Direct Methods for Solving Linear Systems

Linear Systems of Equations

Numerical Analysis (9th Edition) R L Burden \& J D Faires
Beamer Presentation Slides
prepared by
John Carroll
Dublin City University

(C) 2011 Brooks/Cole, Cengage Learning

Outline

(1) Notation \& Basic Terminology

Outline

(1) Notation \& Basic Terminology
(2) 3 Operations to Simplify a Linear System of Equations

Outline

(1) Notation \& Basic Terminology
(2) 3 Operations to Simplify a Linear System of Equations
(3) Gaussian Elimination Procedure

Outline

(1) Notation \& Basic Terminology
(2) 3 Operations to Simplify a Linear System of Equations
(3) Gaussian Elimination Procedure
(4) The Gaussian Elimination with Backward Substitution Algorithm

Outline

(1) Notation \& Basic Terminology

(2) 3 Operations to Simplify a Linear System of Equations
(3) Gaussian Elimination Procedure

4 The Gaussian Elimination with Backward Substitution Algorithm

Introduction

Linear Systems of Equations

We will consider direct methods for solving a linear system of n equations in n variables.

Introduction

Linear Systems of Equations

We will consider direct methods for solving a linear system of n equations in n variables. Such a system has the form:

$$
\begin{array}{cc}
E_{1}: & a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
E_{2}: & a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots & \\
E_{n}: & a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{array}
$$

Introduction

Linear Systems of Equations

We will consider direct methods for solving a linear system of n equations in n variables. Such a system has the form:

$$
\begin{array}{cc}
E_{1}: & a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
E_{2}: & a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots & \\
E_{n}: & a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{array}
$$

In this system we are given the constants $a_{i j}$, for each $i, j=1,2, \ldots, n$, and b_{i}, for each $i=1,2, \ldots, n$, and we need to determine the unknowns x_{1}, \ldots, x_{n}.

Introduction

Direct Methods \& Round-off Error

Introduction

Direct Methods \& Round-off Error

- Direct techniques are methods that theoretically give the exact solution to the system in a finite number of steps.

Introduction

Direct Methods \& Round-off Error

- Direct techniques are methods that theoretically give the exact solution to the system in a finite number of steps.
- In practice, of course, the solution obtained will be contaminated by the round-off error that is involved with the arithmetic being used.

Introduction

Direct Methods \& Round-off Error

- Direct techniques are methods that theoretically give the exact solution to the system in a finite number of steps.
- In practice, of course, the solution obtained will be contaminated by the round-off error that is involved with the arithmetic being used.
- Analyzing the effect of this round-off error and determining ways to keep it under control will be a major component of this presentation.

Introduction

Direct Methods \& Round-off Error

- Direct techniques are methods that theoretically give the exact solution to the system in a finite number of steps.
- In practice, of course, the solution obtained will be contaminated by the round-off error that is involved with the arithmetic being used.
- Analyzing the effect of this round-off error and determining ways to keep it under control will be a major component of this presentation.

We begin, however, by introducing some important terminology and notation.

Matrices \& Vectors

Definition of a Matrix

An $\boldsymbol{n} \times \boldsymbol{m}(\boldsymbol{n}$ by $\boldsymbol{m})$ matrix is a rectangular array of elements with n rows and m columns in which not only is the value of an element important, but also its position in the array.

Matrices \& Vectors

Definition of a Matrix

An $\boldsymbol{n} \times \boldsymbol{m}(\boldsymbol{n}$ by $\boldsymbol{m})$ matrix is a rectangular array of elements with n rows and m columns in which not only is the value of an element important, but also its position in the array.

Notation

The notation for an $n \times m$ matrix will be a capital letter such as A for the matrix and lowercase letters with double subscripts, such as $a_{i j}$, to refer to the entry at the intersection of the ith row and jth column; that is:

$$
A=\left[a_{i j}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n m}
\end{array}\right]
$$

Matrices \& Vectors

A Vector is a special case

The $1 \times n$ matrix

$$
A=\left[\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n}
\end{array}\right]
$$

is called an n-dimensional row vector, and an $n \times 1$ matrix

$$
A=\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{n 1}
\end{array}\right]
$$

is called an \boldsymbol{n}-dimensional column vector.

Matrices \& Vectors

A Vector is a special case (Cont'd)

Usually the unnecessary subscripts are omitted for vectors, and a boldface lowercase letter is used for notation. Thus

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

denotes a column vector, and

$$
\mathbf{y}=\left[\begin{array}{llll}
y_{1} & y_{2} & \ldots & y_{n}
\end{array}\right]
$$

a row vector.

Matrices \& Vectors: Augmented Matrix

The Augmented Matrix (1/2)

An $n \times(n+1)$ matrix can be used to represent the linear system

$$
\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
\vdots & \vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n} & =b_{n},
\end{array}
$$

Matrices \& Vectors: Augmented Matrix

The Augmented Matrix (1/2)

An $n \times(n+1)$ matrix can be used to represent the linear system

$$
\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1}, \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2}, \\
\vdots & \vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n} & =b_{n},
\end{array}
$$

by first constructing

$$
A=\left[a_{i j}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

Matrices \& Vectors: Augmented Matrix

The Augmented Matrix (2/2)
and then forming the new array $[A, \mathbf{b}]$:

$$
[A, \mathbf{b}]=\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & b_{n}
\end{array}\right]
$$

Matrices \& Vectors: Augmented Matrix

The Augmented Matrix (2/2)

and then forming the new array $[A, \mathbf{b}]$:

$$
[A, \mathbf{b}]=\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & b_{n}
\end{array}\right]
$$

where the vertical line is used to separate the coefficients of the unknowns from the values on the right-hand side of the equations.

Matrices \& Vectors: Augmented Matrix

The Augmented Matrix (2/2)

and then forming the new array $[A, \mathbf{b}]$:

$$
[A, \mathbf{b}]=\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & b_{n}
\end{array}\right]
$$

where the vertical line is used to separate the coefficients of the unknowns from the values on the right-hand side of the equations.

The array $[A, \mathbf{b}]$ is called an augmented matrix.

Matrices \& Vectors: Augmented Matrix

Representing the Linear System

In what follows, the $n \times(n+1)$ matrix

$$
[A, \mathbf{b}]=\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & b_{n}
\end{array}\right]
$$

Matrices \& Vectors: Augmented Matrix

Representing the Linear System

In what follows, the $n \times(n+1)$ matrix

$$
[A, \mathbf{b}]=\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & b_{n}
\end{array}\right]
$$

will used to represent the linear system

$$
\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
\vdots & \vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n} & =b_{n}
\end{array}
$$

Outline

(1) Notation \& Basic Terminology

(2) 3 Operations to Simplify a Linear System of Equations
(3) Gaussian Elimination Procedure
(4) The Gaussian Elimination with Backward Substitution Algorithm

Simplifying a Linear Systems of Equations

The Linear System

Returning to the linear system of n equations in n variables:

$$
\begin{array}{cc}
E_{1}: & a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
E_{2}: & a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
E_{n}: & a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{array}
$$

where we are given the constants $a_{i j}$, for each $i, j=1,2, \ldots, n$, and b_{i}, for each $i=1,2, \ldots, n$,

Simplifying a Linear Systems of Equations

The Linear System

Returning to the linear system of n equations in n variables:

$$
\begin{array}{cc}
E_{1}: & a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
E_{2}: & a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
E_{n}: & a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{array}
$$

where we are given the constants $a_{i j}$, for each $i, j=1,2, \ldots, n$, and b_{i}, for each $i=1,2, \ldots, n$, we need to determine the unknowns x_{1}, \ldots, x_{n}.

Simplifying a Linear Systems of Equations

Permissible Operations

We will use 3 operations to simplify the linear system:

Simplifying a Linear Systems of Equations

Permissible Operations

We will use 3 operations to simplify the linear system:
(1) Equation E_{i} can be multiplied by any nonzero constant λ with the resulting equation used in place of E_{i}. This operation is denoted $\left(\lambda E_{i}\right) \rightarrow\left(E_{i}\right)$.

Simplifying a Linear Systems of Equations

Permissible Operations

We will use 3 operations to simplify the linear system:
(1) Equation E_{i} can be multiplied by any nonzero constant λ with the resulting equation used in place of E_{i}. This operation is denoted $\left(\lambda E_{i}\right) \rightarrow\left(E_{i}\right)$.
(2) Equation E_{j} can be multiplied by any constant λ and added to equation E_{i} with the resulting equation used in place of E_{i}. This operation is denoted $\left(E_{i}+\lambda E_{j}\right) \rightarrow\left(E_{i}\right)$.

Simplifying a Linear Systems of Equations

Permissible Operations

We will use 3 operations to simplify the linear system:
(1) Equation E_{i} can be multiplied by any nonzero constant λ with the resulting equation used in place of E_{i}. This operation is denoted $\left(\lambda E_{i}\right) \rightarrow\left(E_{i}\right)$.
(2) Equation E_{j} can be multiplied by any constant λ and added to equation E_{i} with the resulting equation used in place of E_{i}. This operation is denoted $\left(E_{i}+\lambda E_{j}\right) \rightarrow\left(E_{i}\right)$.
(3) Equations E_{i} and E_{j} can be transposed in order. This operation is denoted $\left(E_{i}\right) \leftrightarrow\left(E_{j}\right)$.

Simplifying a Linear Systems of Equations

Permissible Operations

We will use 3 operations to simplify the linear system:
(1) Equation E_{i} can be multiplied by any nonzero constant λ with the resulting equation used in place of E_{i}. This operation is denoted $\left(\lambda E_{i}\right) \rightarrow\left(E_{i}\right)$.
(2) Equation E_{j} can be multiplied by any constant λ and added to equation E_{i} with the resulting equation used in place of E_{i}. This operation is denoted $\left(E_{i}+\lambda E_{j}\right) \rightarrow\left(E_{i}\right)$.
(3) Equations E_{i} and E_{j} can be transposed in order. This operation is denoted $\left(E_{i}\right) \leftrightarrow\left(E_{j}\right)$.

By a sequence of these operations, a linear system will be systematically transformed into to a new linear system that is more easily solved and has the same solutions.

Simplifying a Linear Systems of Equations

Illustration

The four equations

$$
\begin{array}{rlrl}
E_{1}: & x_{1}+x_{2} \quad+3 x_{4} & =4 \\
E_{2}: & 2 x_{1}+x_{2}-x_{3}+x_{4} & =1 \\
E_{3}: & 3 x_{1}-x_{2}-x_{3}+2 x_{4}= & -3 \\
E_{4}: & -x_{1}+2 x_{2}+3 x_{3}-x_{4}=4
\end{array}
$$

will be solved for x_{1}, x_{2}, x_{3}, and x_{4}.

Simplifying a Linear Systems of Equations

Illustration

The four equations

$$
\begin{array}{rlr}
E_{1}: & x_{1}+x_{2} \quad+3 x_{4}=4 \\
E_{2}: & 2 x_{1}+x_{2}-x_{3}+x_{4}=1 \\
E_{3}: & 3 x_{1}-x_{2}-x_{3}+2 x_{4}=-3 \\
E_{4}: & -x_{1}+2 x_{2}+3 x_{3}-x_{4}=4
\end{array}
$$

will be solved for x_{1}, x_{2}, x_{3}, and x_{4}.
We first use equation E_{1} to eliminate the unknown x_{1} from equations E_{2}, E_{3}, and E_{4} by performing:

$$
\begin{aligned}
\left(E_{2}-2 E_{1}\right) & \rightarrow\left(E_{2}\right) \\
\left(E_{3}-3 E_{1}\right) & \rightarrow\left(E_{3}\right) \\
\left(E_{4}+E_{1}\right) & \rightarrow\left(E_{4}\right)
\end{aligned}
$$

Simplifying a Linear Systems of Equations

$$
\begin{array}{lr}
E_{1}: \quad x_{1}+x_{2}+3 x_{4}=4 \\
E_{2}: & 2 x_{1}+x_{2}-x_{3}+x_{4}=1
\end{array}
$$

Simplifying a Linear Systems of Equations

$$
\begin{array}{lr}
E_{1}: \quad x_{1}+x_{2} \quad+3 x_{4}=4 \\
E_{2}: \quad 2 x_{1}+x_{2}-x_{3}+x_{4}=1
\end{array}
$$

Illustration Cont'd (2/5)

For example, in the second equation

$$
\left(E_{2}-2 E_{1}\right) \rightarrow\left(E_{2}\right)
$$

produces

$$
\left(2 x_{1}+x_{2}-x_{3}+x_{4}\right)-2\left(x_{1}+x_{2}+3 x_{4}\right)=1-2(4)
$$

Simplifying a Linear Systems of Equations

$$
\begin{array}{lr}
E_{1}: \quad x_{1}+x_{2} \quad+3 x_{4}=4 \\
E_{2}: \quad 2 x_{1}+x_{2}-x_{3}+x_{4}=1
\end{array}
$$

Illustration Cont'd (2/5)

For example, in the second equation

$$
\left(E_{2}-2 E_{1}\right) \rightarrow\left(E_{2}\right)
$$

produces

$$
\left(2 x_{1}+x_{2}-x_{3}+x_{4}\right)-2\left(x_{1}+x_{2}+3 x_{4}\right)=1-2(4)
$$

which simplifies to the result shown as E_{2} in

$$
\begin{aligned}
E_{1}: & x_{1}+x_{2}+3 x_{4}=4 \\
E_{2}: & -x_{2}-x_{3}-5 x_{4}=-7
\end{aligned}
$$

Simplifying a Linear Systems of Equations

Illustration Cont'd (3/5)

Similarly for equations E_{3} and E_{4} so that we obtain the new system:

$$
\begin{array}{lr}
E_{1}: & x_{1}+x_{2} \quad+3 x_{4}=4 \\
E_{2}: & -x_{2}-x_{3}-5 x_{4}=-7 \\
E_{3}: & -4 x_{2}-x_{3}-7 x_{4}=-15 \\
E_{4}: & 3 x_{2}+3 x_{3}+2 x_{4}=8
\end{array}
$$

For simplicity, the new equations are again labeled E_{1}, E_{2}, E_{3}, and E_{4}.

Simplifying a Linear Systems of Equations

Illustration Cont'd (4/5)

In the new system, E_{2} is used to eliminate the unknown x_{2} from E_{3} and E_{4} by performing $\left(E_{3}-4 E_{2}\right) \rightarrow\left(E_{3}\right)$ and $\left(E_{4}+3 E_{2}\right) \rightarrow\left(E_{4}\right)$.

Simplifying a Linear Systems of Equations

Illustration Cont'd (4/5)

In the new system, E_{2} is used to eliminate the unknown x_{2} from E_{3} and E_{4} by performing $\left(E_{3}-4 E_{2}\right) \rightarrow\left(E_{3}\right)$ and $\left(E_{4}+3 E_{2}\right) \rightarrow\left(E_{4}\right)$. This results in

$$
\begin{array}{rlr}
E_{1}: & x_{1}+x_{2}+3 x_{4}= & 4, \\
E_{2}: & -x_{2}-x_{3}-5 x_{4}= & -7, \\
E_{3}: & 3 x_{3}+13 x_{4}= & 13, \\
E_{4}: & -13 x_{4} & =-13 .
\end{array}
$$

Simplifying a Linear Systems of Equations

Illustration Cont'd (4/5)

In the new system, E_{2} is used to eliminate the unknown x_{2} from E_{3} and E_{4} by performing $\left(E_{3}-4 E_{2}\right) \rightarrow\left(E_{3}\right)$ and $\left(E_{4}+3 E_{2}\right) \rightarrow\left(E_{4}\right)$. This results in

$$
\begin{array}{rlr}
E_{1}: & x_{1}+x_{2}+3 x_{4} & =4, \\
E_{2}: & -x_{2}-x_{3}-5 x_{4} & =-7, \\
E_{3}: & & 3 x_{3}+13 x_{4}= \\
E_{4}: & 13, \\
& -13 x_{4} & =-13 .
\end{array}
$$

This latter system of equations is now in triangular (or reduced) form and can be solved for the unknowns by a backward-substitution process.

Simplifying a Linear Systems of Equations

Illustration Cont'd (5/5)

Since E_{4} implies $x_{4}=1$, we can solve E_{3} for x_{3} to give

$$
x_{3}=\frac{1}{3}\left(13-13 x_{4}\right)=\frac{1}{3}(13-13)=0 .
$$

Simplifying a Linear Systems of Equations

Illustration Cont'd (5/5)

Since E_{4} implies $x_{4}=1$, we can solve E_{3} for x_{3} to give

$$
x_{3}=\frac{1}{3}\left(13-13 x_{4}\right)=\frac{1}{3}(13-13)=0 .
$$

Continuing, E_{2} gives

$$
x_{2}=-\left(-7+5 x_{4}+x_{3}\right)=-(-7+5+0)=2
$$

Simplifying a Linear Systems of Equations

Illustration Cont'd (5/5)

Since E_{4} implies $x_{4}=1$, we can solve E_{3} for x_{3} to give

$$
x_{3}=\frac{1}{3}\left(13-13 x_{4}\right)=\frac{1}{3}(13-13)=0 .
$$

Continuing, E_{2} gives

$$
x_{2}=-\left(-7+5 x_{4}+x_{3}\right)=-(-7+5+0)=2
$$

and E_{1} gives

$$
x_{1}=4-3 x_{4}-x_{2}=4-3-2=-1
$$

Simplifying a Linear Systems of Equations

Illustration Cont'd (5/5)

Since E_{4} implies $x_{4}=1$, we can solve E_{3} for x_{3} to give

$$
x_{3}=\frac{1}{3}\left(13-13 x_{4}\right)=\frac{1}{3}(13-13)=0 .
$$

Continuing, E_{2} gives

$$
x_{2}=-\left(-7+5 x_{4}+x_{3}\right)=-(-7+5+0)=2
$$

and E_{1} gives

$$
x_{1}=4-3 x_{4}-x_{2}=4-3-2=-1 .
$$

The solution is therefore, $x_{1}=-1, x_{2}=2, x_{3}=0$, and $x_{4}=1$.

Outline

(1) Notation \& Basic Terminology

(2) 3 Operations to Simplify a Linear System of Equations
(3) Gaussian Elimination Procedure
4. The Gaussian Elimination with Backward Substitution Algorithm

Constructing an Algorithm to Solve the Linear System

$$
\begin{array}{lrl}
E_{1}: & x_{1}+x_{2}+3 x_{4}= & 4 \\
E_{2}: & 2 x_{1}+x_{2}-x_{3}+x_{4}= & 1 \\
E_{3}: & 3 x_{1}-x_{2}-x_{3}+2 x_{4}= & -3 \\
E_{4}: & -x_{1}+2 x_{2}+3 x_{3}-x_{4}=4
\end{array}
$$

Constructing an Algorithm to Solve the Linear System

$$
\begin{array}{lrl}
E_{1}: & x_{1}+x_{2} \quad+3 x_{4}=4 \\
E_{2}: & 2 x_{1}+x_{2}-x_{3}+x_{4}=1 \\
E_{3}: & 3 x_{1}-x_{2}-x_{3}+2 x_{4}=-3 \\
E_{4}: & -x_{1}+2 x_{2}+3 x_{3}-x_{4}=4
\end{array}
$$

Converting to Augmented Form

Repeating the operations involved in the previous illustration with the matrix notation results in first considering the augmented matrix:

$$
\left[\begin{array}{rrrr|r}
1 & 1 & 0 & 3 & 4 \\
2 & 1 & -1 & 1 & 1 \\
3 & -1 & -1 & 2 & -3 \\
-1 & 2 & 3 & -1 & 4
\end{array}\right]
$$

Constructing an Algorithm to Solve the Linear System

Reducing to Triangular Form

Constructing an Algorithm to Solve the Linear System

Reducing to Triangular Form

Performing the operations as described in the earlier example produces the augmented matrices:

$$
\left[\begin{array}{rrrr|r}
1 & 1 & 0 & 3 & 4 \\
0 & -1 & -1 & -5 & -7 \\
0 & -4 & -1 & -7 & -15 \\
0 & 3 & 3 & 2 & 8
\end{array}\right] \text { and }\left[\begin{array}{rrrr|r}
1 & 1 & 0 & 3 & 4 \\
0 & -1 & -1 & -5 & -7 \\
0 & 0 & 3 & 13 & 13 \\
0 & 0 & 0 & -13 & -13
\end{array}\right]
$$

Constructing an Algorithm to Solve the Linear System

Reducing to Triangular Form

Performing the operations as described in the earlier example produces the augmented matrices:

$$
\left[\begin{array}{rrrr|r}
1 & 1 & 0 & 3 & 4 \\
0 & -1 & -1 & -5 & -7 \\
0 & -4 & -1 & -7 & -15 \\
0 & 3 & 3 & 2 & 8
\end{array}\right] \text { and }\left[\begin{array}{rrrr|r}
1 & 1 & 0 & 3 & 4 \\
0 & -1 & -1 & -5 & -7 \\
0 & 0 & 3 & 13 & 13 \\
0 & 0 & 0 & -13 & -13
\end{array}\right]
$$

The final matrix can now be transformed into its corresponding linear system, and solutions for x_{1}, x_{2}, x_{3}, and x_{4}, can be obtained. The procedure is called Gaussian elimination with backward substitution.

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure

The general Gaussian elimination procedure applied to the linear system

$$
\begin{array}{cc}
E_{1}: & a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
E_{2}: & a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots & \vdots \\
E_{n}: & a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{array}
$$

will be handled in a similar manner.

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

- First form the augmented matrix \tilde{A} :

$$
\tilde{A}=[A, \mathbf{b}]=\left[\begin{array}{rrrr|r}
a_{11} & a_{12} & \cdots & a_{1 n} & a_{1, n+1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & a_{2, n+1} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & a_{n, n+1}
\end{array}\right]
$$

where A denotes the matrix formed by the coefficients.

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

- First form the augmented matrix \tilde{A} :

$$
\tilde{A}=[A, \mathbf{b}]=\left[\begin{array}{rrlr|r}
a_{11} & a_{12} & \cdots & a_{1 n} & a_{1, n+1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & a_{2, n+1} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & a_{n, n+1}
\end{array}\right]
$$

where A denotes the matrix formed by the coefficients.

- The entries in the $(n+1)$ st column are the values of \mathbf{b}; that is, $a_{i, n+1}=b_{i}$ for each $i=1,2, \ldots, n$.

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

- Provided $a_{11} \neq 0$, we perform the operations corresponding to

$$
\left(E_{j}-\left(a_{j 1} / a_{11}\right) E_{1}\right) \rightarrow\left(E_{j}\right) \quad \text { for each } j=2,3, \ldots, n
$$

to eliminate the coefficient of x_{1} in each of these rows.

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

- Provided $a_{11} \neq 0$, we perform the operations corresponding to

$$
\left(E_{j}-\left(a_{j 1} / a_{11}\right) E_{1}\right) \rightarrow\left(E_{j}\right) \quad \text { for each } j=2,3, \ldots, n
$$

to eliminate the coefficient of x_{1} in each of these rows.

- Although the entries in rows $2,3, \ldots, n$ are expected to change, for ease of notation we again denote the entry in the ith row and the j th column by $a_{i j}$.

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

- Provided $a_{11} \neq 0$, we perform the operations corresponding to

$$
\left(E_{j}-\left(a_{j 1} / a_{11}\right) E_{1}\right) \rightarrow\left(E_{j}\right) \quad \text { for each } j=2,3, \ldots, n
$$

to eliminate the coefficient of x_{1} in each of these rows.

- Although the entries in rows $2,3, \ldots, n$ are expected to change, for ease of notation we again denote the entry in the ith row and the j th column by $a_{i j}$.
- With this in mind, we follow a sequential procedure for $i=2,3, \ldots, n-1$ and perform the operation

$$
\left(E_{j}-\left(a_{j i} / a_{i i}\right) E_{i}\right) \rightarrow\left(E_{j}\right) \text { for each } j=i+1, i+2, \ldots, n
$$

provided $a_{i i} \neq 0$.

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

- This eliminates (changes the coefficient to zero) x_{i} in each row below the i th for all values of $i=1,2, \ldots, n-1$.

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

- This eliminates (changes the coefficient to zero) x_{i} in each row below the i th for all values of $i=1,2, \ldots, n-1$.
- The resulting matrix has the form:

$$
\tilde{\tilde{A}}=\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & a_{1, n+1} \\
0 & a_{22} & \cdots & a_{2 n} & a_{2, n+1} \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & a_{n n} & a_{n, n+1}
\end{array}\right]
$$

where, except in the first row, the values of $a_{i j}$ are not expected to agree with those in the original matrix \tilde{A}.

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

- This eliminates (changes the coefficient to zero) x_{i} in each row below the i th for all values of $i=1,2, \ldots, n-1$.
- The resulting matrix has the form:

$$
\tilde{\tilde{A}}=\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & a_{1, n+1} \\
0 & a_{22} & \cdots & a_{2 n} & a_{2, n+1} \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & a_{n n} & a_{n, n+1}
\end{array}\right]
$$

where, except in the first row, the values of $a_{i j}$ are not expected to agree with those in the original matrix \tilde{A}.

- The matrix $\tilde{\tilde{A}}$ represents a linear system with the same solution set as the original system.

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

The new linear system is triangular,

so backward substitution can be performed.

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

The new linear system is triangular,

so backward substitution can be performed. Solving the nth equation for x_{n} gives

$$
x_{n}=\frac{a_{n, n+1}}{a_{n n}}
$$

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

Solving the $(n-1)$ st equation for x_{n-1} and using the known value for x_{n} yields

$$
x_{n-1}=\frac{a_{n-1, n+1}-a_{n-1, n} x_{n}}{a_{n-1, n-1}}
$$

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

Solving the $(n-1)$ st equation for x_{n-1} and using the known value for x_{n} yields

$$
x_{n-1}=\frac{a_{n-1, n+1}-a_{n-1, n} x_{n}}{a_{n-1, n-1}}
$$

Continuing this process, we obtain

$$
\begin{aligned}
x_{i} & =\frac{a_{i, n+1}-a_{i, n} x_{n}-a_{i, n-1} x_{n-1}-\cdots-a_{i, i+1} x_{i+1}}{a_{i i}} \\
& =\frac{a_{i, n+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}}{a_{i i}}
\end{aligned}
$$

for each $i=n-1, n-2, \ldots, 2,1$.

Gaussian Elimination with Backward Substitution

A More Precise Description

Gaussian elimination procedure is described more precisely, although more intricately, by forming a sequence of augmented matrices $\tilde{A}^{(1)}$, $\tilde{A}^{(2)}, \ldots, \tilde{A}^{(n)}$, where $\tilde{A}^{(1)}$ is the matrix \tilde{A} given earlier and $\tilde{A}^{(k)}$, for each $k=2,3, \ldots, n$, has entries $a_{i j}^{(k)}$, where:
$a_{i j}^{(k)}=\left\{\begin{array}{l}a_{i j}^{(k-1)} \\ 0 \\ a_{i j}^{(k-1)}-\frac{a_{i, k-1}^{(k-1)}}{a_{k-1, k-1}^{(k-1)}} a_{k-1, j}^{(k-1)}\end{array}\right.$

$$
\begin{aligned}
& \text { when } i=1,2, \ldots, k-1 \text { and } j=1,2, \ldots, n+1 \\
& \text { when } i=k, k+1, \ldots, n \text { and } j=1,2, \ldots, k-1
\end{aligned}
$$

when $i=k, k+1, \ldots, n$ and $j=k, k+1, \ldots, n+1$

Gaussian Elimination with Backward Substitution

A More Precise Description (Cont'd)

Thus

$\tilde{A}^{(k)}=\left[\begin{array}{cccccccc|c}a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & \cdots & a_{1, k-1}^{(1)} & a_{1 k}^{(1)} & \cdots & a_{1 n}^{(1)} & a_{1, n+1}^{(1)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & \cdots & a_{2, k-1}^{(2)} & a_{2 k}^{(2)} & \cdots & a_{2 n}^{(2)} & a_{2, n+1}^{(2)} \\ \vdots & \ddots & \ddots & & \vdots & \vdots & & \vdots & \vdots \\ \vdots & & \ddots & \ddots & \vdots & \vdots & & \vdots & \vdots \\ \vdots & & & \ddots & a_{k-1, k-1}^{(k-1)} & a_{k-1, k}^{(k-1)} & \cdots & a_{k-1, n}^{(k-1)} & a_{k-1, n+1}^{(k-1)} \\ \vdots & & & & 0 & a_{k k}^{(k)} & \cdots & a_{k n}^{(k)} & a_{k, n+1}^{(k)} \\ \vdots & & & & \vdots & \vdots & & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & a_{n k}^{(k)} & \cdots & a_{n n}^{(k)} & a_{n, n+1}^{(k)}\end{array}\right]$
represents the equivalent linear system for which the variable x_{k-1} has just been eliminated from equations $E_{k}, E_{k+1}, \ldots, E_{n}$.

Gaussian Elimination with Backward Substitution

A More Precise Description (Cont'd)

- The procedure will fail if one of the elements $a_{11}^{(1)}, a_{22}^{(2)}, a_{33}^{(3)}, \ldots$, $a_{n-1, n-1}^{(n-1)}, a_{n n}^{(n)}$ is zero because the step

$$
\left(E_{i}-\frac{a_{i, k}^{(k)}}{a_{k k}^{(k)}}\left(E_{k}\right)\right) \rightarrow E_{i}
$$

either cannot be performed (this occurs if one of $a_{11}^{(1)}, \ldots, a_{n-1, n-1}^{(n-1)}$ is zero), or the backward substitution cannot be accomplished (in the case $a_{n n}^{(n)}=0$).

Gaussian Elimination with Backward Substitution

A More Precise Description (Cont'd)

- The procedure will fail if one of the elements $a_{11}^{(1)}, a_{22}^{(2)}, a_{33}^{(3)}, \ldots$, $a_{n-1, n-1}^{(n-1)}, a_{n n}^{(n)}$ is zero because the step

$$
\left(E_{i}-\frac{a_{i, k}^{(k)}}{a_{k k}^{(k)}}\left(E_{k}\right)\right) \rightarrow E_{i}
$$

either cannot be performed (this occurs if one of $a_{11}^{(1)}, \ldots, a_{n-1, n-1}^{(n-1)}$ is zero), or the backward substitution cannot be accomplished (in the case $a_{n n}^{(n)}=0$).

- The system may still have a solution, but the technique for finding it must be altered.

Illustration of the Gaussian Elimination Procedure

Example

Represent the linear system

$$
\begin{array}{lrl}
E_{1}: & x_{1}-x_{2}+2 x_{3}-x_{4}= & -8 \\
E_{2}: & 2 x_{1}-2 x_{2}+3 x_{3}-3 x_{4}= & -20 \\
E_{3}: & x_{1}+x_{2}+x_{3} & =-2 \\
E_{4}: & x_{1}-x_{2}+4 x_{3}+3 x_{4} & =4
\end{array}
$$

as an augmented matrix and use Gaussian Elimination to find its solution.

Illustration of the Gaussian Elimination Procedure

Solution (1/6)

The augmented matrix is

$$
\tilde{A}=\tilde{A}^{(1)}=\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & -8 \\
2 & -2 & 3 & -3 & -20 \\
1 & 1 & 1 & 0 & -2 \\
1 & -1 & 4 & 3 & 4
\end{array}\right]
$$

Illustration of the Gaussian Elimination Procedure

Solution (1/6)

The augmented matrix is

$$
\tilde{A}=\tilde{A}^{(1)}=\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & -8 \\
2 & -2 & 3 & -3 & -20 \\
1 & 1 & 1 & 0 & -2 \\
1 & -1 & 4 & 3 & 4
\end{array}\right]
$$

Performing the operations

$$
\left(E_{2}-2 E_{1}\right) \rightarrow\left(E_{2}\right),\left(E_{3}-E_{1}\right) \rightarrow\left(E_{3}\right) \quad \text { and } \quad\left(E_{4}-E_{1}\right) \rightarrow\left(E_{4}\right)
$$

Illustration of the Gaussian Elimination Procedure

Solution (1/6)

The augmented matrix is

$$
\tilde{A}=\tilde{A}^{(1)}=\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & -8 \\
2 & -2 & 3 & -3 & -20 \\
1 & 1 & 1 & 0 & -2 \\
1 & -1 & 4 & 3 & 4
\end{array}\right]
$$

Performing the operations

$$
\left(E_{2}-2 E_{1}\right) \rightarrow\left(E_{2}\right),\left(E_{3}-E_{1}\right) \rightarrow\left(E_{3}\right) \quad \text { and } \quad\left(E_{4}-E_{1}\right) \rightarrow\left(E_{4}\right)
$$

gives

$$
\tilde{A}^{(2)}=\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & -8 \\
0 & 0 & -1 & -1 & -4 \\
0 & 2 & -1 & 1 & 6 \\
0 & 0 & 2 & 4 & 12
\end{array}\right]
$$

Illustration of the Gaussian Elimination Procedure

$$
\tilde{A}^{(2)}=\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & -8 \\
0 & 0 & -1 & -1 & -4 \\
0 & 2 & -1 & 1 & 6 \\
0 & 0 & 2 & 4 & 12
\end{array}\right]
$$

Illustration of the Gaussian Elimination Procedure

$$
\tilde{A}^{(2)}=\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & -8 \\
0 & 0 & -1 & -1 & -4 \\
0 & 2 & -1 & 1 & 6 \\
0 & 0 & 2 & 4 & 12
\end{array}\right]
$$

Solution (2/6)

- The diagonal entry $a_{22}^{(2)}$, called the pivot element, is 0 , so the procedure cannot continue in its present form.

Illustration of the Gaussian Elimination Procedure

$$
\tilde{A}^{(2)}=\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & -8 \\
0 & 0 & -1 & -1 & -4 \\
0 & 2 & -1 & 1 & 6 \\
0 & 0 & 2 & 4 & 12
\end{array}\right]
$$

Solution (2/6)

- The diagonal entry $a_{22}^{(2)}$, called the pivot element, is 0 , so the procedure cannot continue in its present form.
- But operations $\left(E_{i}\right) \leftrightarrow\left(E_{j}\right)$ are permitted, so a search is made of the elements $a_{32}^{(2)}$ and $a_{42}^{(2)}$ for the first nonzero element.

Illustration of the Gaussian Elimination Procedure

$$
\tilde{A}^{(2)}=\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & -8 \\
0 & 0 & -1 & -1 & -4 \\
0 & 2 & -1 & 1 & 6 \\
0 & 0 & 2 & 4 & 12
\end{array}\right]
$$

Solution (2/6)

- The diagonal entry $a_{22}^{(2)}$, called the pivot element, is 0 , so the procedure cannot continue in its present form.
- But operations $\left(E_{i}\right) \leftrightarrow\left(E_{j}\right)$ are permitted, so a search is made of the elements $a_{32}^{(2)}$ and $a_{42}^{(2)}$ for the first nonzero element.
- Since $a_{32}^{(2)} \neq 0$, the operation $\left(E_{2}\right) \leftrightarrow\left(E_{3}\right)$ can be performed to obtain a new matrix.

Illustration of the Gaussian Elimination Procedure

$$
\tilde{A}^{(2)}=\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & -8 \\
0 & 0 & -1 & -1 & -4 \\
0 & 2 & -1 & 1 & 6 \\
0 & 0 & 2 & 4 & 12
\end{array}\right]
$$

Illustration of the Gaussian Elimination Procedure

$$
\tilde{A}^{(2)}=\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & -8 \\
0 & 0 & -1 & -1 & -4 \\
0 & 2 & -1 & 1 & 6 \\
0 & 0 & 2 & 4 & 12
\end{array}\right]
$$

Solution (3/6)

Perform the operation $\left(E_{2}\right) \leftrightarrow\left(E_{3}\right)$ to obtain a new matrix:

$$
\tilde{A}^{(2)^{\prime}}=\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & -8 \\
0 & 2 & -1 & 1 & 6 \\
0 & 0 & -1 & -1 & -4 \\
0 & 0 & 2 & 4 & 12
\end{array}\right]
$$

Illustration of the Gaussian Elimination Procedure

$$
\tilde{A}^{(2)^{\prime}}=\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & -8 \\
0 & 2 & -1 & 1 & 6 \\
0 & 0 & -1 & -1 & -4 \\
0 & 0 & 2 & 4 & 12
\end{array}\right]
$$

Illustration of the Gaussian Elimination Procedure

$$
\tilde{A}^{(2)^{\prime}}=\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & -8 \\
0 & 2 & -1 & 1 & 6 \\
0 & 0 & -1 & -1 & -4 \\
0 & 0 & 2 & 4 & 12
\end{array}\right]
$$

Solution (4/6)

Since x_{2} is already eliminated from E_{3} and $E_{4}, \tilde{A}^{(3)}$ will be $\tilde{A}^{(2)^{\prime}}$, and the computations continue with the operation $\left(E_{4}+2 E_{3}\right) \rightarrow\left(E_{4}\right)$, giving

$$
\tilde{A}^{(4)}=\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & -8 \\
0 & 2 & -1 & 1 & 6 \\
0 & 0 & -1 & -1 & -4 \\
0 & 0 & 0 & 2 & 4
\end{array}\right]
$$

Illustration of the Gaussian Elimination Procedure

$$
\tilde{A}^{(4)}=\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & -8 \\
0 & 2 & -1 & 1 & 6 \\
0 & 0 & -1 & -1 & -4 \\
0 & 0 & 0 & 2 & 4
\end{array}\right]
$$

Illustration of the Gaussian Elimination Procedure

$$
\tilde{A}^{(4)}=\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & -8 \\
0 & 2 & -1 & 1 & 6 \\
0 & 0 & -1 & -1 & -4 \\
0 & 0 & 0 & 2 & 4
\end{array}\right]
$$

Solution (5/6)

The solution may now be found through backward substitution:

$$
x_{4}=\frac{4}{2}=2
$$

Illustration of the Gaussian Elimination Procedure

$$
\tilde{A}^{(4)}=\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & -8 \\
0 & 2 & -1 & 1 & 6 \\
0 & 0 & -1 & -1 & -4 \\
0 & 0 & 0 & 2 & 4
\end{array}\right]
$$

Solution (5/6)

The solution may now be found through backward substitution:

$$
\begin{aligned}
& x_{4}=\frac{4}{2}=2 \\
& x_{3}=\frac{\left[-4-(-1) x_{4}\right]}{-1}=2
\end{aligned}
$$

Illustration of the Gaussian Elimination Procedure

$$
\tilde{A}^{(4)}=\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & -8 \\
0 & 2 & -1 & 1 & 6 \\
0 & 0 & -1 & -1 & -4 \\
0 & 0 & 0 & 2 & 4
\end{array}\right]
$$

Solution (5/6)

The solution may now be found through backward substitution:

$$
\begin{aligned}
& x_{4}=\frac{4}{2}=2 \\
& x_{3}=\frac{\left[-4-(-1) x_{4}\right]}{-1}=2 \\
& x_{2}=\frac{\left[6-x_{4}-(-1) x_{3}\right]}{2}=3
\end{aligned}
$$

Illustration of the Gaussian Elimination Procedure

$$
\tilde{\boldsymbol{A}}^{(4)}=\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & -8 \\
0 & 2 & -1 & 1 & 6 \\
0 & 0 & -1 & -1 & -4 \\
0 & 0 & 0 & 2 & 4
\end{array}\right]
$$

Solution (5/6)

The solution may now be found through backward substitution:

$$
\begin{aligned}
& x_{4}=\frac{4}{2}=2 \\
& x_{3}=\frac{\left[-4-(-1) x_{4}\right]}{-1}=2 \\
& x_{2}=\frac{\left[6-x_{4}-(-1) x_{3}\right]}{2}=3 \\
& x_{1}=\frac{\left[-8-(-1) x_{4}-2 x_{3}-(-1) x_{2}\right]}{1}=-7
\end{aligned}
$$

Illustration of the Gaussian Elimination Procedure

Solution (6/6): Some Observations

- The example illustrates what is done if $a_{k k}^{(k)}=0$ for some $k=1,2, \ldots, n-1$.

Illustration of the Gaussian Elimination Procedure

Solution (6/6): Some Observations

- The example illustrates what is done if $a_{k k}^{(k)}=0$ for some $k=1,2, \ldots, n-1$.
- The k th column of $\tilde{A}^{(k-1)}$ from the k th row to the nth row is searched for the first nonzero entry.

Illustration of the Gaussian Elimination Procedure

Solution (6/6): Some Observations

- The example illustrates what is done if $a_{k k}^{(k)}=0$ for some $k=1,2, \ldots, n-1$.
- The k th column of $\tilde{A}^{(k-1)}$ from the k th row to the nth row is searched for the first nonzero entry.
- If $a_{p k}^{(k)} \neq 0$ for some p, with $k+1 \leq p \leq n$, then the operation $\left(E_{k}\right) \leftrightarrow\left(E_{p}\right)$ is performed to obtain $\tilde{A}^{(k-1)^{\prime}}$.

Illustration of the Gaussian Elimination Procedure

Solution (6/6): Some Observations

- The example illustrates what is done if $a_{k k}^{(k)}=0$ for some $k=1,2, \ldots, n-1$.
- The k th column of $\tilde{A}^{(k-1)}$ from the k th row to the nth row is searched for the first nonzero entry.
- If $a_{p k}^{(k)} \neq 0$ for some p, with $k+1 \leq p \leq n$, then the operation $\left(E_{k}\right) \leftrightarrow\left(E_{p}\right)$ is performed to obtain $\tilde{A}^{(k-1)^{\prime}}$.
- The procedure can then be continued to form $\tilde{A}^{(k)}$, and so on.

Illustration of the Gaussian Elimination Procedure

Solution (6/6): Some Observations

- The example illustrates what is done if $a_{k k}^{(k)}=0$ for some $k=1,2, \ldots, n-1$.
- The k th column of $\tilde{A}^{(k-1)}$ from the k th row to the nth row is searched for the first nonzero entry.
- If $a_{\rho k}^{(k)} \neq 0$ for some p, with $k+1 \leq p \leq n$, then the operation $\left(E_{k}\right) \leftrightarrow\left(E_{p}\right)$ is performed to obtain $\tilde{A}^{(k-1)^{\prime}}$.
- The procedure can then be continued to form $\tilde{A}^{(k)}$, and so on.
- If $a_{p k}^{(k)}=0$ for each p, it can be shown that the linear system does not have a unique solution and the procedure stops.

Illustration of the Gaussian Elimination Procedure

Solution (6/6): Some Observations

- The example illustrates what is done if $a_{k k}^{(k)}=0$ for some $k=1,2, \ldots, n-1$.
- The k th column of $\tilde{A}^{(k-1)}$ from the k th row to the nth row is searched for the first nonzero entry.
- If $a_{p k}^{(k)} \neq 0$ for some p, with $k+1 \leq p \leq n$, then the operation $\left(E_{k}\right) \leftrightarrow\left(E_{p}\right)$ is performed to obtain $\tilde{A}^{(k-1)^{\prime}}$.
- The procedure can then be continued to form $\tilde{A}^{(k)}$, and so on.
- If $a_{p k}^{(k)}=0$ for each p, it can be shown that the linear system does not have a unique solution and the procedure stops.
- Finally, if $a_{n n}^{(n)}=0$, the linear system does not have a unique solution, and again the procedure stops.

Outline

(1) Notation \& Basic Terminology

(2) 3 Operations to Simplify a Linear System of Equations
(3) Gaussian Elimination Procedure
4) The Gaussian Elimination with Backward Substitution Algorithm

Gaussian Elimination with Backward Substitution Algorithm (1/3)

To solve the $n \times n$ linear system

$$
\begin{array}{ccc}
E_{1}: & a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=a_{1, n+1} \\
E_{2}: & a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=a_{2, n+1} \\
\vdots & \vdots & \vdots \\
E_{n}: & a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=a_{n, n+1}
\end{array}
$$

Gaussian Elimination with Backward Substitution Algorithm (1/3)

To solve the $n \times n$ linear system

$$
\begin{array}{ccc}
E_{1}: & a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=a_{1, n+1} \\
E_{2}: & a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=a_{2, n+1} \\
\vdots & \vdots & \vdots \\
E_{n}: & a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=a_{n, n+1}
\end{array}
$$

INPUT number of unknowns and equations n; augmented matrix $A=\left[a_{i j}\right]$, where $1 \leq i \leq n$ and $1 \leq j \leq n+1$.

Gaussian Elimination with Backward Substitution Algorithm (1/3)

To solve the $n \times n$ linear system

$$
\begin{array}{ccc}
E_{1}: & a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=a_{1, n+1} \\
E_{2}: & a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=a_{2, n+1} \\
\vdots & \vdots & \vdots \\
E_{n}: & a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=a_{n, n+1}
\end{array}
$$

INPUT number of unknowns and equations n; augmented matrix $A=\left[a_{i j}\right]$, where $1 \leq i \leq n$ and $1 \leq j \leq n+1$.

OUTPUT solution $x_{1}, x_{2}, \ldots, x_{n}$ or message that the linear system has no unique solution.

Gaussian Elimination with Backward Substitution Algorithm (2/3)

Step 1 For $i=1, \ldots, n-1$ do Steps 2-4: (Elimination process)

Gaussian Elimination with Backward Substitution Algorithm (2/3)

Step 1 For $i=1, \ldots, n-1$ do Steps 2-4: (Elimination process)
Step 2 Let p be the smallest integer with $i \leq p \leq n$ and $a_{p i} \neq 0$ If no integer p can be found then OUTPUT ('no unique solution exists') STOP

Gaussian Elimination with Backward Substitution Algorithm (2/3)

Step 1 For $i=1, \ldots, n-1$ do Steps 2-4: (Elimination process)
Step 2 Let p be the smallest integer with $i \leq p \leq n$ and $a_{p i} \neq 0$ If no integer p can be found then OUTPUT ('no unique solution exists') STOP

Step 3 If $p \neq i$ then perform $\left(E_{p}\right) \leftrightarrow\left(E_{i}\right)$

Gaussian Elimination with Backward Substitution Algorithm (2/3)

Step 1 For $i=1, \ldots, n-1$ do Steps 2-4: (Elimination process)
Step 2 Let p be the smallest integer with $i \leq p \leq n$ and $a_{p i} \neq 0$ If no integer p can be found then OUTPUT ('no unique solution exists') STOP

Step 3 If $p \neq i$ then perform $\left(E_{p}\right) \leftrightarrow\left(E_{i}\right)$
Step 4 For $j=i+1, \ldots, n$ do Steps 5 and 6:
Step 5 Set $m_{j i}=a_{j i} / a_{i i}$ Step 6 Perform $\left(E_{j}-m_{j i} E_{i}\right) \rightarrow\left(E_{j}\right)$

Gaussian Elimination with Backward Substitution Algorithm (3/3)

Step 7 If $a_{n n}=0$ then OUTPUT ('no unique solution exists')

Gaussian Elimination with Backward Substitution Algorithm (3/3)

Step 7 If $a_{n n}=0$ then OUTPUT ('no unique solution exists')

Step 8 Set $x_{n}=a_{n, n+1} / a_{n n}$
(Start backward substitution)

Gaussian Elimination with Backward Substitution Algorithm (3/3)

Step 7 If $a_{n n}=0$ then OUTPUT ('no unique solution exists')

Step $8 \quad$ Set $x_{n}=a_{n, n+1} / a_{n n} \quad$ (Start backward substitution)
Step $9 \quad$ For $i=n-1, \ldots, 1$ set $x_{i}=\left[a_{i, n+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}\right] / a_{i i}$

Gaussian Elimination with Backward Substitution Algorithm (3/3)

Step 7 If $a_{n n}=0$ then OUTPUT ('no unique solution exists')

Step $8 \quad$ Set $x_{n}=a_{n, n+1} / a_{n n} \quad$ (Start backward substitution)
Step $9 \quad$ For $i=n-1, \ldots, 1$ set $x_{i}=\left[a_{i, n+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}\right] / a_{i i}$
Step 10 OUTPUT $\left(x_{1}, \ldots, x_{n}\right) \quad$ (Procedure completed successfully) STOP

Questions?

