

1. Set i = 0;
2. While i ≤ N, do Step 3:

3.1 If f ′(p0) = 0 then Step 5.
3.2 Set p = p0 − f (p0)/f ′(p0);
3.3 If |p − p0| < TOL then Step 6;
3.4 Set i = i + 1;
3.5 Set p0 = p;

4. Output a ‘failure to converge within the specified number of
iterations’ message & Stop;

5. Output an appropriate failure message (zero derivative) & Stop;
6. Output p

Numerical Analysis (Chapter 2) Newton’s Method R L Burden & J D Faires 9 / 33
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Newton’s Method

Stopping Criteria for the Algorithm
Various stopping procedures can be applied in Step 3.3.

We can select a tolerance ε > 0 and generate p1, . . . , pN until one
of the following conditions is met:

|pN − pN−1| < ε (1)

|pN − pN−1|
|pN |

< ε, pN 6= 0, or (2)

|f (pN)| < ε (3)

Note that none of these inequalities give precise information about
the actual error |pN − p|.
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Newton’s Method as a Functional Iteration Technique

Functional Iteration

Newton’s Method

pn = pn−1 −
f (pn−1)

f ′(pn−1)
for n ≥ 1

can be written in the form

pn = g (pn−1)

with
g (pn−1) = pn−1 −

f (pn−1)

f ′(pn−1)
for n ≥ 1
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Newton’s Method

Example: Fixed-Point Iteration & Newton’s Method
Consider the function

f (x) = cos x − x = 0

Approximate a root of f using (a) a fixed-point method, and (b)
Newton’s Method

Numerical Analysis (Chapter 2) Newton’s Method R L Burden & J D Faires 13 / 33
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Newton’s Method & Fixed-Point Iteration

y

x

y 5 x

y 5 cos x

1

1 q
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Newton’s Method & Fixed-Point Iteration

(a) Fixed-Point Iteration for f (x) = cos x − x

A solution to this root-finding problem is also a solution to the
fixed-point problem

x = cos x

and the graph implies that a single fixed-point p lies in [0, π/2].
The following table shows the results of fixed-point iteration with
p0 = π/4.
The best conclusion from these results is that p ≈ 0.74.

Numerical Analysis (Chapter 2) Newton’s Method R L Burden & J D Faires 15 / 33
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Newton’s Method & Fixed-Point Iteration

Fixed-Point Iteration: x = cos(x), x0 = π
4

n pn−1 pn |pn − pn−1| en/en−1
1 0.7853982 0.7071068 0.0782914 —
2 0.707107 0.760245 0.053138 0.678719
3 0.760245 0.724667 0.035577 0.669525
4 0.724667 0.748720 0.024052 0.676064
5 0.748720 0.732561 0.016159 0.671826
6 0.732561 0.743464 0.010903 0.674753
7 0.743464 0.736128 0.007336 0.672816

Numerical Analysis (Chapter 2) Newton’s Method R L Burden & J D Faires 16 / 33



Derivation Example Convergence Final Remarks

Newton’s Method

(b) Newton’s Method for f (x) = cos x − x

To apply Newton’s method to this problem we need

f ′(x) = − sin x − 1

Starting again with p0 = π/4, we generate the sequence defined,
for n ≥ 1, by

pn = pn−1 −
f (pn−1)

f (p′n−1)
= pn−1 −

cos pn−1 − pn−1

− sin pn−1 − 1
.

This gives the approximations shown in the following table.

Numerical Analysis (Chapter 2) Newton’s Method R L Burden & J D Faires 17 / 33
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Newton’s Method

Newton’s Method for f (x) = cos(x)− x , x0 = π
4

n pn−1 f (pn−1) f ′ (pn−1) pn |pn − pn−1|
1 0.78539816 -0.078291 -1.707107 0.73953613 0.04586203
2 0.73953613 -0.000755 -1.673945 0.73908518 0.00045096
3 0.73908518 -0.000000 -1.673612 0.73908513 0.00000004
4 0.73908513 -0.000000 -1.673612 0.73908513 0.00000000

An excellent approximation is obtained with n = 3.
Because of the agreement of p3 and p4 we could reasonably
expect this result to be accurate to the places listed.
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Outline

1 Newton’s Method: Derivation

2 Example using Newton’s Method & Fixed-Point Iteration

3 Convergence using Newton’s Method

4 Final Remarks on Practical Application
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Convergence using Newton’s Method

Theoretical importance of the choice of p0

The Taylor series derivation of Newton’s method points out the
importance of an accurate initial approximation.
The crucial assumption is that the term involving (p − p0)

2 is, by
comparison with |p − p0|, so small that it can be deleted.
This will clearly be false unless p0 is a good approximation to p.
If p0 is not sufficiently close to the actual root, there is little reason
to suspect that Newton’s method will converge to the root.
However, in some instances, even poor initial approximations will
produce convergence.
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Convergence using Newton’s Method

Convergence Theorem for Newton’s Method

Let f ∈ C2[a, b]. If p ∈ (a, b) is such that f (p) = 0 and f ′(p) 6= 0.
Then there exists a δ > 0 such that Newton’s method generates a
sequence {pn}∞n=1, defined by

pn = pn−1 −
f (pn−1)

f (p′n−1)

converging to p for any initial approximation

p0 ∈ [p − δ, p + δ]
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Derivation Example Convergence Final Remarks

Convergence using Newton’s Method

Convergence Theorem for Newton’s Method

Let f ∈ C2[a, b]. If p ∈ (a, b) is such that f (p) = 0 and f ′(p) 6= 0.

Then there exists a δ > 0 such that Newton’s method generates a
sequence {pn}∞n=1, defined by

pn = pn−1 −
f (pn−1)

f (p′n−1)

converging to p for any initial approximation

p0 ∈ [p − δ, p + δ]

Numerical Analysis (Chapter 2) Newton’s Method R L Burden & J D Faires 21 / 33



Derivation Example Convergence Final Remarks

Convergence using Newton’s Method

Convergence Theorem for Newton’s Method

Let f ∈ C2[a, b]. If p ∈ (a, b) is such that f (p) = 0 and f ′(p) 6= 0.
Then there exists a δ > 0 such that Newton’s method generates a
sequence {pn}∞n=1, defined by

pn = pn−1 −
f (pn−1)

f (p′n−1)

converging to p for any initial approximation

p0 ∈ [p − δ, p + δ]

Numerical Analysis (Chapter 2) Newton’s Method R L Burden & J D Faires 21 / 33



Derivation Example Convergence Final Remarks

Convergence using Newton’s Method

Convergence Theorem (1/4)

The proof is based on analyzing Newton’s method as the
functional iteration scheme pn = g(pn−1), for n ≥ 1, with

g(x) = x − f (x)

f ′(x)
.

Let k be in (0, 1). We first find an interval [p− δ, p + δ] that g maps
into itself and for which |g′(x)| ≤ k , for all x ∈ (p − δ, p + δ).
Since f ′ is continuous and f ′(p) 6= 0, part (a) of Exercise 29 in
Section 1.1 Ex 29 implies that there exists a δ1 > 0, such that
f ′(x) 6= 0 for x ∈ [p − δ1, p + δ1] ⊆ [a, b].
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Convergence using Newton’s Method

Convergence Theorem (2/4)

Thus g is defined and continuous on [p − δ1, p + δ1]. Also

g′(x) = 1− f ′(x)f ′(x)− f (x)f ′′(x)

[f ′(x)]2
=

f (x)f ′′(x)

[f ′(x)]2
,

for x ∈ [p − δ1, p + δ1], and, since f ∈ C2[a, b], we have
g ∈ C1[p − δ1, p + δ1].
By assumption, f (p) = 0, so

g′(p) =
f (p)f ′′(p)

[f ′(p)]2
= 0.
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Convergence using Newton’s Method

g′(p) =
f (p)f ′′(p)

[f ′(p)]2
= 0.

Convergence Theorem (3/4)

Since g′ is continuous and 0 < k < 1, part (b) of Exercise 29 in
Section 1.1 Ex 29 implies that there exists a δ, with 0 < δ < δ1,
and

|g′(x)| ≤ k , for all x ∈ [p − δ, p + δ].

It remains to show that g maps [p − δ, p + δ] into [p − δ, p + δ].
If x ∈ [p − δ, p + δ], the Mean Value Theorem MVT implies that for
some number ξ between x and p, |g(x)−g(p)| = |g′(ξ)||x −p|. So

|g(x)− p| = |g(x)− g(p)| = |g′(ξ)||x − p| ≤ k |x − p| < |x − p|.
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Convergence using Newton’s Method

Convergence Theorem (4/4)

Since x ∈ [p − δ, p + δ], it follows that |x − p| < δ and that
|g(x)− p| < δ. Hence, g maps [p − δ, p + δ] into [p − δ, p + δ].
All the hypotheses of the Fixed-Point Theorem Theorem 2.4 are now
satisfied, so the sequence {pn}∞n=1, defined by

pn = g(pn−1) = pn−1 −
f (pn−1)

f ′(pn−1)
, for n ≥ 1,

converges to p for any p0 ∈ [p − δ, p + δ].
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Newton’s Method in Practice

Choice of Initial Approximation

The convergence theorem states that, under reasonable
assumptions, Newton’s method converges provided a sufficiently
accurate initial approximation is chosen.
It also implies that the constant k that bounds the derivative of g,
and, consequently, indicates the speed of convergence of the
method, decreases to 0 as the procedure continues.
This result is important for the theory of Newton’s method, but it is
seldom applied in practice because it does not tell us how to
determine δ.
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Newton’s Method in Practice

In a practical application . . .

an initial approximation is selected
and successive approximations are generated by Newton’s
method.
These will generally either converge quickly to the root,
or it will be clear that convergence is unlikely.
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Questions?



Reference Material



Exercise 29, Section 1.1

Let f ∈ C[a, b], and let p be in the open interval (a, b).

Exercise 29 (a)
Suppose f (p) 6= 0. Show that a δ > 0 exists with f (x) 6= 0, for all x in
[p − δ, p + δ], with [p − δ, p + δ] a subset of [a, b].

Return to Newton’s Convergence Theorem (1 of 4)

Exercise 29 (b)
Suppose f (p) = 0 and k > 0 is given. Show that a δ > 0 exists with
|f (x)| ≤ k , for all x in [p − δ, p + δ], with [p − δ, p + δ] a subset of [a, b].

Return to Newton’s Convergence Theorem (3 of 4)



Mean Value Theorem

If f ∈ C[a, b] and f is differentiable on (a, b), then a number c exists
such that

f ′(c) =
f (b)− f (a)

b − a

y

xa bc

Slope f 9(c)

Parallel lines

Slope
b 2 a

f (b) 2 f (a)

y 5 f (x)

Return to Newton’s Convergence Theorem (3 of 4)



Fixed-Point Theorem
Let g ∈ C[a, b] be such that g(x) ∈ [a, b], for all x in [a, b]. Suppose, in
addition, that g′ exists on (a, b) and that a constant 0 < k < 1 exists
with

|g′(x)| ≤ k , for all x ∈ (a, b).

Then for any number p0 in [a, b], the sequence defined by

pn = g(pn−1), n ≥ 1,

converges to the unique fixed point p in [a, b]. �

Return to Newton’s Convergence Theorem (4 of 4)
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