Solutions of Equations in One Variable

Newton's Method

Numerical Analysis (9th Edition) R L Burden & J D Faires

> Beamer Presentation Slides prepared by John Carroll Dublin City University

© 2011 Brooks/Cole, Cengage Learning

크

Example using Newton's Method & Fixed-Point Iteration

< 6 b

Example using Newton's Method & Fixed-Point Iteration

< A >

Example using Newton's Method & Fixed-Point Iteration

- 3 Convergence using Newton's Method
- Final Remarks on Practical Application

2 Example using Newton's Method & Fixed-Point Iteration

- 3 Convergence using Newton's Method
- 4 Final Remarks on Practical Application

< 6 b

Context

Newton's (or the *Newton-Raphson*) method is one of the most powerful and well-known numerical methods for solving a root-finding problem.

.

< 4 →

Context

Newton's (or the *Newton-Raphson*) method is one of the most powerful and well-known numerical methods for solving a root-finding problem.

Various ways of introducing Newton's method

• Graphically, as is often done in calculus.

(4) (5) (4) (5)

4 A N

Context

Newton's (or the *Newton-Raphson*) method is one of the most powerful and well-known numerical methods for solving a root-finding problem.

Various ways of introducing Newton's method

- Graphically, as is often done in calculus.
- As a technique to obtain faster convergence than offered by other types of functional iteration.

Context

Newton's (or the *Newton-Raphson*) method is one of the most powerful and well-known numerical methods for solving a root-finding problem.

Various ways of introducing Newton's method

- Graphically, as is often done in calculus.
- As a technique to obtain faster convergence than offered by other types of functional iteration.
- Using Taylor polynomials. We will see there that this particular derivation produces not only the method, but also a bound for the error of the approximation.

Derivation

Numerical Analysis (Chapter 2)

Э.

・ロト ・ 四ト ・ ヨト ・ ヨト

Derivation

Suppose that f ∈ C²[a, b]. Let p₀ ∈ [a, b] be an approximation to p such that f'(p₀) ≠ 0 and |p − p₀| is "small."

э

Derivation

- Suppose that *f* ∈ *C*²[*a*, *b*]. Let *p*₀ ∈ [*a*, *b*] be an approximation to *p* such that *f*'(*p*₀) ≠ 0 and |*p* − *p*₀| is "small."
- Consider the first Taylor polynomial for f(x) expanded about p₀ and evaluated at x = p.

$$f(p) = f(p_0) + (p - p_0)f'(p_0) + rac{(p - p_0)^2}{2}f''(\xi(p)),$$

where $\xi(p)$ lies between p and p_0 .

э

Derivation

- Suppose that f ∈ C²[a, b]. Let p₀ ∈ [a, b] be an approximation to p such that f'(p₀) ≠ 0 and |p − p₀| is "small."
- Consider the first Taylor polynomial for f(x) expanded about p₀ and evaluated at x = p.

$$f(p) = f(p_0) + (p - p_0)f'(p_0) + \frac{(p - p_0)^2}{2}f''(\xi(p)),$$

where $\xi(p)$ lies between p and p_0 .

• Since f(p) = 0, this equation gives

$$0 = f(p_0) + (p - p_0)f'(p_0) + \frac{(p - p_0)^2}{2}f''(\xi(p)).$$

э

$$0=f(p_0)+(p-p_0)f'(p_0)+rac{(p-p_0)^2}{2}f''(\xi(p)).$$

Derivation (Cont'd)

Numerical Analysis (Chapter 2)

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

$$0 = f(p_0) + (p - p_0)f'(p_0) + rac{(p - p_0)^2}{2}f''(\xi(p)).$$

Derivation (Cont'd)

• Newton's method is derived by assuming that since $|p - p_0|$ is small, the term involving $(p - p_0)^2$ is much smaller, so

$$0\approx f(\rho_0)+(\rho-\rho_0)f'(\rho_0).$$

$$0 = f(p_0) + (p - p_0)f'(p_0) + rac{(p - p_0)^2}{2}f''(\xi(p)).$$

Derivation (Cont'd)

• Newton's method is derived by assuming that since $|p - p_0|$ is small, the term involving $(p - p_0)^2$ is much smaller, so

$$0 \approx f(p_0) + (p - p_0)f'(p_0).$$

Solving for p gives

$$p \approx p_0 - rac{f(p_0)}{f'(p_0)} \equiv p_1.$$

$$p pprox p_0 - rac{f(p_0)}{f'(p_0)} \equiv p_1.$$

Newton's Method

Numerical Analysis (Chapter 2)

<ロト <回ト < 回ト < 回

$$p pprox p_0 - rac{f(p_0)}{f'(p_0)} \equiv p_1.$$

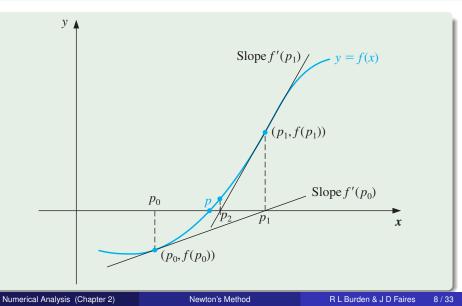
Newton's Method

This sets the stage for Newton's method, which starts with an initial approximation p_0 and generates the sequence $\{p_n\}_{n=0}^{\infty}$, by

$$p_n = p_{n-1} - rac{f(p_{n-1})}{f'(p_{n-1})}$$
 for $n \ge 1$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Newton's Method: Using Successive Tangents



To find a solution to f(x) = 0 given an initial approximation p_0 :

To find a solution to f(x) = 0 given an initial approximation p_0 :

- 1. Set *i* = 0;
- 2. While $i \leq N$, do Step 3:

To find a solution to f(x) = 0 given an initial approximation p_0 :

- 1. Set *i* = 0;
- 2. While $i \leq N$, do Step 3:
 - 3.1 If $f'(p_0) = 0$ then Step 5.

・ロト ・ 四ト ・ ヨト ・ ヨト

To find a solution to f(x) = 0 given an initial approximation p_0 :

- 1. Set *i* = 0;
- 2. While $i \leq N$, do Step 3:
 - 3.1 If $f'(p_0) = 0$ then Step 5.
 - **3.2** Set $p = p_0 f(p_0)/f'(p_0)$;

To find a solution to f(x) = 0 given an initial approximation p_0 :

- 1. Set *i* = 0;
- 2. While $i \leq N$, do Step 3:
 - 3.1 If $f'(p_0) = 0$ then Step 5.
 - 3.2 Set $p = p_0 f(p_0)/f'(p_0)$;
 - **3.3** If $|p p_0| < \text{TOL}$ then Step 6;

< 同 ト < 三 ト < 三 ト

To find a solution to f(x) = 0 given an initial approximation p_0 :

- 1. Set *i* = 0;
- 2. While $i \leq N$, do Step 3:
 - 3.1 If $f'(p_0) = 0$ then Step 5.
 - 3.2 Set $p = p_0 f(p_0)/f'(p_0)$;
 - **3.3** If $|p p_0| < \text{TOL}$ then Step 6;

3.4 Set
$$i = i + 1$$
;

To find a solution to f(x) = 0 given an initial approximation p_0 :

- 1. Set *i* = 0;
- 2. While $i \leq N$, do Step 3:
 - 3.1 If $f'(p_0) = 0$ then Step 5.
 - 3.2 Set $p = p_0 f(p_0)/f'(p_0)$;
 - **3.3** If $|p p_0| < \text{TOL}$ then Step 6;
 - **3.4** Set i = i + 1;

3.5 Set
$$p_0 = p_1$$

To find a solution to f(x) = 0 given an initial approximation p_0 :

- 1. Set *i* = 0;
- 2. While $i \leq N$, do Step 3:
 - 3.1 If $f'(p_0) = 0$ then Step 5.
 - 3.2 Set $p = p_0 f(p_0)/f'(p_0)$;
 - 3.3 If $|p p_0| < \text{TOL}$ then Step 6;

3.4 Set
$$i = i + 1$$
;

3.5 Set
$$p_0 = p$$
;

 Output a 'failure to converge within the specified number of iterations' message & Stop;

To find a solution to f(x) = 0 given an initial approximation p_0 :

- 1. Set *i* = 0;
- 2. While $i \leq N$, do Step 3:
 - 3.1 If $f'(p_0) = 0$ then Step 5. 3.2 Set $p = p_0 - f(p_0)/f'(p_0)$;
 - 3.3 If $|p p_0| < \text{TOL}$ then Step 6;

3.4 Set
$$i = i + 1$$
;

3.5 Set
$$p_0 = p$$
;

- Output a 'failure to converge within the specified number of iterations' message & Stop;
- 5. Output an appropriate failure message (zero derivative) & Stop;

To find a solution to f(x) = 0 given an initial approximation p_0 :

- 1. Set *i* = 0;
- 2. While $i \leq N$, do Step 3:
 - 3.1 If $f'(p_0) = 0$ then Step 5. 3.2 Set $p = p_0 - f(p_0)/f'(p_0)$; 3.3 If $|p - p_0| < \text{TOL}$ then Step 6;

3.4 Set
$$i = i + 1$$
;

3.5 Set
$$p_0 = p$$
;

- Output a 'failure to converge within the specified number of iterations' message & Stop;
- 5. Output an appropriate failure message (zero derivative) & Stop;
- 6. Output p

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Stopping Criteria for the Algorithm

• Various stopping procedures can be applied in Step 3.3.

글 🕨 🖌 글

4 A N

Stopping Criteria for the Algorithm

- Various stopping procedures can be applied in Step 3.3.
- We can select a tolerance *ϵ* > 0 and generate *p*₁,..., *p_N* until one of the following conditions is met:

Stopping Criteria for the Algorithm

1

- Various stopping procedures can be applied in Step 3.3.
- We can select a tolerance ε > 0 and generate p₁,..., p_N until one of the following conditions is met:

$$|\mathcal{P}_N - \mathcal{P}_{N-1}| < \epsilon$$
 (1)

$$\frac{|\boldsymbol{p}_N - \boldsymbol{p}_{N-1}|}{|\boldsymbol{p}_N|} < \epsilon, \quad \boldsymbol{p}_N \neq 0, \quad \text{or}$$
(2)

$$|f(p_N)| < \epsilon$$
 (3)

< A >

Stopping Criteria for the Algorithm

- Various stopping procedures can be applied in Step 3.3.
- We can select a tolerance ε > 0 and generate p₁,..., p_N until one of the following conditions is met:

$$|\mathcal{D}_N - \mathcal{P}_{N-1}| < \epsilon$$
 (1)

$$\frac{p_N - p_{N-1}|}{|p_N|} < \epsilon, \quad p_N \neq 0, \quad \text{or}$$
 (2)

$$|f(p_N)| < \epsilon \tag{3}$$

• Note that none of these inequalities give precise information about the actual error $|p_N - p|$.

(4) (5) (4) (5)

Newton's Method as a Functional Iteration Technique

Functional Iteration

Numerical Analysis (Chapter 2)

Newton's Method as a Functional Iteration Technique

Functional Iteration

Newton's Method

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$
 for $n \ge 1$

4 A N

Newton's Method as a Functional Iteration Technique

Functional Iteration

Newton's Method

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$
 for $n \ge 1$

can be written in the form

$$p_n = g\left(p_{n-1}\right)$$

Numerical Analysis (Chapter 2)

4 A N

∃ >

Newton's Method as a Functional Iteration Technique

Functional Iteration

Newton's Method

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$
 for $n \ge 1$

can be written in the form

$$p_n = g\left(p_{n-1}\right)$$

with

$$g(p_{n-1}) = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$
 for $n \ge 1$

.

4 A N

Outline

Example using Newton's Method & Fixed-Point Iteration

- 3 Convergence using Newton's Method
- 4 Final Remarks on Practical Application

< 6 k

Example: Fixed-Point Iteration & Newton's Method

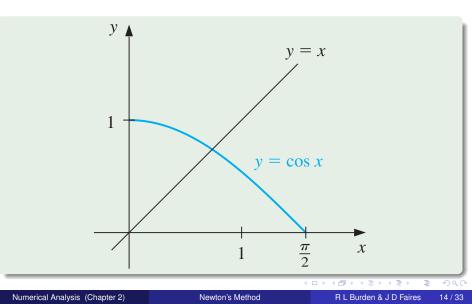
Consider the function

$$f(x)=\cos x-x=0$$

Approximate a root of f using (a) a fixed-point method, and (b) Newton's Method

< ロ > < 同 > < 回 > < 回 >

Newton's Method & Fixed-Point Iteration



Final Remarks

Newton's Method & Fixed-Point Iteration

(a) Fixed-Point Iteration for $f(x) = \cos x - x$

Numerical Analysis (Chapter 2)

Newton's Method & Fixed-Point Iteration

(a) Fixed-Point Iteration for $f(x) = \cos x - x$

 A solution to this root-finding problem is also a solution to the fixed-point problem

 $x = \cos x$

and the graph implies that a single fixed-point *p* lies in $[0, \pi/2]$.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Final Remarks

Newton's Method & Fixed-Point Iteration

(a) Fixed-Point Iteration for $f(x) = \cos x - x$

 A solution to this root-finding problem is also a solution to the fixed-point problem

$$x = \cos x$$

and the graph implies that a single fixed-point *p* lies in $[0, \pi/2]$.

• The following table shows the results of fixed-point iteration with $p_0 = \pi/4$.

Newton's Method & Fixed-Point Iteration

(a) Fixed-Point Iteration for $f(x) = \cos x - x$

 A solution to this root-finding problem is also a solution to the fixed-point problem

$$x = \cos x$$

and the graph implies that a single fixed-point p lies in $[0, \pi/2]$.

- The following table shows the results of fixed-point iteration with $p_0 = \pi/4$.
- The best conclusion from these results is that $p \approx 0.74$.

< ロ > < 同 > < 回 > < 回 >

Newton's Method & Fixed-Point Iteration

Fixed-Point Iteration: $x = \cos(x), x_0 = \frac{\pi}{4}$

n	<i>p</i> _{n-1}	p _n	$ p_n - p_{n-1} $	e_n/e_{n-1}
1	0.7853982	0.7071068	0.0782914	—
2	0.707107	0.760245	0.053138	0.678719
3	0.760245	0.724667	0.035577	0.669525
4	0.724667	0.748720	0.024052	0.676064
5	0.748720	0.732561	0.016159	0.671826
6	0.732561	0.743464	0.010903	0.674753
7	0.743464	0.736128	0.007336	0.672816

16/33

(b) Newton's Method for $f(x) = \cos x - x$

Numerical Analysis (Chapter 2)

イロト イヨト イヨト イヨト

(b) Newton's Method for $f(x) = \cos x - x$

To apply Newton's method to this problem we need

$$f'(x) = -\sin x - 1$$

(b) Newton's Method for $f(x) = \cos x - x$

• To apply Newton's method to this problem we need

$$f'(x) = -\sin x - 1$$

 Starting again with p₀ = π/4, we generate the sequence defined, for n ≥ 1, by

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f(p_{n-1}')} = p_{n-1} - \frac{\cos p_{n-1} - p_{n-1}}{-\sin p_{n-1} - 1}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(b) Newton's Method for $f(x) = \cos x - x$

• To apply Newton's method to this problem we need

$$f'(x) = -\sin x - 1$$

 Starting again with p₀ = π/4, we generate the sequence defined, for n ≥ 1, by

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f(p'_{n-1})} = p_{n-1} - \frac{\cos p_{n-1} - p_{n-1}}{-\sin p_{n-1} - 1}.$$

• This gives the approximations shown in the following table.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Newton's Method for $f(x) = \cos(x) - x$, $x_0 = \frac{\pi}{4}$

n	p_{n-1}	$f(p_{n-1})$	$f'(p_{n-1})$	<i>p</i> _n	$ p_n - p_{n-1} $
1	0.78539816	-0.078291	-1.707107	0.73953613	0.04586203
2	0.73953613	-0.000755	-1.673945	0.73908518	0.00045096
3	0.73908518	-0.000000	-1.673612	0.73908513	0.00000004
4	0.73908513	-0.000000	-1.673612	0.73908513	0.0000000

Newton's Method for $f(x) = \cos(x) - x$, $x_0 = \frac{\pi}{4}$

n	p_{n-1}	$f(p_{n-1})$	$f'(p_{n-1})$	p _n	$ p_n - p_{n-1} $
1	0.78539816	-0.078291	-1.707107	0.73953613	0.04586203
2	0.73953613	-0.000755	-1.673945	0.73908518	0.00045096
3	0.73908518	-0.000000	-1.673612	0.73908513	0.00000004
4	0.73908513	-0.000000	-1.673612	0.73908513	0.00000000

• An excellent approximation is obtained with n = 3.

< ロ > < 同 > < 回 > < 回 >

Newton's Method for $f(x) = \cos(x) - x$, $x_0 = \frac{\pi}{4}$

n	p_{n-1}	$f(p_{n-1})$	$f'(p_{n-1})$	p _n	$ p_n - p_{n-1} $
1	0.78539816	-0.078291	-1.707107	0.73953613	0.04586203
2	0.73953613	-0.000755	-1.673945	0.73908518	0.00045096
3	0.73908518	-0.000000	-1.673612	0.73908513	0.00000004
4	0.73908513	-0.000000	-1.673612	0.73908513	0.00000000

• An excellent approximation is obtained with n = 3.

 Because of the agreement of p₃ and p₄ we could reasonably expect this result to be accurate to the places listed.

Outline

2 Example using Newton's Method & Fixed-Point Iteration

3 Convergence using Newton's Method

4 Final Remarks on Practical Application

< 6 k

Theoretical importance of the choice of p_0

Numerical Analysis (Chapter 2)

Theoretical importance of the choice of p_0

• The Taylor series derivation of Newton's method points out the importance of an accurate initial approximation.

A D b 4 A b

Theoretical importance of the choice of p_0

- The Taylor series derivation of Newton's method points out the importance of an accurate initial approximation.
- The crucial assumption is that the term involving $(p p_0)^2$ is, by comparison with $|p p_0|$, so small that it can be deleted.

・ロト ・ 同ト ・ ヨト ・ ヨ

Theoretical importance of the choice of p_0

- The Taylor series derivation of Newton's method points out the importance of an accurate initial approximation.
- The crucial assumption is that the term involving $(p p_0)^2$ is, by comparison with $|p p_0|$, so small that it can be deleted.
- This will clearly be false unless *p*₀ is a good approximation to *p*.

・ロト ・ 同ト ・ ヨト ・ ヨ

Theoretical importance of the choice of p_0

- The Taylor series derivation of Newton's method points out the importance of an accurate initial approximation.
- The crucial assumption is that the term involving $(p p_0)^2$ is, by comparison with $|p p_0|$, so small that it can be deleted.
- This will clearly be false unless *p*₀ is a good approximation to *p*.
- If p₀ is not sufficiently close to the actual root, there is little reason to suspect that Newton's method will converge to the root.

Theoretical importance of the choice of p_0

- The Taylor series derivation of Newton's method points out the importance of an accurate initial approximation.
- The crucial assumption is that the term involving $(p p_0)^2$ is, by comparison with $|p p_0|$, so small that it can be deleted.
- This will clearly be false unless *p*₀ is a good approximation to *p*.
- If p₀ is not sufficiently close to the actual root, there is little reason to suspect that Newton's method will converge to the root.
- However, in some instances, even poor initial approximations will produce convergence.

< ロ > < 同 > < 回 > < 回 >

Convergence Theorem for Newton's Method

Numerical Analysis (Chapter 2)

Convergence Theorem for Newton's Method

• Let $f \in C^2[a, b]$. If $p \in (a, b)$ is such that f(p) = 0 and $f'(p) \neq 0$.

Convergence Theorem for Newton's Method

- Let $f \in C^2[a, b]$. If $p \in (a, b)$ is such that f(p) = 0 and $f'(p) \neq 0$.
- Then there exists a δ > 0 such that Newton's method generates a sequence {p_n}[∞]_{n=1}, defined by

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f(p'_{n-1})}$$

converging to p for any initial approximation

$$p_0 \in [p - \delta, p + \delta]$$

Numerical Analysis (Chapter 2)

Convergence Theorem (1/4)

Numerical Anal	ysis (Chap	oter 2)
----------------	--------	------	---------

(4) (5) (4) (5)

Convergence Theorem (1/4)

 The proof is based on analyzing Newton's method as the functional iteration scheme p_n = g(p_{n-1}), for n ≥ 1, with

$$g(x)=x-\frac{f(x)}{f'(x)}.$$

.

4 A N

Convergence Theorem (1/4)

 The proof is based on analyzing Newton's method as the functional iteration scheme p_n = g(p_{n-1}), for n ≥ 1, with

$$g(x)=x-\frac{f(x)}{f'(x)}.$$

Let k be in (0, 1). We first find an interval [p − δ, p + δ] that g maps into itself and for which |g'(x)| ≤ k, for all x ∈ (p − δ, p + δ).

< ロ > < 同 > < 回 > < 回 >

Convergence Theorem (1/4)

 The proof is based on analyzing Newton's method as the functional iteration scheme p_n = g(p_{n-1}), for n ≥ 1, with

$$g(x)=x-\frac{f(x)}{f'(x)}.$$

- Let k be in (0, 1). We first find an interval [p − δ, p + δ] that g maps into itself and for which |g'(x)| ≤ k, for all x ∈ (p − δ, p + δ).
- Since f' is continuous and $f'(p) \neq 0$, part (a) of Exercise 29 in Section 1.1 (Ex 29) implies that there exists a $\delta_1 > 0$, such that $f'(x) \neq 0$ for $x \in [p \delta_1, p + \delta_1] \subseteq [a, b]$.

22/33

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Convergence Theorem (2/4)

Numerical Ana	lysis ((Chapter 2)
---------------	----------	-----------	---

(4) (5) (4) (5)

Convergence Theorem (2/4)

• Thus *g* is defined and continuous on $[p - \delta_1, p + \delta_1]$. Also

$$g'(x) = 1 - \frac{f'(x)f'(x) - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}$$

for $x \in [p - \delta_1, p + \delta_1]$, and, since $f \in C^2[a, b]$, we have $g \in C^1[p - \delta_1, p + \delta_1]$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Convergence Theorem (2/4)

• Thus g is defined and continuous on $[p - \delta_1, p + \delta_1]$. Also

$$g'(x) = 1 - \frac{f'(x)f'(x) - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}$$

for $x \in [p - \delta_1, p + \delta_1]$, and, since $f \in C^2[a, b]$, we have $g \in C^1[p - \delta_1, p + \delta_1]$.

• By assumption, f(p) = 0, so

$$g'(\rho) = rac{f(\rho)f''(\rho)}{[f'(\rho)]^2} = 0.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$g'(p) = rac{f(p)f''(p)}{[f'(p)]^2} = 0.$$

Convergence Theorem (3/4)

Numerical Analysis (Chapter 2)

$$g'(p) = rac{f(p)f''(p)}{[f'(p)]^2} = 0.$$

Convergence Theorem (3/4)

Since g' is continuous and 0 < k < 1, part (b) of Exercise 29 in Section 1.1 ● Ex 29 implies that there exists a δ, with 0 < δ < δ₁, and

$$|g'(x)| \le k$$
, for all $x \in [p - \delta, p + \delta]$.

$$g'(p) = rac{f(p)f''(p)}{[f'(p)]^2} = 0.$$

Convergence Theorem (3/4)

Since g' is continuous and 0 < k < 1, part (b) of Exercise 29 in Section 1.1 ● Ex 29 implies that there exists a δ, with 0 < δ < δ₁, and

$$|g'(x)| \le k$$
, for all $x \in [p - \delta, p + \delta]$.

• It remains to show that g maps $[p - \delta, p + \delta]$ into $[p - \delta, p + \delta]$.

Numerical Analysis (Chapter 2)

$$g'(p) = rac{f(p)f''(p)}{[f'(p)]^2} = 0.$$

Convergence Theorem (3/4)

Since g' is continuous and 0 < k < 1, part (b) of Exercise 29 in Section 1.1 ● Ex 29 implies that there exists a δ, with 0 < δ < δ₁, and

$$|g'(x)| \le k$$
, for all $x \in [p - \delta, p + \delta]$.

- It remains to show that g maps $[p \delta, p + \delta]$ into $[p \delta, p + \delta]$.

$$|g(x) - p| = |g(x) - g(p)| = |g'(\xi)||x - p| \le k|x - p| < |x - p|.$$

Convergence Theorem (4/4)

Numerical Analysis (Chapter 2)

Convergence Theorem (4/4)

• Since $x \in [p - \delta, p + \delta]$, it follows that $|x - p| < \delta$ and that $|g(x) - p| < \delta$. Hence, g maps $[p - \delta, p + \delta]$ into $[p - \delta, p + \delta]$.

3

Convergence Theorem (4/4)

- Since $x \in [p \delta, p + \delta]$, it follows that $|x p| < \delta$ and that $|g(x) p| < \delta$. Hence, g maps $[p \delta, p + \delta]$ into $[p \delta, p + \delta]$.
- All the hypotheses of the Fixed-Point Theorem
 ● Theorem 2.4

 are now satisfied, so the sequence {p_n}[∞]_{n=1}, defined by

$$p_n = g(p_{n-1}) = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}, \text{ for } n \ge 1,$$

converges to p for any $p_0 \in [p - \delta, p + \delta]$.

Numerical Analysis (Chapter 2)

R L Burden & J D Faires 2

25 / 33

Outline

2 Example using Newton's Method & Fixed-Point Iteration

3 Convergence using Newton's Method

Final Remarks on Practical Application

・ 同 ト ・ ヨ ト ・ ヨ

Choice of Initial Approximation

Numerical Analysis (Chapter 2)

Choice of Initial Approximation

 The convergence theorem states that, under reasonable assumptions, Newton's method converges provided a sufficiently accurate initial approximation is chosen.

Choice of Initial Approximation

- The convergence theorem states that, under reasonable assumptions, Newton's method converges provided a sufficiently accurate initial approximation is chosen.
- It also implies that the constant *k* that bounds the derivative of *g*, and, consequently, indicates the speed of convergence of the method, decreases to 0 as the procedure continues.

< ロ > < 同 > < 回 > < 回 >

Choice of Initial Approximation

- The convergence theorem states that, under reasonable assumptions, Newton's method converges provided a sufficiently accurate initial approximation is chosen.
- It also implies that the constant k that bounds the derivative of g, and, consequently, indicates the speed of convergence of the method, decreases to 0 as the procedure continues.
- This result is important for the theory of Newton's method, but it is seldom applied in practice because it does not tell us how to determine δ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In a practical application

Numerical Analysis (Chapter 2)

In a practical application ...

• an initial approximation is selected

Numerical Analysis (Chapter 2)

.

< 47 ▶

In a practical application ...

- an initial approximation is selected
- and successive approximations are generated by Newton's method.

.

A D b 4 A b

In a practical application ...

- an initial approximation is selected
- and successive approximations are generated by Newton's method.
- These will generally either converge quickly to the root,

A D b 4 A b

In a practical application ...

- an initial approximation is selected
- and successive approximations are generated by Newton's method.
- These will generally either converge quickly to the root,
- or it will be clear that convergence is unlikely.

Questions?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Reference Material

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Let $f \in C[a, b]$, and let p be in the open interval (a, b).

Exercise 29 (a)

Suppose $f(p) \neq 0$. Show that a $\delta > 0$ exists with $f(x) \neq 0$, for all x in $[p - \delta, p + \delta]$, with $[p - \delta, p + \delta]$ a subset of [a, b].

Return to Newton's Convergence Theorem (1 of 4)

Exercise 29 (b)

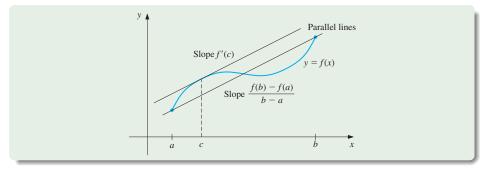
Suppose f(p) = 0 and k > 0 is given. Show that a $\delta > 0$ exists with $|f(x)| \le k$, for all x in $[p - \delta, p + \delta]$, with $[p - \delta, p + \delta]$ a subset of [a, b].

Return to Newton's Convergence Theorem (3 of 4)

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

If $f \in C[a, b]$ and f is differentiable on (a, b), then a number c exists such that

$$f'(c) = rac{f(b) - f(a)}{b - a}$$



Return to Newton's Convergence Theorem (3 of 4)

《曰》 《聞》 《臣》 《臣》 三臣 …

Fixed-Point Theorem

Let $g \in C[a, b]$ be such that $g(x) \in [a, b]$, for all x in [a, b]. Suppose, in addition, that g' exists on (a, b) and that a constant 0 < k < 1 exists with

$$|g'(x)| \le k$$
, for all $x \in (a, b)$.

Then for any number p_0 in [a, b], the sequence defined by

$$p_n = g(p_{n-1}), \quad n \geq 1,$$

converges to the unique fixed point p in [a, b].

Return to Newton's Convergence Theorem (4 of 4)