Direct Methods for Solving Linear Systems

Linear Systems of Equations

Numerical Analysis (9th Edition) R L Burden & J D Faires

> Beamer Presentation Slides prepared by John Carroll Dublin City University

© 2011 Brooks/Cole, Cengage Learning

<ロ> (四) (四) (三) (三) (三)

2 3 Operations to Simplify a Linear System of Equations

2 3 Operations to Simplify a Linear System of Equations

・ 同 ト ・ ヨ ト ・ ヨ

2 3 Operations to Simplify a Linear System of Equations

- 3 Gaussian Elimination Procedure
- 4 The Gaussian Elimination with Backward Substitution Algorithm

2 3 Operations to Simplify a Linear System of Equations

- 3 Gaussian Elimination Procedure
- 4 The Gaussian Elimination with Backward Substitution Algorithm

Linear Systems of Equations

We will consider direct methods for solving a linear system of n equations in n variables.

< 17 ▶

2

< 17 ▶

Introduction

Linear Systems of Equations

We will consider direct methods for solving a linear system of n equations in n variables. Such a system has the form:

$$E_1: a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

$$E_2: \quad a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$E_n: \quad a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$$

Linear Systems of Equations

We will consider direct methods for solving a linear system of n equations in n variables. Such a system has the form:

$$E_1: a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

$$\Xi_2: a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$$

$$E_n: \quad a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$$

In this system we are given the constants a_{ij} , for each i, j = 1, 2, ..., n, and b_i , for each i = 1, 2, ..., n, and we need to determine the unknowns $x_1, ..., x_n$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Direct Methods & Round-off Error

Numerical Analysis (Chapter 6)

Linear Systems of Equations

R L Burden & J D Faires 5 / 43

Direct Methods & Round-off Error

 Direct techniques are methods that theoretically give the exact solution to the system in a finite number of steps.

→ ∃ → < ∃</p>

< 🗇 🕨

Direct Methods & Round-off Error

- Direct techniques are methods that theoretically give the exact solution to the system in a finite number of steps.
- In practice, of course, the solution obtained will be contaminated by the round-off error that is involved with the arithmetic being used.

Direct Methods & Round-off Error

- Direct techniques are methods that theoretically give the exact solution to the system in a finite number of steps.
- In practice, of course, the solution obtained will be contaminated by the round-off error that is involved with the arithmetic being used.
- Analyzing the effect of this round-off error and determining ways to keep it under control will be a major component of this presentation.

< ロ > < 同 > < 三 > < 三 >

Direct Methods & Round-off Error

- Direct techniques are methods that theoretically give the exact solution to the system in a finite number of steps.
- In practice, of course, the solution obtained will be contaminated by the round-off error that is involved with the arithmetic being used.
- Analyzing the effect of this round-off error and determining ways to keep it under control will be a major component of this presentation.

We begin, however, by introducing some important terminology and notation.

< ロ > < 同 > < 三 > < 三 >

Definition of a Matrix

An $n \times m$ (*n* by *m*) matrix is a rectangular array of elements with *n* rows and *m* columns in which not only is the value of an element important, but also its position in the array.

Definition of a Matrix

An $n \times m$ (*n* by *m*) matrix is a rectangular array of elements with *n* rows and *m* columns in which not only is the value of an element important, but also its position in the array.

Notation

The notation for an $n \times m$ matrix will be a capital letter such as A for the matrix and lowercase letters with double subscripts, such as a_{ij} , to refer to the entry at the intersection of the *i*th row and *j*th column; that is:

$$A = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}$$

A Vector is a special case

The $1 \times n$ matrix

$$A = [a_{11} \ a_{12} \ \cdots \ a_{1n}]$$

is called an *n*-dimensional row vector, and an $n \times 1$ matrix

$$A = \left[egin{array}{c} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{array}
ight]$$

is called an *n*-dimensional column vector.

< ロ > < 同 > < 三 > < 三 >

A Vector is a special case (Cont'd)

Usually the unnecessary subscripts are omitted for vectors, and a boldface lowercase letter is used for notation. Thus

$$\mathbf{c} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

denotes a column vector, and

$$\mathbf{y} = [y_1 \ y_2 \ \dots \ y_n]$$

a row vector.

< ロ > < 同 > < 回 > < 回 >

Matrices & Vectors: Augmented Matrix

The Augmented Matrix (1/2)

An $n \times (n+1)$ matrix can be used to represent the linear system

$$\begin{array}{rcl} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &=& b_1,\\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &=& b_2,\\ &\vdots &&\vdots\\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n &=& b_n, \end{array}$$

Matrices & Vectors: Augmented Matrix

The Augmented Matrix (1/2)

An $n \times (n+1)$ matrix can be used to represent the linear system

$$\begin{array}{rcl} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &=& b_1,\\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &=& b_2,\\ &\vdots &&\vdots\\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n &=& b_n, \end{array}$$

$$A = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Numerical Analysis (Chapter 6)

Matrices & Vectors: Augmented Matrix

The Augmented Matrix (2/2)

and then forming the new array $[A, \mathbf{b}]$:

$$[A, \mathbf{b}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & b_n \end{bmatrix}$$

< 17 ▶

Matrices & Vectors: Augmented Matrix

The Augmented Matrix (2/2)

and then forming the new array [A, b]:

$$[A, \mathbf{b}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

where the vertical line is used to separate the coefficients of the unknowns from the values on the right-hand side of the equations.

.

4 A N

Matrices & Vectors: Augmented Matrix

The Augmented Matrix (2/2)

and then forming the new array [A, b]:

$$[A, \mathbf{b}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ \vdots \\ b_n \end{bmatrix}$$

where the vertical line is used to separate the coefficients of the unknowns from the values on the right-hand side of the equations.

The array $[A, \mathbf{b}]$ is called an augmented matrix.

< □ > < 同 > < 回 > <

Matrices & Vectors: Augmented Matrix

Representing the Linear System

In what follows, the $n \times (n+1)$ matrix

$$[A, \mathbf{b}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Matrices & Vectors: Augmented Matrix

Representing the Linear System

In what follows, the $n \times (n+1)$ matrix

$$[A, \mathbf{b}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & b_n \end{bmatrix}$$

will used to represent the linear system

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$$

Numerical Analysis (Chapter 6)

2 3 Operations to Simplify a Linear System of Equations

- 3 Gaussian Elimination Procedure
- 4 The Gaussian Elimination with Backward Substitution Algorithm

.

GE/BS Algorithm

Simplifying a Linear Systems of Equations

The Linear System

F

Returning to the linear system of *n* equations in *n* variables:

$$E_1: a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

$$E_2: a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$$

$$E_n: \quad a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$$

where we are given the constants a_{ij} , for each i, j = 1, 2, ..., n, and b_i , for each i = 1, 2, ..., n,

Numerical Analysis (Chapter 6)

< ロ > < 同 > < 三 > < 三 >

.

GE/BS Algorithm

Simplifying a Linear Systems of Equations

The Linear System

E

Returning to the linear system of *n* equations in *n* variables:

$$E_1: a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

$$E_2: a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$$

$$E_n: \quad a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$$

where we are given the constants a_{ij} , for each i, j = 1, 2, ..., n, and b_i , for each i = 1, 2, ..., n, we need to determine the unknowns $x_1, ..., x_n$.

Numerical Analysis (Chapter 6)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Permissible Operations

We will use 3 operations to simplify the linear system:

Numerical Analysis (Chapter 6)

4 A N

Permissible Operations

We will use 3 operations to simplify the linear system:

• Equation E_i can be multiplied by any nonzero constant λ with the resulting equation used in place of E_i . This operation is denoted $(\lambda E_i) \rightarrow (E_i)$.

A = > 4

Permissible Operations

We will use 3 operations to simplify the linear system:

- Equation E_i can be multiplied by any nonzero constant λ with the resulting equation used in place of E_i . This operation is denoted $(\lambda E_i) \rightarrow (E_i)$.
- 2 Equation E_j can be multiplied by any constant λ and added to equation E_i with the resulting equation used in place of E_i . This operation is denoted $(E_i + \lambda E_j) \rightarrow (E_i)$.

Permissible Operations

We will use 3 operations to simplify the linear system:

- Equation E_i can be multiplied by any nonzero constant λ with the resulting equation used in place of E_i . This operation is denoted $(\lambda E_i) \rightarrow (E_i)$.
- 2 Equation *E_j* can be multiplied by any constant λ and added to equation *E_i* with the resulting equation used in place of *E_i*. This operation is denoted (*E_i* + λ *E_j*) → (*E_i*).
- Sequations *E_i* and *E_j* can be transposed in order. This operation is denoted (*E_i*) ↔ (*E_j*).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Permissible Operations

We will use 3 operations to simplify the linear system:

- Equation E_i can be multiplied by any nonzero constant λ with the resulting equation used in place of E_i . This operation is denoted $(\lambda E_i) \rightarrow (E_i)$.
- 2 Equation *E_j* can be multiplied by any constant λ and added to equation *E_i* with the resulting equation used in place of *E_i*. This operation is denoted (*E_i* + λ *E_j*) → (*E_i*).
- Sequations E_i and E_j can be transposed in order. This operation is denoted $(E_i) \leftrightarrow (E_j)$.

By a sequence of these operations, a linear system will be systematically transformed into to a new linear system that is more easily solved and has the same solutions.

Numerical Analysis (Chapter 6)

Linear Systems of Equations

Illustration

The four equations

will be solved for x_1 , x_2 , x_3 , and x_4 .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Illustration

The four equations

will be solved for x_1 , x_2 , x_3 , and x_4 .

an

We first use equation E_1 to eliminate the unknown x_1 from equations E_2 , E_3 , and E_4 by performing:

$$(E_2 - 2E_1) \rightarrow (E_2)$$

$$(E_3 - 3E_1) \rightarrow (E_3)$$

$$(E_4 + E_1) \rightarrow (E_4)$$

$$E_1: x_1+x_2 + 3x_4=4 E_2: 2x_1+x_2-x_3 + x_4=1$$

→ ∃ → < ∃</p>

< 🗇 🕨

$$E_1: x_1 + x_2 + 3x_4 = 4$$

$$E_2: 2x_1 + x_2 - x_3 + x_4 = 1$$

Illustration Cont'd (2/5)

For example, in the second equation

$$(E_2-2E_1) \to (E_2)$$

produces

$$(2x_1 + x_2 - x_3 + x_4) - 2(x_1 + x_2 + 3x_4) = 1 - 2(4)$$

Numerical Analysis (Chapter 6)

$$E_1: x_1 + x_2 + 3x_4 = 4$$

$$E_2: 2x_1 + x_2 - x_3 + x_4 = 1$$

Illustration Cont'd (2/5)

For example, in the second equation

$$(E_2-2E_1)\to (E_2)$$

produces

$$(2x_1 + x_2 - x_3 + x_4) - 2(x_1 + x_2 + 3x_4) = 1 - 2(4)$$

which simplifies to the result shown as E_2 in

$$\begin{array}{rrrr} E_1: & x_1+x_2 & + 3x_4 = & 4 \\ E_2: & -x_2-x_3-5x_4 = & -7 \end{array}$$

GE/BS Algorithm

Simplifying a Linear Systems of Equations

Illustration Cont'd (3/5)

Similarly for equations E_3 and E_4 so that we obtain the new system:

 $E_{1}: x_{1} + x_{2} + 3x_{4} = 4$ $E_{2}: -x_{2} - x_{3} - 5x_{4} = -7$ $E_{3}: -4x_{2} - x_{3} - 7x_{4} = -15$ $E_{4}: 3x_{2} + 3x_{3} + 2x_{4} = 8$

For simplicity, the new equations are again labeled E_1 , E_2 , E_3 , and E_4 .

Illustration Cont'd (4/5)

In the new system, E_2 is used to eliminate the unknown x_2 from E_3 and E_4 by performing $(E_3 - 4E_2) \rightarrow (E_3)$ and $(E_4 + 3E_2) \rightarrow (E_4)$.

イロト イヨト イヨト イヨト

Illustration Cont'd (4/5)

In the new system, E_2 is used to eliminate the unknown x_2 from E_3 and E_4 by performing $(E_3 - 4E_2) \rightarrow (E_3)$ and $(E_4 + 3E_2) \rightarrow (E_4)$. This results in

E 1 :	$x_1 + x_2$	+	$3x_4 =$	4,
E ₂ :	- x ₂ -	x ₃ –	5 <i>x</i> ₄ =	-7 ,
E 3 :	:	$3x_3 + 1$	13 <i>x</i> ₄ =	13,
E ₄ :		_ '	$13x_4 = 13x_4$	-13.

< ロ > < 同 > < 三 > < 三 >

Illustration Cont'd (4/5)

In the new system, E_2 is used to eliminate the unknown x_2 from E_3 and E_4 by performing $(E_3 - 4E_2) \rightarrow (E_3)$ and $(E_4 + 3E_2) \rightarrow (E_4)$. This results in

<i>E</i> ₁ :	$x_1 + x_2$	+	$3x_4 =$	4,
E ₂ :	- x ₂ -	x ₃ –	5 <i>x</i> ₄ =	-7 ,
E 3 :		$3x_3 + 1$	13 <i>x</i> ₄ =	13,
E ₄ :		_ '	$13x_4 = 13x_4 = 13x_4$	-13.

This latter system of equations is now in triangular (or reduced) form and can be solved for the unknowns by a backward-substitution process.

Numerical Analysis (Chapter 6)

Linear Systems of Equations

R L Burden & J D Faires 18 / 43

< ロ > < 同 > < 三 > < 三 >

Illustration Cont'd (5/5)

Since E_4 implies $x_4 = 1$, we can solve E_3 for x_3 to give

$$x_3 = \frac{1}{3}(13 - 13x_4) = \frac{1}{3}(13 - 13) = 0.$$

э

Illustration Cont'd (5/5)

Since E_4 implies $x_4 = 1$, we can solve E_3 for x_3 to give

$$x_3 = \frac{1}{3}(13 - 13x_4) = \frac{1}{3}(13 - 13) = 0.$$

Continuing, E2 gives

$$x_2 = -(-7 + 5x_4 + x_3) = -(-7 + 5 + 0) = 2$$

Numerical Analysis (Chapter 6)

Linear Systems of Equations

R L Burden & J D Faires 19 / 43

э

Illustration Cont'd (5/5)

Since E_4 implies $x_4 = 1$, we can solve E_3 for x_3 to give

$$x_3 = \frac{1}{3}(13 - 13x_4) = \frac{1}{3}(13 - 13) = 0.$$

Continuing, E2 gives

$$x_2 = -(-7 + 5x_4 + x_3) = -(-7 + 5 + 0) = 2,$$

and E_1 gives

$$x_1 = 4 - 3x_4 - x_2 = 4 - 3 - 2 = -1.$$

э.

イロン イロン イヨン イヨン

Illustration Cont'd (5/5)

Since E_4 implies $x_4 = 1$, we can solve E_3 for x_3 to give

$$x_3 = \frac{1}{3}(13 - 13x_4) = \frac{1}{3}(13 - 13) = 0.$$

Continuing, E2 gives

$$x_2 = -(-7 + 5x_4 + x_3) = -(-7 + 5 + 0) = 2,$$

and E_1 gives

$$x_1 = 4 - 3x_4 - x_2 = 4 - 3 - 2 = -1.$$

The solution is therefore, $x_1 = -1$, $x_2 = 2$, $x_3 = 0$, and $x_4 = 1$.

・ロト ・四ト ・ヨト ・ヨト

Outline

2 3 Operations to Simplify a Linear System of Equations

3 Gaussian Elimination Procedure

The Gaussian Elimination with Backward Substitution Algorithm

$$E_1: \quad x_1 + x_2 + 3x_4 = 4$$

$$E_2: \quad 2x_1 + x_2 - x_3 + x_4 = 1$$

$$E_3: \quad 3x_1 - x_2 - x_3 + 2x_4 = -3$$

$$E_4: \quad -x_1 + 2x_2 + 3x_3 - x_4 = 4$$

< 回 ト < 三 ト < 三

$$E_1: \quad x_1 + x_2 + 3x_4 = 4$$

$$E_2: \quad 2x_1 + x_2 - x_3 + x_4 = 1$$

$$E_3: \quad 3x_1 - x_2 - x_3 + 2x_4 = -3$$

$$E_4: \quad -x_1 + 2x_2 + 3x_3 - x_4 = 4$$

Converting to Augmented Form

Repeating the operations involved in the previous illustration with the matrix notation results in first considering the augmented matrix:

Numerical Analysis (Chapter 6)

Reducing to Triangular Form

Numerical Analysis (Chapter 6)

Linear Systems of Equations

R L Burden & J D Faires 22 / 43

・ 同 ト ・ ヨ ト ・ ヨ

Reducing to Triangular Form

Performing the operations as described in the earlier example produces the augmented matrices:

$$\begin{bmatrix} 1 & 1 & 0 & 3 & 4 \\ 0 & -1 & -1 & -5 & -7 \\ 0 & -4 & -1 & -7 & -15 \\ 0 & 3 & 3 & 2 & 8 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 1 & 0 & 3 & 4 \\ 0 & -1 & -1 & -5 & -7 \\ 0 & 0 & 3 & 13 & 13 \\ 0 & 0 & 0 & -13 & -13 \end{bmatrix}$$

< ロ > < 同 > < 回 > < 国 > < 国 > < 国

Reducing to Triangular Form

Performing the operations as described in the earlier example produces the augmented matrices:

$$\begin{bmatrix} 1 & 1 & 0 & 3 & 4 \\ 0 & -1 & -1 & -5 & -7 \\ 0 & -4 & -1 & -7 & -15 \\ 0 & 3 & 3 & 2 & 8 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 1 & 0 & 3 & 4 \\ 0 & -1 & -1 & -5 & -7 \\ 0 & 0 & 3 & 13 & 13 \\ 0 & 0 & 0 & -13 & -13 \end{bmatrix}$$

The final matrix can now be transformed into its corresponding linear system, and solutions for x_1 , x_2 , x_3 , and x_4 , can be obtained. The procedure is called Gaussian elimination with backward substitution.

Numerical Analysis (Chapter 6)

< ロ > < 同 > < 回 > < 回 >

Basic Steps in the Procedure

The general Gaussian elimination procedure applied to the linear system

$$E_{1}: a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$E_{2}: a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$$

$$\vdots \qquad \vdots$$

$$E_{n}: a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} = b_{n}$$

will be handled in a similar manner.

Basic Steps in the Procedure (Cont'd)

• First form the augmented matrix \tilde{A} :

$$\tilde{A} = [A, \mathbf{b}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} a_{1,n+1} \\ a_{2,n+1} \\ \vdots \\ a_{n,n+1} \end{bmatrix}$$

where A denotes the matrix formed by the coefficients.

・ 同 ト ・ ヨ ト ・ ヨ

Basic Steps in the Procedure (Cont'd)

• First form the augmented matrix Ã:

$$\tilde{A} = [A, \mathbf{b}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} a_{1,n+1} \\ a_{2,n+1} \\ \vdots \\ a_{n,n+1} \end{bmatrix}$$

where A denotes the matrix formed by the coefficients.

• The entries in the (n + 1)st column are the values of **b**; that is, $a_{i,n+1} = b_i$ for each i = 1, 2, ..., n.

Basic Steps in the Procedure (Cont'd)

• Provided $a_{11} \neq 0$, we perform the operations corresponding to

$$(E_j - (a_{j1}/a_{11})E_1)
ightarrow (E_j)$$
 for each $j = 2, 3, \dots, n$

to eliminate the coefficient of x_1 in each of these rows.

Basic Steps in the Procedure (Cont'd)

• Provided $a_{11} \neq 0$, we perform the operations corresponding to

$$(E_j - (a_{j1}/a_{11})E_1)
ightarrow (E_j)$$
 for each $j = 2, 3, \dots, n$

to eliminate the coefficient of x_1 in each of these rows.

 Although the entries in rows 2, 3, ..., n are expected to change, for ease of notation we again denote the entry in the *i*th row and the *j*th column by a_{ij}.

Basic Steps in the Procedure (Cont'd)

• Provided $a_{11} \neq 0$, we perform the operations corresponding to

$$(E_j - (a_{j1}/a_{11})E_1)
ightarrow (E_j)$$
 for each $j = 2, 3, \dots, n$

to eliminate the coefficient of x_1 in each of these rows.

- Although the entries in rows 2, 3, ..., n are expected to change, for ease of notation we again denote the entry in the *i*th row and the *j*th column by a_{ij}.
- With this in mind, we follow a sequential procedure for
 - $i = 2, 3, \ldots, n-1$ and perform the operation

$$(E_j - (a_{ji}/a_{ii})E_i) \rightarrow (E_j)$$
 for each $j = i + 1, i + 2, \dots, n$

provided $a_{ii} \neq 0$.

Basic Steps in the Procedure (Cont'd)

This eliminates (changes the coefficient to zero) x_i in each row below the *i*th for all values of *i* = 1, 2, ..., *n* − 1.

Basic Steps in the Procedure (Cont'd)

- This eliminates (changes the coefficient to zero) x_i in each row below the *i*th for all values of *i* = 1, 2, ..., *n* − 1.
- The resulting matrix has the form:

$$ilde{A} = \left[egin{array}{cccccc} a_{11} & a_{12} & \cdots & a_{1n} & a_{1,n+1} \ 0 & a_{22} & \cdots & a_{2n} & a_{2,n+1} \ dots & \ddots & \ddots & dots & dots \ 0 & \cdots & 0 & a_{nn} & a_{n,n+1} \end{array}
ight]$$

where, except in the first row, the values of a_{ij} are not expected to agree with those in the original matrix \tilde{A} .

Basic Steps in the Procedure (Cont'd)

- This eliminates (changes the coefficient to zero) x_i in each row below the *i*th for all values of *i* = 1, 2, ..., *n* − 1.
- The resulting matrix has the form:

$$ilde{A} = \left[egin{array}{cccccc} a_{11} & a_{12} & \cdots & a_{1n} & a_{1,n+1} \ 0 & a_{22} & \cdots & a_{2n} & a_{2,n+1} \ dots & \ddots & \ddots & dots & dots \ 0 & \cdots & 0 & a_{nn} & a_{n,n+1} \end{array}
ight]$$

where, except in the first row, the values of a_{ij} are not expected to agree with those in the original matrix \tilde{A} .

• The matrix \tilde{A} represents a linear system with the same solution set as the original system.

Numerical Analysis (Chapter 6)

Linear Systems of Equations

Basic Steps in the Procedure (Cont'd)

The new linear system is triangular,

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = a_{1,n+1}$$

 $a_{22}x_2 + \cdots + a_{2n}x_n = a_{2,n+1}$
 \vdots
 \vdots
 \vdots
 $a_{nn}x_n = a_{n,n+1}$

so backward substitution can be performed.

Basic Steps in the Procedure (Cont'd)

The new linear system is triangular,

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = a_{1,n+1}$$

 $a_{22}x_2 + \cdots + a_{2n}x_n = a_{2,n+1}$
 \vdots
 \vdots
 \vdots
 $a_{nn}x_n = a_{n,n+1}$

so backward substitution can be performed. Solving the *n*th equation for x_n gives

$$\mathbf{x}_n = \frac{\mathbf{a}_{n,n+1}}{\mathbf{a}_{nn}}$$

Numerical Analysis (Chapter 6)

Basic Steps in the Procedure (Cont'd)

Solving the (n-1)st equation for x_{n-1} and using the known value for x_n yields

$$\mathbf{x}_{n-1} = \frac{\mathbf{a}_{n-1,n+1} - \mathbf{a}_{n-1,n} \mathbf{x}_n}{\mathbf{a}_{n-1,n-1}}$$

< ロ > < 同 > < 回 > < 回 >

Basic Steps in the Procedure (Cont'd)

Solving the (n-1)st equation for x_{n-1} and using the known value for x_n yields

$$\mathbf{x}_{n-1} = \frac{\mathbf{a}_{n-1,n+1} - \mathbf{a}_{n-1,n} \mathbf{x}_n}{\mathbf{a}_{n-1,n-1}}$$

Continuing this process, we obtain

$$\begin{aligned} x_i &= \frac{a_{i,n+1} - a_{i,n}x_n - a_{i,n-1}x_{n-1} - \dots - a_{i,i+1}x_{i+1}}{a_{ii}} \\ &= \frac{a_{i,n+1} - \sum_{j=i+1}^n a_{ij}x_j}{a_{ii}} \end{aligned}$$

for each $i = n - 1, n - 2, \dots, 2, 1$.

< ロ > < 同 > < 三 > < 三 >

A More Precise Description

Gaussian elimination procedure is described more precisely, although more intricately, by forming a sequence of augmented matrices $\tilde{A}^{(1)}$, $\tilde{A}^{(2)}$, ..., $\tilde{A}^{(n)}$, where $\tilde{A}^{(1)}$ is the matrix \tilde{A} given earlier and $\tilde{A}^{(k)}$, for each k = 2, 3, ..., n, has entries $a_{ij}^{(k)}$, where:

$$a_{ij}^{(k)} = \begin{cases} a_{ij}^{(k-1)} & \text{when } i = 1, 2, \dots, k-1 \text{ and } j = 1, 2, \dots, n+1 \\ 0 & \text{when } i = k, k+1, \dots, n \text{ and } j = 1, 2, \dots, k-1 \\ a_{ij}^{(k-1)} - \frac{a_{i,k-1}^{(k-1)}}{a_{k-1,k-1}^{(k-1)}} a_{k-1,j}^{(k-1)} & \text{when } i = k, k+1, \dots, n \text{ and } j = k, k+1, \dots, n+1 \end{cases}$$

イロト イ押ト イヨト イヨト

A More Precise Description (Cont'd)

represents the equivalent linear system for which the variable x_{k-1} has just been eliminated from equations $E_k, E_{k+1}, \ldots, E_n$.

Numerical Analysis (Chapter 6)

Linear Systems of Equations

A More Precise Description (Cont'd)

• The procedure will fail if one of the elements $a_{11}^{(1)}, a_{22}^{(2)}, a_{33}^{(3)}, \ldots, a_{n-1,n-1}^{(n-1)}, a_{nn}^{(n)}$ is zero because the step

$$\left(E_i-rac{a_{i,k}^{(k)}}{a_{kk}^{(k)}}(E_k)
ight)
ightarrow E_i$$

either cannot be performed (this occurs if one of $a_{11}^{(1)}, \ldots, a_{n-1,n-1}^{(n-1)}$ is zero), or the backward substitution cannot be accomplished (in the case $a_{nn}^{(n)} = 0$).

Numerical Analysis (Chapter 6)

A More Precise Description (Cont'd)

• The procedure will fail if one of the elements $a_{11}^{(1)}, a_{22}^{(2)}, a_{33}^{(3)}, \ldots, a_{n-1,n-1}^{(n-1)}, a_{nn}^{(n)}$ is zero because the step

$$\left(E_i-rac{a_{i,k}^{(k)}}{a_{kk}^{(k)}}(E_k)
ight)
ightarrow E_i$$

either cannot be performed (this occurs if one of $a_{11}^{(1)}, \ldots, a_{n-1,n-1}^{(n-1)}$ is zero), or the backward substitution cannot be accomplished (in the case $a_{nn}^{(n)} = 0$).

• The system may still have a solution, but the technique for finding it must be altered.

Illustration of the Gaussian Elimination Procedure

Example

Represent the linear system

$$E_1: \quad x_1 - x_2 + 2x_3 - x_4 = -8$$

$$E_2: \quad 2x_1 - 2x_2 + 3x_3 - 3x_4 = -20$$

$$E_3: \quad x_1 + x_2 + x_3 = -2$$

$$E_4: \quad x_1 - x_2 + 4x_3 + 3x_4 = 4$$

as an augmented matrix and use Gaussian Elimination to find its solution.

Illustration of the Gaussian Elimination Procedure

Solution (1/6)

The augmented matrix is

$$\tilde{A} = \tilde{A}^{(1)} = \begin{bmatrix} 1 & -1 & 2 & -1 & -8 \\ 2 & -2 & 3 & -3 & -20 \\ 1 & 1 & 1 & 0 & -2 \\ 1 & -1 & 4 & 3 & 4 \end{bmatrix}$$

Illustration of the Gaussian Elimination Procedure

Solution (1/6)

The augmented matrix is

$$ilde{A} = ilde{A}^{(1)} = egin{bmatrix} 1 & -1 & 2 & -1 & -8 \ 2 & -2 & 3 & -3 & -20 \ 1 & 1 & 1 & 0 & -2 \ 1 & -1 & 4 & 3 & 4 \end{bmatrix}$$

Performing the operations

$$(E_2 - 2E_1) \to (E_2), \ (E_3 - E_1) \to (E_3) \quad \text{and} \quad (E_4 - E_1) \to (E_4)$$

Solution (1/6)

The augmented matrix is

$$ilde{A} = ilde{A}^{(1)} = egin{bmatrix} 1 & -1 & 2 & -1 & -8 \ 2 & -2 & 3 & -3 & -20 \ 1 & 1 & 1 & 0 & -2 \ 1 & -1 & 4 & 3 & 4 \end{bmatrix}$$

Performing the operations

$$(E_2 - 2E_1) \to (E_2), \ (E_3 - E_1) \to (E_3) \text{ and } (E_4 - E_1) \to (E_4)$$

gives

$$ilde{A}^{(2)} = egin{bmatrix} 1 & -1 & 2 & -1 & -8 \ 0 & 0 & -1 & -1 & -4 \ 0 & 2 & -1 & 1 & 6 \ 0 & 0 & 2 & 4 & 12 \end{bmatrix}$$

Numerical Analysis (Chapter 6)

Linear Systems of Equations

$$ilde{A}^{(2)} = \left[egin{array}{ccc|c} 1 & -1 & 2 & -1 & -8 \ 0 & 0 & -1 & -1 & -4 \ 0 & 2 & -1 & 1 & 6 \ 0 & 0 & 2 & 4 & 12 \end{array}
ight]$$

・ 同 ト ・ ヨ ト ・ ヨ

$$ilde{A}^{(2)} = \left[egin{array}{cccccc} 1 & -1 & 2 & -1 & | & -8 \ 0 & 0 & -1 & -1 & | & -4 \ 0 & 2 & -1 & 1 & | & 6 \ 0 & 0 & 2 & 4 & | & 12 \end{array}
ight]$$

Solution (2/6)

• The diagonal entry $a_{22}^{(2)}$, called the pivot element, is 0, so the procedure cannot continue in its present form.

イロト イポト イヨト イヨト

$$ilde{A}^{(2)} = \left[egin{array}{ccc|c} 1 & -1 & 2 & -1 & -8 \ 0 & 0 & -1 & -1 & -4 \ 0 & 2 & -1 & 1 & 6 \ 0 & 0 & 2 & 4 & 12 \end{array}
ight]$$

Solution (2/6)

- The diagonal entry $a_{22}^{(2)}$, called the pivot element, is 0, so the procedure cannot continue in its present form.
- But operations (*E_i*) ↔ (*E_j*) are permitted, so a search is made of the elements a⁽²⁾₃₂ and a⁽²⁾₄₂ for the first nonzero element.

イロト イポト イヨト イヨト

$$ilde{\mathsf{A}}^{(2)} = \left[egin{array}{ccc|c} 1 & -1 & 2 & -1 & -8 \ 0 & 0 & -1 & -1 & -4 \ 0 & 2 & -1 & 1 & 6 \ 0 & 0 & 2 & 4 & 12 \end{array}
ight]$$

Solution (2/6)

- The diagonal entry $a_{22}^{(2)}$, called the pivot element, is 0, so the procedure cannot continue in its present form.
- But operations (*E_i*) ↔ (*E_j*) are permitted, so a search is made of the elements a⁽²⁾₃₂ and a⁽²⁾₄₂ for the first nonzero element.
- Since a⁽²⁾₃₂ ≠ 0, the operation (E₂) ↔ (E₃) can be performed to obtain a new matrix.

イロト イポト イヨト イヨト

$$ilde{A}^{(2)} = \left[egin{array}{ccc|c} 1 & -1 & 2 & -1 & -8 \ 0 & 0 & -1 & -1 & -4 \ 0 & 2 & -1 & 1 & 6 \ 0 & 0 & 2 & 4 & 12 \end{array}
ight]$$

A (10) > A (10) > A

$$ilde{A}^{(2)} = \left[egin{array}{ccc|c} 1 & -1 & 2 & -1 & -8 \ 0 & 0 & -1 & -1 & -4 \ 0 & 2 & -1 & 1 & 6 \ 0 & 0 & 2 & 4 & 12 \end{array}
ight]$$

Solution (3/6)

Perform the operation $(E_2) \leftrightarrow (E_3)$ to obtain a new matrix:

$$ilde{A}^{(2)'} = \left[egin{array}{ccc|c} 1 & -1 & 2 & -1 & | & -8 \ 0 & 2 & -1 & 1 & | & 6 \ 0 & 0 & -1 & -1 & | & -4 \ 0 & 0 & 2 & 4 & | & 12 \end{array}
ight]$$

$$ilde{\mathcal{A}}^{(2)'} = \left[egin{array}{ccc|c} 1 & -1 & 2 & -1 & -8 \ 0 & 2 & -1 & 1 & 6 \ 0 & 0 & -1 & -1 & -4 \ 0 & 0 & 2 & 4 & 12 \end{array}
ight]$$

・ 同 ト ・ ヨ ト ・ ヨ

$$ilde{A}^{(2)'} = \left[egin{array}{ccc|c} 1 & -1 & 2 & -1 & -8 \ 0 & 2 & -1 & 1 & 6 \ 0 & 0 & -1 & -1 & -4 \ 0 & 0 & 2 & 4 & 12 \end{array}
ight]$$

Solution (4/6)

Since x_2 is already eliminated from E_3 and E_4 , $\tilde{A}^{(3)}$ will be $\tilde{A}^{(2)'}$, and the computations continue with the operation $(E_4 + 2E_3) \rightarrow (E_4)$, giving

Numerical Analysis (Chapter 6)

イロン 不通 と イヨン イヨン

36/43

$$\tilde{A}^{(4)} = \begin{bmatrix} 1 & -1 & 2 & -1 & -8 \\ 0 & 2 & -1 & 1 & 6 \\ 0 & 0 & -1 & -1 & -4 \\ 0 & 0 & 0 & 2 & 4 \end{bmatrix}$$

Numerical Analysis (Chapter 6)

Linear Systems of Equations

R L Burden & J D Faires 37 / 43

・ 同 ト ・ ヨ ト ・ ヨ

$$ilde{A}^{(4)} = \left[egin{array}{ccc|c} 1 & -1 & 2 & -1 & -8 \ 0 & 2 & -1 & 1 & 6 \ 0 & 0 & -1 & -1 & -4 \ 0 & 0 & 0 & 2 & 4 \end{array}
ight]$$

Solution (5/6)

The solution may now be found through backward substitution:

$$x_4 = \frac{4}{2} = 2$$

$$ilde{A}^{(4)} = \left[egin{array}{ccc|c} 1 & -1 & 2 & -1 & -8 \ 0 & 2 & -1 & 1 & 6 \ 0 & 0 & -1 & -1 & -4 \ 0 & 0 & 0 & 2 & 4 \end{array}
ight]$$

Solution (5/6)

The solution may now be found through backward substitution:

$$x_4 = \frac{4}{2} = 2$$

 $x_3 = \frac{[-4 - (-1)x_4]}{-1} = 2$

$$ilde{A}^{(4)} = \left[egin{array}{ccc|c} 1 & -1 & 2 & -1 & -8 \ 0 & 2 & -1 & 1 & 6 \ 0 & 0 & -1 & -1 & -4 \ 0 & 0 & 0 & 2 & 4 \end{array}
ight]$$

Solution (5/6)

The solution may now be found through backward substitution:

$$x_4 = \frac{4}{2} = 2$$

$$x_3 = \frac{[-4 - (-1)x_4]}{-1} = 2$$

$$x_2 = \frac{[6 - x_4 - (-1)x_3]}{2} = 3$$

$$ilde{A}^{(4)} = \left[egin{array}{ccc|c} 1 & -1 & 2 & -1 & -8 \ 0 & 2 & -1 & 1 & 6 \ 0 & 0 & -1 & -1 & -4 \ 0 & 0 & 0 & 2 & 4 \end{array}
ight]$$

Solution (5/6)

The solution may now be found through backward substitution:

$$\begin{aligned} x_4 &= \frac{4}{2} = 2\\ x_3 &= \frac{\left[-4 - (-1)x_4\right]}{-1} = 2\\ x_2 &= \frac{\left[6 - x_4 - (-1)x_3\right]}{2} = 3\\ x_1 &= \frac{\left[-8 - (-1)x_4 - 2x_3 - (-1)x_2\right]}{1} = -7 \end{aligned}$$

Solution (6/6): Some Observations

• The example illustrates what is done if $a_{kk}^{(k)} = 0$ for some k = 1, 2, ..., n - 1.

- The example illustrates what is done if $a_{kk}^{(k)} = 0$ for some k = 1, 2, ..., n 1.
- The *k*th column of $\tilde{A}^{(k-1)}$ from the *k*th row to the *n*th row is searched for the first nonzero entry.

- The example illustrates what is done if $a_{kk}^{(k)} = 0$ for some k = 1, 2, ..., n 1.
- The *k*th column of $\tilde{A}^{(k-1)}$ from the *k*th row to the *n*th row is searched for the first nonzero entry.
- If a^(k)_{pk} ≠ 0 for some p,with k + 1 ≤ p ≤ n, then the operation
 (E_k) ↔ (E_p) is performed to obtain Ã^{(k-1)'}.

- The example illustrates what is done if $a_{kk}^{(k)} = 0$ for some k = 1, 2, ..., n 1.
- The *k*th column of $\tilde{A}^{(k-1)}$ from the *k*th row to the *n*th row is searched for the first nonzero entry.
- If a^(k)_{pk} ≠ 0 for some p,with k + 1 ≤ p ≤ n, then the operation
 (E_k) ↔ (E_p) is performed to obtain Ã^{(k-1)'}.
- The procedure can then be continued to form $\tilde{A}^{(k)}$, and so on.

- The example illustrates what is done if $a_{kk}^{(k)} = 0$ for some k = 1, 2, ..., n 1.
- The *k*th column of $\tilde{A}^{(k-1)}$ from the *k*th row to the *n*th row is searched for the first nonzero entry.
- If a^(k)_{pk} ≠ 0 for some p,with k + 1 ≤ p ≤ n, then the operation (E_k) ↔ (E_p) is performed to obtain Ã^{(k-1)'}.
- The procedure can then be continued to form $\tilde{A}^{(k)}$, and so on.
- If a^(k)_{pk} = 0 for each p, it can be shown that the linear system does not have a unique solution and the procedure stops.

- The example illustrates what is done if $a_{kk}^{(k)} = 0$ for some k = 1, 2, ..., n 1.
- The *k*th column of $\tilde{A}^{(k-1)}$ from the *k*th row to the *n*th row is searched for the first nonzero entry.
- If a^(k)_{pk} ≠ 0 for some p,with k + 1 ≤ p ≤ n, then the operation (E_k) ↔ (E_p) is performed to obtain Ã^{(k-1)'}.
- The procedure can then be continued to form $\tilde{A}^{(k)}$, and so on.
- If a^(k)_{pk} = 0 for each p, it can be shown that the linear system does not have a unique solution and the procedure stops.
- Finally, if $a_{nn}^{(n)} = 0$, the linear system does not have a unique solution, and again the procedure stops.

Outline

2 3 Operations to Simplify a Linear System of Equations

3 Gaussian Elimination Procedure

The Gaussian Elimination with Backward Substitution Algorithm

・ 同 ト ・ ヨ ト ・ ヨ

Gaussian Elimination with Backward Substitution Algorithm (1/3)

To solve the $n \times n$ linear system

$$E_{1}: a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = a_{1,n+1}$$

$$E_{2}: a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = a_{2,n+1}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$E_{n}: a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} = a_{n,n+1}$$

Gaussian Elimination with Backward Substitution Algorithm (1/3)

To solve the $n \times n$ linear system

$$E_{1}: a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = a_{1,n+1}$$

$$E_{2}: a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = a_{2,n+1}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$E_{n}: a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} = a_{n,n+1}$$

INPUT number of unknowns and equations *n*; augmented matrix $A = [a_{ij}]$, where $1 \le i \le n$ and $1 \le j \le n + 1$.

Numerical Analysis (Chapter 6)

Gaussian Elimination with Backward Substitution Algorithm (1/3)

To solve the $n \times n$ linear system

$$E_{1}: a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = a_{1,n+1}$$

$$E_{2}: a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = a_{2,n+1}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$E_{n}: a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} = a_{n,n+1}$$

- INPUT number of unknowns and equations *n*; augmented matrix $A = [a_{ij}]$, where $1 \le i \le n$ and $1 \le j \le n + 1$.
- OUTPUT solution $x_1, x_2, ..., x_n$ or message that the linear system has no unique solution.

Numerical Analysis (Chapter 6)

Linear Systems of Equations

R L Burden & J D Faires

40/43

Gaussian Elimination with Backward Substitution Algorithm (2/3)

Step 1 For i = 1, ..., n - 1 do Steps 2–4: (*Elimination process*)

э

Gaussian Elimination with Backward Substitution Algorithm (2/3)

Step 1 For i = 1, ..., n - 1 do Steps 2–4: (*Elimination process*)

Step 2Let p be the smallest integer with $i \le p \le n$ and $a_{pi} \ne 0$ If no integer p can be found
then OUTPUT ('no unique solution exists')
STOP

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gaussian Elimination with Backward Substitution Algorithm (2/3)

Step 1 For i = 1, ..., n - 1 do Steps 2–4: (*Elimination process*)

Step 2Let p be the smallest integer with $i \le p \le n$ and $a_{pi} \ne 0$ If no integer p can be found
then OUTPUT ('no unique solution exists')STOP

Step 3 If $p \neq i$ then perform $(E_p) \leftrightarrow (E_i)$

Gaussian Elimination with Backward Substitution Algorithm (2/3)

Step 1 For i = 1, ..., n - 1 do Steps 2–4: (*Elimination process*)

Step 2Let p be the smallest integer with $i \le p \le n$ and $a_{pi} \ne 0$ If no integer p can be found
then OUTPUT ('no unique solution exists')STOP

Step 3 If $p \neq i$ then perform $(E_p) \leftrightarrow (E_i)$

Step 4 For $j = i + 1, \dots, n$ do Steps 5 and 6:

Step 5 Set
$$m_{ji} = a_{ji}/a_{ii}$$

Step 6 Perform $(E_j - m_{ji}E_i) \rightarrow (E_j)$

-

(日)

Gaussian Elimination with Backward Substitution Algorithm (3/3)

Step 7 If $a_{nn} = 0$ then OUTPUT ('no unique solution exists')

Numerical Analysis (Chapter 6)

R L Burden & J D Faires 42 / 43

< ロ > < 同 > < 三 > < 三 >

Gaussian Elimination with Backward Substitution Algorithm (3/3)

Step 7If
$$a_{nn} = 0$$

then OUTPUT ('no unique solution exists')Step 8Set $x_n = a_{n,n+1}/a_{nn}$ (Start backward substitution)

э

Gaussian Elimination with Backward Substitution Algorithm (3/3)

Step 7If
$$a_{nn} = 0$$

then OUTPUT ('no unique solution exists')Step 8Set $x_n = a_{n,n+1}/a_{nn}$ (Start backward substitution)Step 9For $i = n - 1, ..., 1$ set $x_i = \left[a_{i,n+1} - \sum_{j=i+1}^n a_{ij}x_j\right] / a_{ii}$

Numerical Analysis (Chapter 6)

Linear Systems of Equations

R L Burden & J D Faires 42 / 43

э

Gaussian Elimination with Backward Substitution Algorithm (3/3)

Step 7 If $a_{nn} = 0$ then OUTPUT ('no unique solution exists') Set $x_n = a_{n,n+1}/a_{nn}$ (Start backward substitution) Step 8 For i = n - 1, ..., 1 set $x_i = \left[a_{i,n+1} - \sum_{j=i+1}^n a_{ij}x_j\right] / a_{ii}$ Step 9 Step 10 OUTPUT (x_1, \ldots, x_n) (*Procedure completed successfully*) STOP

Numerical Analysis (Chapter 6)

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < ⊙ < ⊙

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで