[image: image1.png]initialization

Int[] buffer = new int[10];
Int

int out=0; int count=

nt nextprod = 0;

Void Produceri(){ Void Producer2(){ Void Consumeri() {
while (nextprod <10) { while (nextprod <10) { while (true) {
while(count==10); while(count==10); nextCons1 = buffer[out];
buffer [in] = nextprod buffer [in] = nextprod count--;
in=(in+1)%10 in=(in+1)%10 out=(out+1)%10;
count++; count++; 3}
nextprod++; nextprod++;
} } }
¥ H

Philadelphia University

 Faculty of Information Technology

Lecturer: Dr. Rawan Abu Lail

 Department of CS
Internal Examiner: Dr. Raad Alwan

 Marking scheme
Course Name: Operating System Final Exam Semester one of the academic year:

 (750333)

Section:2 2013-2014
 Date: 16 /1/ 2013 Time: Two Hours

Familiar Part:
Objective: This part aims to show the student capabilities to distribute semaphores around processes to avoid the problem of concurrent synchronous processes.

Q1(8 marks) Answer the following MCQ:

1. Which scheduler is responsible for controlling the degree of multiprogramming?
 (A) Admission scheduler (B) medium scheduler (C) CPU scheduler (D) None of the above

2. Which is not able to solve the race condition?
 (A) Test and Set Lock (B) Shared memory (C) Semaphore (D) Monitor

 3. CPU burst distribution is generally characterized as
 (A) Constant (B) Linear (C) Polynomial (D) Exponential or hyper-exponential
 4. CPU Scheduling algorithms are used for:
 (A) Picking one of the ready processes in main memory to run next

 (B) Putting to sleep and waking up processes in an efficient manner

 (C) Allocating memory to the processes in a fair and efficient way

 (D) None of the above

 5. Which is not a CPU scheduling criterion?
 (A) CPU utilization (B) Throughput (C) Waiting time (D) Burst time

 6. Which is a preemptive scheduling?
 (A) SJF (B) FCFS (C) RR (D) None of the above

 7. Which is not the necessary condition of a deadlock?
 (A) Mutual exclusion (B) Hold and wait (C) Preemption (D) None of the above

 8. Which of the memory allocation schemes is subject to internal fragmentation?
 (A) Multiple Contiguous Fixed Partitions (B) Segmentation (C) Multiple Contiguous Variable Partitions (D) None of the above

Q2(7 marks) Synchronization

Semaphores are used with their operations to make control on two producers and one consumer run concurrently on shared buffer, where consumer1 is consumed immediately each element that was generated by producer1 or producer2. The producer1 always produces element's value less than 4, while produces two produces the other values. Using semaphores in the following code to satisfy the above requirement. (Hint: elements' values are generated sequentially in ascending order).
[image: image11.png]

[image: image2.png]

[image: image3.png]Void Producer1() {

while (nextprod <10) {

wait(S1):
wait(S0);

while (count==10);

buffer [in] = nextprod

in=(in+1)%10
count++;
nextprod++;
signal(S2);
Signal(S3);

}

Void Producer2() {

while (nextprod <10) {

wait(S2):
wait(S0);

while(count==10);

buffer [in] = nextprod

in=(in+1)%10
count++;
nextprod++;
Signal(S2);
}
}

Void Consumer1() {

while (true) {
wait(S3):
nextCons1 = buffer[out];

count--;
out=(out+1)%10;
Signal(S0):

Q3/(7 marks) Mutual Exclusion and Dead Lock
Let P0, P1, P2 and P3 be four concurrent processes from one program and V0,V1,V2, and V3 are four non-shareable recourses shown below:

[image: image4.png]void PO() {

/[Enter Critical Section
using V0;
using V2:

I[Exit Critical Section

}

void P1() {

/[Enter Critical Section
using V0;
using V1;

I[Exit Critical Section

}

void P2(){

/[Enter Critical Section|
using V11;
using V2;

I[Exit Critical Section

}

void P3() {

/[Enter Critical Section|
using V1
using V3;

I[Exit Critical Section

}

Answer the following:

1- A synchronization protocol to solve the problem the critical-section (race condition problem) should be used to satisfy three conditions. What are there?
Ans: 1- Mutual exclusive 2- Progress 3- Bounded wait.

2- Draw RAG of the above critical sections?
[image: image5.png]PO Vo

e‘ S

=

3- How processes can use semaphores to enforce safe state.
[image: image6.png]let VO=V1=v2=V3=1

void PO() { void P1() { void P2() { void P3(){
V1) Wait(V1) Wait(V1);
i . Wait(V1);
Wait(V0); i it(V2): Wait(V3):
Wait(v2): Wait(V0): Wait(V2); (V3);
J/Enter Critical Section | //Enter Critical Section [//Enter Critical Section| //Enter Critical Section
using V0; using VO using V11; using V
using V2; using V1; using V2; using V3;
J[Exit Critical Section I/Exit Critical Section | //Exit Critical Section | //Exit Critical Section
Signal(V2): Signal(V1): Signal(V1): Signal(V1):
Signal(V0); Signal(Vo); Signal(V2):
H }

}

4- Using well allocation through Tset and Set function to appear Starvation.
[image: image7.png]Bool V0=V1=V2=F

void PO() {

/[Enter Critical Section
while(T&S(& VO)):

while(T&S(& V2)):
using V0;

using V2;
J[Exit Critical Section
Vo=f; V2=F;
}

void P1() {

/[Enter Critical Section
while(T&S(8 VO)):
while(T&S(& V1));
using V0;
using V1;
1[Exit Cri
Vo=F; V1

}

al Section
=F:

void P2() {

/[Enter Critical Section|
while(T&S(& V2)):
while(T&S(& V1));
using V1:
using V2;

I[Exit Critical Section

V1=F; V2=F:
}

void P3() {

/[Enter Critical Section|
while(T&S(& V1));

using V1
using V3;

I[Exit Critical Section
V1=F
}

FAMILIAR PART:
Objective: This part aims to show students' capabilities to implement many scheduler policies at the same time on a single CPU.

Q4/(8 marks) CPU Scheduling
Using “Multilevel Queue with fixed priority for all processes” scheduling algorithm, draw the CPU scheduling Gantt chart and complete the table for the give processes information.
	Turn- around time
	Response time
	Waiting time
	The algorithm used
	Burst time
	Arrival time
	Process number
	Queue level

	85
	0
	35
	RR with QT=20
	50
	0
	1
	High

	25
	40
	10
	
	15
	30
	2
	

	75
	55
	30
	
	45
	35
	3
	

	157
	120
	117
	SJF with QT=10
	40
	3
	4
	Medium

	89
	110
	79
	
	10
	31
	5
	

	180
	160
	150
	FCFS
	30
	10
	6
	Low

	195
	190
	175
	
	20
	15
	7
	

[image: image8.png]P1

P1

P2|P3|P1

P3

P3

P5 P4

P4

P4

P4

P6

P7

20

40

55 75

85

105 110

120 130 140

150 160

190 210

Unfamiliar Part:
Q5 (10 marks) P is a set of processes. R is a set of resources. E is a set of request or assignment edges. The sets P, R, and E are as follows:

P = {P1, P2, P3} R = {R1, R2, R3}

E = {P1 (R2, P2 (R1, P2 (R2, R3(P2,R1 (P1,R2 (P3, P3(R3}

R1 has one instance. R2 has two instances. R3 has one instance.
(a) Draw the resource-allocation graph.
[image: image9.png]P1

P2

P3

R1

R2

R3

(b) Is there any deadlock in this situation? Briefly Explain through Banker algorithm –safe state part.

[image: image10.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

=

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

=

0

1

0

0

1

1

0

1

0

Need

0

1

0

1

0

0

0

0

1

Allocate

Work=Av=(0 1 0); Finish=(F,F,F)

For i=1

if work >= Need 1

 (0 1 0)>=(0 1 0) (T

Work=(1 1 0)
Finish=(T,F,F)

For i=2
if work >= Need 2

 (1 1 0)>=(1 1 0) (T

Work=(1 1 1)
Finish=(T,T,F)

For i=3
if work >= Need 2

 (1 1 1)>=(0 1 0) (T

Work=(1 2 1)
Finish=(T,T,T)

No deadlock

(c) If deadlock is existed, how to solve the problem.
Ans: Kill one process in deadlock then recheck the safety state OR reallocate resources again.
_1420007821.unknown

