Solutions of Equations in One Variable

Fixed－Point Iteration II

Numerical Analysis（9th Edition）
R L Burden \＆J D Faires

Beamer Presentation Slides
prepared by
John Carroll
Dublin City University

（C） 2011 Brooks／Cole，Cengage Learning

Outline

(1) Functional (Fixed-Point) Iteration

Outline

(1) Functional (Fixed-Point) Iteration
(2) Convergence Criteria for the Fixed-Point Method

Outline

(1) Functional (Fixed-Point) Iteration
(2) Convergence Criteria for the Fixed-Point Method
(3) Sample Problem: $f(x)=x^{3}+4 x^{2}-10=0$

Outline

(1) Functional (Fixed-Point) Iteration

(2) Convergence Criteria for the Fixed-Point Method

(3) Sample Problem: $f(x)=x^{3}+4 x^{2}-10=0$

Functional (Fixed-Point) Iteration

Now that we have established a condition for which $g(x)$ has a unique fixed point in I, there remains the problem of how to find it. The technique employed is known as fixed-point iteration.

Functional (Fixed-Point) Iteration

Now that we have established a condition for which $g(x)$ has a unique fixed point in I, there remains the problem of how to find it. The technique employed is known as fixed-point iteration.

Basic Approach

- To approximate the fixed point of a function g, we choose an initial approximation p_{0} and generate the sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ by letting $p_{n}=g\left(p_{n-1}\right)$, for each $n \geq 1$.

Functional (Fixed-Point) Iteration

Now that we have established a condition for which $g(x)$ has a unique fixed point in I, there remains the problem of how to find it. The technique employed is known as fixed-point iteration.

Basic Approach

- To approximate the fixed point of a function g, we choose an initial approximation p_{0} and generate the sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ by letting $p_{n}=g\left(p_{n-1}\right)$, for each $n \geq 1$.
- If the sequence converges to p and g is continuous, then

$$
p=\lim _{n \rightarrow \infty} p_{n}=\lim _{n \rightarrow \infty} g\left(p_{n-1}\right)=g\left(\lim _{n \rightarrow \infty} p_{n-1}\right)=g(p),
$$

and a solution to $x=g(x)$ is obtained.

Functional (Fixed-Point) Iteration

Now that we have established a condition for which $g(x)$ has a unique fixed point in I, there remains the problem of how to find it. The technique employed is known as fixed-point iteration.

Basic Approach

- To approximate the fixed point of a function g, we choose an initial approximation p_{0} and generate the sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ by letting $p_{n}=g\left(p_{n-1}\right)$, for each $n \geq 1$.
- If the sequence converges to p and g is continuous, then

$$
p=\lim _{n \rightarrow \infty} p_{n}=\lim _{n \rightarrow \infty} g\left(p_{n-1}\right)=g\left(\lim _{n \rightarrow \infty} p_{n-1}\right)=g(p)
$$

and a solution to $x=g(x)$ is obtained.

- This technique is called fixed-point, or functional iteration.

Functional (Fixed-Point) Iteration

Functional (Fixed-Point) Iteration

Functional (Fixed-Point) Iteration

Fixed-Point Algorithm

To find the fixed point of g in an interval $[a, b]$, given the equation $x=g(x)$ with an initial guess $p_{0} \in[a, b]$:

Functional (Fixed-Point) Iteration

Fixed-Point Algorithm

To find the fixed point of g in an interval $[a, b]$, given the equation $x=g(x)$ with an initial guess $p_{0} \in[a, b]$:

1. $n=1$;

Functional (Fixed-Point) Iteration

Fixed-Point Algorithm

To find the fixed point of g in an interval $[a, b]$, given the equation $x=g(x)$ with an initial guess $p_{0} \in[a, b]$:

1. $n=1$;
2. $p_{n}=g\left(p_{n-1}\right)$;

Functional (Fixed-Point) Iteration

Fixed-Point Algorithm

To find the fixed point of g in an interval $[a, b]$, given the equation $x=g(x)$ with an initial guess $p_{0} \in[a, b]$:

1. $n=1$;
2. $p_{n}=g\left(p_{n-1}\right)$;
3. If $\left|p_{n}-p_{n-1}\right|<\epsilon$ then 5 ;

Functional (Fixed-Point) Iteration

Fixed-Point Algorithm

To find the fixed point of g in an interval $[a, b]$, given the equation $x=g(x)$ with an initial guess $p_{0} \in[a, b]$:

1. $n=1$;
2. $p_{n}=g\left(p_{n-1}\right)$;
3. If $\left|p_{n}-p_{n-1}\right|<\epsilon$ then 5 ;
4. $n \rightarrow n+1$; go to 2 .

Functional (Fixed-Point) Iteration

Fixed-Point Algorithm

To find the fixed point of g in an interval $[a, b]$, given the equation $x=g(x)$ with an initial guess $p_{0} \in[a, b]$:

1. $n=1$;
2. $p_{n}=g\left(p_{n-1}\right)$;
3. If $\left|p_{n}-p_{n-1}\right|<\epsilon$ then 5 ;
4. $n \rightarrow n+1$; go to 2 .
5. End of Procedure.

A Single Nonlinear Equation

Example 1

The equation

$$
x^{3}+4 x^{2}-10=0
$$

has a unique root in [1, 2]. Its value is approximately 1.365230013.

$f(x)=x^{3}+4 x^{2}-10=0$ on $[1,2]$

$$
f(x)=x^{3}+4 x^{2}-10=0 \text { on }[1,2]
$$

Possible Choices for $g(x)$

$$
f(x)=x^{3}+4 x^{2}-10=0 \text { on }[1,2]
$$

Possible Choices for $g(x)$

- There are many ways to change the equation to the fixed-point form $x=g(x)$ using simple algebraic manipulation.

$$
f(x)=x^{3}+4 x^{2}-10=0 \text { on }[1,2]
$$

Possible Choices for $g(x)$

- There are many ways to change the equation to the fixed-point form $x=g(x)$ using simple algebraic manipulation.
- For example, to obtain the function g described in part (c), we can manipulate the equation $x^{3}+4 x^{2}-10=0$ as follows:
$4 x^{2}=10-x^{3}, \quad$ so $\quad x^{2}=\frac{1}{4}\left(10-x^{3}\right), \quad$ and $\quad x= \pm \frac{1}{2}\left(10-x^{3}\right)^{1 / 2}$.

$$
f(x)=x^{3}+4 x^{2}-10=0 \text { on }[1,2]
$$

Possible Choices for $g(x)$

- There are many ways to change the equation to the fixed-point form $x=g(x)$ using simple algebraic manipulation.
- For example, to obtain the function g described in part (c), we can manipulate the equation $x^{3}+4 x^{2}-10=0$ as follows:

$$
4 x^{2}=10-x^{3}, \quad \text { so } \quad x^{2}=\frac{1}{4}\left(10-x^{3}\right), \quad \text { and } \quad x= \pm \frac{1}{2}\left(10-x^{3}\right)^{1 / 2} .
$$

- We will consider 5 such rearrangements and, later in this section, provide a brief analysis as to why some do and some not converge to $p=1.365230013$.

Solving $f(x)=x^{3}+4 x^{2}-10=0$

5 Possible Transpositions to $x=g(x)$

$$
\begin{aligned}
& x=g_{1}(x)=x-x^{3}-4 x^{2}+10 \\
& x=g_{2}(x)=\sqrt{\frac{10}{x}-4 x} \\
& x=g_{3}(x)=\frac{1}{2} \sqrt{10-x^{3}} \\
& x=g_{4}(x)=\sqrt{\frac{10}{4+x}} \\
& x=g_{5}(x)=x-\frac{x^{3}+4 x^{2}-10}{3 x^{2}+8 x}
\end{aligned}
$$

Numerical Results for $f(x)=x^{3}+4 x^{2}-10=0$

n	g_{1}	g_{2}	g_{3}	g_{4}	g_{5}	
0	1.5	1.5	1.5	1.5	1.5	
1	-0.875	0.8165	1.286953768	1.348399725	1.373333333	
2	6.732	2.9969	1.402540804	1.367376372	1.365262015	
3	-469.7	$(-8.65)^{1 / 2}$	1.345458374	1.364957015	1.365230014	
4	1.03×10^{8}		1.375170253	1.365264748	1.365230013	
5			1.360094193	1.365225594		
10			1.365410062	1.365230014		
15			1.365223680	1.365230013		
20			1.365230236			
25			1.365230006			
30			1.365230013			

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$x=g(x)$ with $x_{0}=1.5$

$$
x=g_{1}(x)=x-x^{3}-4 x^{2}+10 \quad \text { Does not Converge }
$$

$$
x=g_{2}(x)=\sqrt{\frac{10}{x}-4 x} \quad \text { Does not Converge }
$$

$$
x=g_{3}(x)=\frac{1}{2} \sqrt{10-x^{3}} \quad \text { Converges after } 31 \text { Iterations }
$$

$$
x=g_{4}(x)=\sqrt{\frac{10}{4+x}}
$$

$$
x=g_{5}(x)=x-\frac{x^{3}+4 x^{2}-10}{3 x^{2}+8 x}
$$

Converges after 5 Iterations

Outline

(1) Functional (Fixed-Point) Iteration

(2) Convergence Criteria for the Fixed-Point Method

(3) Sample Problem: $f(x)=x^{3}+4 x^{2}-10=0$

Functional (Fixed-Point) Iteration

A Crucial Question

- How can we find a fixed-point problem that produces a sequence that reliably and rapidly converges to a solution to a given root-finding problem?

Functional (Fixed-Point) Iteration

A Crucial Question

- How can we find a fixed-point problem that produces a sequence that reliably and rapidly converges to a solution to a given root-finding problem?
- The following theorem and its corollary give us some clues concerning the paths we should pursue and, perhaps more importantly, some we should reject.

Functional (Fixed-Point) Iteration

Convergence Result

Let $g \in C[a, b]$ with $g(x) \in[a, b]$ for all $x \in[a, b]$. Let $g^{\prime}(x)$ exist on (a, b) with

$$
\left|g^{\prime}(x)\right| \leq k<1, \quad \forall x \in[a, b] .
$$

Functional (Fixed-Point) Iteration

Convergence Result

Let $g \in C[a, b]$ with $g(x) \in[a, b]$ for all $x \in[a, b]$. Let $g^{\prime}(x)$ exist on (a, b) with

$$
\left|g^{\prime}(x)\right| \leq k<1, \quad \forall x \in[a, b] .
$$

If p_{0} is any point in $[a, b]$ then the sequence defined by

$$
p_{n}=g\left(p_{n-1}\right), \quad n \geq 1
$$

will converge to the unique fixed point p in $[a, b]$.

Functional (Fixed-Point) Iteration

Proof of the Convergence Result

Functional (Fixed-Point) Iteration

Proof of the Convergence Result

- By the Uniquenes Theorem, a unique fixed point exists in $[a, b]$.

Functional (Fixed-Point) Iteration

Proof of the Convergence Result

- By the Uniquenes Theorem, a unique fixed point exists in $[a, b]$.
- Since g maps $[a, b]$ into itself, the sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ is defined for all $n \geq 0$ and $p_{n} \in[a, b]$ for all n.

Functional (Fixed-Point) Iteration

Proof of the Convergence Result

- By the Uniquenes Theorem, a unique fixed point exists in $[a, b]$.
- Since g maps $[a, b]$ into itself, the sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ is defined for all $n \geq 0$ and $p_{n} \in[a, b]$ for all n.
- Using the Mean Value Theorem anvt and the assumption that $\left|g^{\prime}(x)\right| \leq k<1, \forall x \in[a, b]$, we write

$$
\left|p_{n}-p\right|=\left|g\left(p_{n-1}\right)-g(p)\right|
$$

Functional (Fixed-Point) Iteration

Proof of the Convergence Result

- By the Uniquenes Theorem, a unique fixed point exists in $[a, b]$.
- Since g maps $[a, b]$ into itself, the sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ is defined for all $n \geq 0$ and $p_{n} \in[a, b]$ for all n.
- Using the Mean Value Theorem anvt and the assumption that $\left|g^{\prime}(x)\right| \leq k<1, \forall x \in[a, b]$, we write

$$
\begin{aligned}
\left|p_{n}-p\right| & =\left|g\left(p_{n-1}\right)-g(p)\right| \\
& \leq\left|g^{\prime}(\xi)\right|\left|p_{n-1}-p\right|
\end{aligned}
$$

Functional (Fixed-Point) Iteration

Proof of the Convergence Result

- By the Uniquenes Theorem, a unique fixed point exists in $[a, b]$.
- Since g maps $[a, b]$ into itself, the sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ is defined for all $n \geq 0$ and $p_{n} \in[a, b]$ for all n.
- Using the Mean Value Theorem anvt and the assumption that $\left|g^{\prime}(x)\right| \leq k<1, \forall x \in[a, b]$, we write

$$
\begin{aligned}
\left|p_{n}-p\right| & =\left|g\left(p_{n-1}\right)-g(p)\right| \\
& \leq\left|g^{\prime}(\xi)\right|\left|p_{n-1}-p\right| \\
& \leq k\left|p_{n-1}-p\right|
\end{aligned}
$$

where $\xi \in(a, b)$.

Functional (Fixed-Point) Iteration

Proof of the Convergence Result (Cont'd)

Applying the inequality of the hypothesis inductively gives

Functional (Fixed-Point) Iteration

Proof of the Convergence Result (Cont'd)

Applying the inequality of the hypothesis inductively gives

$$
\left|p_{n}-p\right| \leq k\left|p_{n-1}-p\right|
$$

Functional (Fixed-Point) Iteration

Proof of the Convergence Result (Cont'd)

Applying the inequality of the hypothesis inductively gives

$$
\begin{aligned}
\left|p_{n}-p\right| & \leq k\left|p_{n-1}-p\right| \\
& \leq k^{2}\left|p_{n-2}-p\right|
\end{aligned}
$$

Functional (Fixed-Point) Iteration

Proof of the Convergence Result (Cont'd)

Applying the inequality of the hypothesis inductively gives

$$
\begin{aligned}
\left|p_{n}-p\right| & \leq k\left|p_{n-1}-p\right| \\
& \leq k^{2}\left|p_{n-2}-p\right| \\
& \leq k^{n}\left|p_{0}-p\right|
\end{aligned}
$$

Functional (Fixed-Point) Iteration

Proof of the Convergence Result (Cont'd)

Applying the inequality of the hypothesis inductively gives

$$
\begin{aligned}
\left|p_{n}-p\right| & \leq k\left|p_{n-1}-p\right| \\
& \leq k^{2}\left|p_{n-2}-p\right| \\
& \leq k^{n}\left|p_{0}-p\right|
\end{aligned}
$$

Since $k<1$,

$$
\lim _{n \rightarrow \infty}\left|p_{n}-p\right| \leq \lim _{n \rightarrow \infty} k^{n}\left|p_{0}-p\right|=0
$$

and $\left\{p_{n}\right\}_{n=0}^{\infty}$ converges to p.

Functional (Fixed-Point) Iteration

Corrollary to the Convergence Result

If g satisfies the hypothesis of the Theorem, then

$$
\left|p_{n}-p\right| \leq \frac{k^{n}}{1-k}\left|p_{1}-p_{0}\right|
$$

Functional (Fixed-Point) Iteration

Corrollary to the Convergence Result

If g satisfies the hypothesis of the Theorem, then

$$
\left|p_{n}-p\right| \leq \frac{k^{n}}{1-k}\left|p_{1}-p_{0}\right| .
$$

Proof of Corollary (1 of 3)

For $n \geq 1$, the procedure used in the proof of the theorem implies that

$$
\left|p_{n+1}-p_{n}\right|=\left|g\left(p_{n}\right)-g\left(p_{n-1}\right)\right|
$$

Functional (Fixed-Point) Iteration

Corrollary to the Convergence Result

If g satisfies the hypothesis of the Theorem, then

$$
\left|p_{n}-p\right| \leq \frac{k^{n}}{1-k}\left|p_{1}-p_{0}\right| .
$$

Proof of Corollary (1 of 3)

For $n \geq 1$, the procedure used in the proof of the theorem implies that

$$
\begin{aligned}
\left|p_{n+1}-p_{n}\right| & =\left|g\left(p_{n}\right)-g\left(p_{n-1}\right)\right| \\
& \leq k\left|p_{n}-p_{n-1}\right|
\end{aligned}
$$

Functional (Fixed-Point) Iteration

Corrollary to the Convergence Result

If g satisfies the hypothesis of the Theorem, then

$$
\left|p_{n}-p\right| \leq \frac{k^{n}}{1-k}\left|p_{1}-p_{0}\right| .
$$

Proof of Corollary (1 of 3)

For $n \geq 1$, the procedure used in the proof of the theorem implies that

$$
\begin{aligned}
\left|p_{n+1}-p_{n}\right| & =\left|g\left(p_{n}\right)-g\left(p_{n-1}\right)\right| \\
& \leq k\left|p_{n}-p_{n-1}\right| \\
& \leq \cdots
\end{aligned}
$$

Functional (Fixed-Point) Iteration

Corrollary to the Convergence Result

If g satisfies the hypothesis of the Theorem, then

$$
\left|p_{n}-p\right| \leq \frac{k^{n}}{1-k}\left|p_{1}-p_{0}\right| .
$$

Proof of Corollary (1 of 3)

For $n \geq 1$, the procedure used in the proof of the theorem implies that

$$
\begin{aligned}
\left|p_{n+1}-p_{n}\right| & =\left|g\left(p_{n}\right)-g\left(p_{n-1}\right)\right| \\
& \leq k\left|p_{n}-p_{n-1}\right| \\
& \leq \cdots \\
& \leq k^{n}\left|p_{1}-p_{0}\right|
\end{aligned}
$$

Functional (Fixed-Point) Iteration

$$
\left|p_{n+1}-p_{n}\right| \leq k^{n}\left|p_{1}-p_{0}\right|
$$

Proof of Corollary (2 of 3)

Functional (Fixed-Point) Iteration

$$
\left|p_{n+1}-p_{n}\right| \leq k^{n}\left|p_{1}-p_{0}\right|
$$

Proof of Corollary (2 of 3)

Thus, for $m>n \geq 1$,

$$
\left|p_{m}-p_{n}\right|=\left|p_{m}-p_{m-1}+p_{m-1}-p_{m-2}+\cdots+p_{n+1}-p_{n}\right|
$$

Functional (Fixed-Point) Iteration

$$
\left|p_{n+1}-p_{n}\right| \leq k^{n}\left|p_{1}-p_{0}\right|
$$

Proof of Corollary (2 of 3)

Thus, for $m>n \geq 1$,

$$
\begin{aligned}
\left|p_{m}-p_{n}\right| & =\left|p_{m}-p_{m-1}+p_{m-1}-p_{m-2}+\cdots+p_{n+1}-p_{n}\right| \\
& \leq\left|p_{m}-p_{m-1}\right|+\left|p_{m-1}-p_{m-2}\right|+\cdots+\left|p_{n+1}-p_{n}\right|
\end{aligned}
$$

Functional (Fixed-Point) Iteration

$$
\left|p_{n+1}-p_{n}\right| \leq k^{n}\left|p_{1}-p_{0}\right|
$$

Proof of Corollary (2 of 3)

Thus, for $m>n \geq 1$,

$$
\begin{aligned}
\left|p_{m}-p_{n}\right| & =\left|p_{m}-p_{m-1}+p_{m-1}-p_{m-2}+\cdots+p_{n+1}-p_{n}\right| \\
& \leq\left|p_{m}-p_{m-1}\right|+\left|p_{m-1}-p_{m-2}\right|+\cdots+\left|p_{n+1}-p_{n}\right| \\
& \leq k^{m-1}\left|p_{1}-p_{0}\right|+k^{m-2}\left|p_{1}-p_{0}\right|+\cdots+k^{n}\left|p_{1}-p_{0}\right|
\end{aligned}
$$

Functional (Fixed-Point) Iteration

$$
\left|p_{n+1}-p_{n}\right| \leq k^{n}\left|p_{1}-p_{0}\right|
$$

Proof of Corollary (2 of 3)

Thus, for $m>n \geq 1$,

$$
\begin{aligned}
\left|p_{m}-p_{n}\right| & =\left|p_{m}-p_{m-1}+p_{m-1}-p_{m-2}+\cdots+p_{n+1}-p_{n}\right| \\
& \leq\left|p_{m}-p_{m-1}\right|+\left|p_{m-1}-p_{m-2}\right|+\cdots+\left|p_{n+1}-p_{n}\right| \\
& \leq k^{m-1}\left|p_{1}-p_{0}\right|+k^{m-2}\left|p_{1}-p_{0}\right|+\cdots+k^{n}\left|p_{1}-p_{0}\right| \\
& \leq k^{n}\left(1+k+k^{2}+\cdots+k^{m-n-1}\right)\left|p_{1}-p_{0}\right|
\end{aligned}
$$

Functional (Fixed-Point) Iteration

$$
\left|p_{m}-p_{n}\right| \leq k^{n}\left(1+k+k^{2}+\cdots+k^{m-n-1}\right)\left|p_{1}-p_{0}\right| .
$$

Proof of Corollary (3 of 3)

Functional (Fixed-Point) Iteration

$$
\left|p_{m}-p_{n}\right| \leq k^{n}\left(1+k+k^{2}+\cdots+k^{m-n-1}\right)\left|p_{1}-p_{0}\right|
$$

Proof of Corollary (3 of 3)

However, since $\lim _{m \rightarrow \infty} p_{m}=p$, we obtain

$$
\left|p-p_{n}\right|=\lim _{m \rightarrow \infty}\left|p_{m}-p_{n}\right|
$$

Functional (Fixed-Point) Iteration

$$
\left|p_{m}-p_{n}\right| \leq k^{n}\left(1+k+k^{2}+\cdots+k^{m-n-1}\right)\left|p_{1}-p_{0}\right|
$$

Proof of Corollary (3 of 3)

However, since $\lim _{m \rightarrow \infty} p_{m}=p$, we obtain

$$
\begin{aligned}
\left|p-p_{n}\right| & =\lim _{m \rightarrow \infty}\left|p_{m}-p_{n}\right| \\
& \leq k^{n}\left|p_{1}-p_{0}\right| \sum_{i=1}^{\infty} k^{i}
\end{aligned}
$$

Functional (Fixed-Point) Iteration

$$
\left|p_{m}-p_{n}\right| \leq k^{n}\left(1+k+k^{2}+\cdots+k^{m-n-1}\right)\left|p_{1}-p_{0}\right|
$$

Proof of Corollary (3 of 3)

However, since $\lim _{m \rightarrow \infty} p_{m}=p$, we obtain

$$
\begin{aligned}
\left|p-p_{n}\right| & =\lim _{m \rightarrow \infty}\left|p_{m}-p_{n}\right| \\
& \leq k^{n}\left|p_{1}-p_{0}\right| \sum_{i=1}^{\infty} k^{i} \\
& =\frac{k^{n}}{1-k}\left|p_{1}-p_{0}\right|
\end{aligned}
$$

Functional (Fixed-Point) Iteration

Example: $g(x)=g(x)=3^{-x}$

Consider the iteration function $g(x)=3^{-x}$ over the interval $\left[\frac{1}{3}, 1\right]$ starting with $p_{0}=\frac{1}{3}$. Determine a lower bound for the number of iterations n required so that $\left|p_{n}-p\right|<10^{-5}$?

Functional (Fixed-Point) Iteration

Example: $g(x)=g(x)=3^{-x}$
Consider the iteration function $g(x)=3^{-x}$ over the interval $\left[\frac{1}{3}, 1\right]$ starting with $p_{0}=\frac{1}{3}$. Determine a lower bound for the number of iterations n required so that $\left|p_{n}-p\right|<10^{-5}$?

Determine the Parameters of the Problem

Functional (Fixed-Point) Iteration

Example: $g(x)=g(x)=3^{-x}$
Consider the iteration function $g(x)=3^{-x}$ over the interval $\left[\frac{1}{3}, 1\right]$ starting with $p_{0}=\frac{1}{3}$. Determine a lower bound for the number of iterations n required so that $\left|p_{n}-p\right|<10^{-5}$?

Determine the Parameters of the Problem

Note that $p_{1}=g\left(p_{0}\right)=3^{-\frac{1}{3}}=0.6933612$ and, since $g^{\prime}(x)=-3^{-x} \ln 3$, we obtain the bound

$$
\left|g^{\prime}(x)\right| \leq 3^{-\frac{1}{3}} \ln 3 \leq .7617362 \approx .762=k .
$$

Functional (Fixed-Point) Iteration

Use the Corollary

Functional (Fixed-Point) Iteration

Use the Corollary

Therefore, we have

$$
\left|p_{n}-p\right| \leq \frac{k^{n}}{1-k}\left|p_{0}-p_{1}\right|
$$

Functional (Fixed-Point) Iteration

Use the Corollary

Therefore, we have

$$
\begin{aligned}
\left|p_{n}-p\right| & \leq \frac{k^{n}}{1-k}\left|p_{0}-p_{1}\right| \\
& \leq \frac{.762^{n}}{1-.762}\left|\frac{1}{3}-.6933612\right|
\end{aligned}
$$

Functional (Fixed-Point) Iteration

Use the Corollary

Therefore, we have

$$
\begin{aligned}
\left|p_{n}-p\right| & \leq \frac{k^{n}}{1-k}\left|p_{0}-p_{1}\right| \\
& \leq \frac{.762^{n}}{1-.762}\left|\frac{1}{3}-.6933612\right| \\
& \leq 1.513 \times 0.762^{n}
\end{aligned}
$$

Functional (Fixed-Point) Iteration

Use the Corollary

Therefore, we have

$$
\begin{aligned}
\left|p_{n}-p\right| & \leq \frac{k^{n}}{1-k}\left|p_{0}-p_{1}\right| \\
& \leq \frac{.762^{n}}{1-.762}\left|\frac{1}{3}-.6933612\right| \\
& \leq 1.513 \times 0.762^{n}
\end{aligned}
$$

We require that

$$
1.513 \times 0.762^{n}<10^{-5} \quad \text { or } \quad n>43.88
$$

Footnote on the Estimate Obtained

Footnote on the Estimate Obtained

- It is important to realise that the estimate for the number of iterations required given by the theorem is an upper bound.

Footnote on the Estimate Obtained

- It is important to realise that the estimate for the number of iterations required given by the theorem is an upper bound.
- In the previous example, only 21 iterations are required in practice, i.e. $p_{21}=0.54781$ is accurate to 10^{-5}.

Footnote on the Estimate Obtained

- It is important to realise that the estimate for the number of iterations required given by the theorem is an upper bound.
- In the previous example, only 21 iterations are required in practice, i.e. $p_{21}=0.54781$ is accurate to 10^{-5}.
- The reason, in this case, is that we used

$$
g^{\prime}(1)=0.762
$$

whereas

$$
g^{\prime}(0.54781)=0.602
$$

Footnote on the Estimate Obtained

- It is important to realise that the estimate for the number of iterations required given by the theorem is an upper bound.
- In the previous example, only 21 iterations are required in practice, i.e. $p_{21}=0.54781$ is accurate to 10^{-5}.
- The reason, in this case, is that we used

$$
g^{\prime}(1)=0.762
$$

whereas

$$
g^{\prime}(0.54781)=0.602
$$

- If one had used $k=0.602$ (were it available) to compute the bound, one would obtain $N=23$ which is a more accurate estimate.

Outline

(1) Functional (Fixed-Point) Iteration

(2) Convergence Criteria for the Fixed-Point Method
(3) Sample Problem: $f(x)=x^{3}+4 x^{2}-10=0$

A Single Nonlinear Equation

Example 2

We return to Example 1 and the equation

$$
x^{3}+4 x^{2}-10=0
$$

which has a unique root in $[1,2]$. Its value is approximately 1.365230013.

$f(x)=x^{3}+4 x^{2}-10=0$ on $[1,2]$

Solving $f(x)=x^{3}+4 x^{2}-10=0$

Earlier, we listed 5 possible transpositions to $x=g(x)$

$$
\begin{aligned}
& x=g_{1}(x)=x-x^{3}-4 x^{2}+10 \\
& x=g_{2}(x)=\sqrt{\frac{10}{x}-4 x} \\
& x=g_{3}(x)=\frac{1}{2} \sqrt{10-x^{3}} \\
& x=g_{4}(x)=\sqrt{\frac{10}{4+x}} \\
& x=g_{5}(x)=x-\frac{x^{3}+4 x^{2}-10}{3 x^{2}+8 x}
\end{aligned}
$$

Solving $f(x)=x^{3}+4 x^{2}-10=0$

Results Observed for $x=g(x)$ with $x_{0}=1.5$

$$
x=g_{1}(x)=x-x^{3}-4 x^{2}+10 \quad \text { Does not Converge }
$$

$$
x=g_{2}(x)=\sqrt{\frac{10}{x}-4 x} \quad \text { Does not Converge }
$$

$$
x=g_{3}(x)=\frac{1}{2} \sqrt{10-x^{3}} \quad \text { Converges after } 31 \text { Iterations }
$$

$$
x=g_{4}(x)=\sqrt{\frac{10}{4+x}}
$$

$$
x=g_{5}(x)=x-\frac{x^{3}+4 x^{2}-10}{3 x^{2}+8 x} \quad \text { Converges after } 5 \text { Iterations }
$$

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$x=g(x)$ with $x_{0}=1.5$

$$
x=g_{1}(x)=x-x^{3}-4 x^{2}+10 \quad \text { Does not Converge }
$$

$$
x=g_{2}(x)=\sqrt{\frac{10}{x}-4 x} \quad \text { Does not Converge }
$$

$$
x=g_{3}(x)=\frac{1}{2} \sqrt{10-x^{3}} \quad \text { Converges after } 31 \text { Iterations }
$$

$$
x=g_{4}(x)=\sqrt{\frac{10}{4+x}}
$$

$$
x=g_{5}(x)=x-\frac{x^{3}+4 x^{2}-10}{3 x^{2}+8 x}
$$

Converges after 5 Iterations

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$$
x=g_{1}(x)=x-x^{3}-4 x^{2}+10
$$

Iteration for $x=g_{1}(x)$ Does Not Converge

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$$
x=g_{1}(x)=x-x^{3}-4 x^{2}+10
$$

Iteration for $x=g_{1}(x)$ Does Not Converge

Since

$$
g_{1}^{\prime}(x)=1-3 x^{2}-8 x \quad g_{1}^{\prime}(1)=-10 \quad g_{1}^{\prime}(2)=-27
$$

there is no interval $[a, b]$ containing p for which $\left|g_{1}^{\prime}(x)\right|<1$.

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$$
x=g_{1}(x)=x-x^{3}-4 x^{2}+10
$$

Iteration for $x=g_{1}(x)$ Does Not Converge

Since

$$
\begin{array}{lll}
g_{1}^{\prime}(x)=1-3 x^{2}-8 x & g_{1}^{\prime}(1)=-10 & g_{1}^{\prime}(2)=-27
\end{array}
$$

there is no interval $[a, b]$ containing p for which $\left|g_{1}^{\prime}(x)\right|<1$. Also, note that

$$
g_{1}(1)=6 \quad \text { and } \quad g_{2}(2)=-12
$$

so that $g(x) \notin[1,2]$ for $x \in[1,2]$.

Iteration Function: $x=g_{1}(x)=x-x^{3}-4 x^{2}+10$

Iterations starting with $p_{0}=1.5$

n	p_{n-1}	p_{n}	$\left\|p_{n}-p_{n-1}\right\|$
1	1.5000000	-0.8750000	2.3750000
2	-0.8750000	6.7324219	7.6074219
3	6.7324219	-469.7200120	476.4524339

$$
p_{4} \approx 1.03 \times 10^{8}
$$

g_{1} Does Not Map [1, 2] into [1, 2]

$\left|g_{1}^{\prime}(x)\right|>1$ on $[1,2]$

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$x=g(x)$ with $x_{0}=1.5$

$$
x=g_{1}(x)=x-x^{3}-4 x^{2}+10 \quad \text { Does not Converge }
$$

$$
x=g_{2}(x)=\sqrt{\frac{10}{x}-4 x} \quad \text { Does not Converge }
$$

$$
x=g_{3}(x)=\frac{1}{2} \sqrt{10-x^{3}} \quad \text { Converges after } 31 \text { Iterations }
$$

$$
x=g_{4}(x)=\sqrt{\frac{10}{4+x}}
$$

$$
x=g_{5}(x)=x-\frac{x^{3}+4 x^{2}-10}{3 x^{2}+8 x} \quad \text { Converges after } 5 \text { Iterations }
$$

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$$
x=g_{2}(x)=\sqrt{\frac{10}{x}-4 x}
$$

Iteration for $x=g_{2}(x)$ is Not Defined

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$$
x=g_{2}(x)=\sqrt{\frac{10}{x}-4 x}
$$

Iteration for $x=g_{2}(x)$ is Not Defined

It is clear that $g_{2}(x)$ does not map $[1,2]$ onto $[1,2]$ and the sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ is not defined for $p_{0}=1.5$.

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$$
x=g_{2}(x)=\sqrt{\frac{10}{x}-4 x}
$$

Iteration for $x=g_{2}(x)$ is Not Defined

It is clear that $g_{2}(x)$ does not map [1,2] onto [1,2] and the sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ is not defined for $p_{0}=1.5$. Also, there is no interval containing p such that

$$
\left|g_{2}^{\prime}(x)\right|<1
$$

since

$$
g^{\prime}(1) \approx-2.86 \quad g^{\prime}(p) \approx-3.43
$$

and $g^{\prime}(x)$ is not defined for $x>1.58$.

Iteration Function: $x=g_{2}(x)=\sqrt{\frac{10}{x}}-4 x$

Iterations starting with $p_{0}=1.5$

n	p_{n-1}	p_{n}	$\left\|p_{n}-p_{n-1}\right\|$
1	1.5000000	0.8164966	0.6835034
2	0.8164966	2.9969088	2.1804122
3	2.9969088	$\sqrt{-8.6509}$	-

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$x=g(x)$ with $x_{0}=1.5$

$$
x=g_{1}(x)=x-x^{3}-4 x^{2}+10 \quad \text { Does not Converge }
$$

$$
x=g_{2}(x)=\sqrt{\frac{10}{x}-4 x} \quad \text { Does not Converge }
$$

$$
x=g_{3}(x)=\frac{1}{2} \sqrt{10-x^{3}} \quad \text { Converges after } 31 \text { Iterations }
$$

$$
x=g_{4}(x)=\sqrt{\frac{10}{4+x}}
$$

$$
x=g_{5}(x)=x-\frac{x^{3}+4 x^{2}-10}{3 x^{2}+8 x} \quad \text { Converges after } 5 \text { Iterations }
$$

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$$
x=g_{3}(x)=\frac{1}{2} \sqrt{10-x^{3}}
$$

Iteration for $x=g_{3}(x)$ Converges (Slowly)

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$$
x=g_{3}(x)=\frac{1}{2} \sqrt{10-x^{3}}
$$

Iteration for $x=g_{3}(x)$ Converges (Slowly)

By differentiation,

$$
g_{3}^{\prime}(x)=-\frac{3 x^{2}}{4 \sqrt{10-x^{3}}}<0 \quad \text { for } x \in[1,2]
$$

and so $g=g_{3}$ is strictly decreasing on $[1,2]$.

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$$
x=g_{3}(x)=\frac{1}{2} \sqrt{10-x^{3}}
$$

Iteration for $x=g_{3}(x)$ Converges (Slowly)

By differentiation,

$$
g_{3}^{\prime}(x)=-\frac{3 x^{2}}{4 \sqrt{10-x^{3}}}<0 \quad \text { for } x \in[1,2]
$$

and so $\mathrm{g}=g_{3}$ is strictly decreasing on $[1,2]$. However, $\left|g_{3}^{\prime}(x)\right|>1$ for $x>1.71$ and $\left|g_{3}^{\prime}(2)\right| \approx-2.12$.

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$$
x=g_{3}(x)=\frac{1}{2} \sqrt{10-x^{3}}
$$

Iteration for $x=g_{3}(x)$ Converges (Slowly)

By differentiation,

$$
g_{3}^{\prime}(x)=-\frac{3 x^{2}}{4 \sqrt{10-x^{3}}}<0 \quad \text { for } x \in[1,2]
$$

and so $\mathrm{g}=g_{3}$ is strictly decreasing on $[1,2]$. However, $\left|g_{3}^{\prime}(x)\right|>1$ for $x>1.71$ and $\left|g_{3}^{\prime}(2)\right| \approx-2.12$. A closer examination of $\left\{p_{n}\right\}_{n=0}^{\infty}$ will show that it suffices to consider the interval $[1,1.7]$ where $\left|g_{3}^{\prime}(x)\right|<1$ and $g(x) \in[1,1.7]$ for $x \in[1,1.7]$.

Iteration Function: $x=g_{3}(x)=\frac{1}{2} \sqrt{10-x^{3}}$

Iterations starting with $p_{0}=1.5$

n	p_{n-1}	p_{n}	$\left\|p_{n}-p_{n-1}\right\|$
1	1.500000000	1.286953768	0.213046232
2	1.286953768	1.402540804	0.115587036
3	1.402540804	1.345458374	0.057082430
4	1.345458374	1.375170253	0.029711879
5	1.375170253	1.360094193	0.015076060
6	1.360094193	1.367846968	0.007752775

30	1.365230013	1.365230014	0.000000001
31	1.365230014	1.365230013	0.000000000

$g_{3} \operatorname{Maps}[1,1.7]$ into $[1,1.7]$

$\left|g_{3}^{\prime}(x)\right|<1$ on $[1,1.7]$

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$x=g(x)$ with $x_{0}=1.5$

$$
x=g_{1}(x)=x-x^{3}-4 x^{2}+10 \quad \text { Does not Converge }
$$

$$
x=g_{2}(x)=\sqrt{\frac{10}{x}-4 x} \quad \text { Does not Converge }
$$

$$
x=g_{3}(x)=\frac{1}{2} \sqrt{10-x^{3}} \quad \text { Converges after } 31 \text { Iterations }
$$

$$
x=g_{4}(x)=\sqrt{\frac{10}{4+x}}
$$

$$
x=g_{5}(x)=x-\frac{x^{3}+4 x^{2}-10}{3 x^{2}+8 x} \quad \text { Converges after } 5 \text { Iterations }
$$

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$$
x=g_{4}(x)=\sqrt{\frac{10}{4+x}}
$$

Iteration for $x=g_{4}(x)$ Converges (Moderately)

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$$
x=g_{4}(x)=\sqrt{\frac{10}{4+x}}
$$

Iteration for $x=g_{4}(x)$ Converges (Moderately)

By differentiation,

$$
g_{4}^{\prime}(x)=-\sqrt{\frac{10}{4(4+x)^{3}}}<0
$$

and it is easy to show that

$$
0.10<\left|g_{4}^{\prime}(x)\right|<0.15 \quad \forall x \in[1,2]
$$

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$$
x=g_{4}(x)=\sqrt{\frac{10}{4+x}}
$$

Iteration for $x=g_{4}(x)$ Converges (Moderately)

By differentiation,

$$
g_{4}^{\prime}(x)=-\sqrt{\frac{10}{4(4+x)^{3}}}<0
$$

and it is easy to show that

$$
0.10<\left|g_{4}^{\prime}(x)\right|<0.15 \quad \forall x \in[1,2]
$$

The bound on the magnitude of $\left|g_{4}^{\prime}(x)\right|$ is much smaller than that for $\left|g_{3}^{\prime}(x)\right|$ and this explains the reason for the much faster convergence.

Iteration Function: $x=g_{4}(x)=\sqrt{\frac{10}{4+x}}$

Iterations starting with $p_{0}=1.5$

n	p_{n-1}	p_{n}	$\left\|p_{n}-p_{n-1}\right\|$
1	1.500000000	1.348399725	0.151600275
2	1.348399725	1.367376372	0.018976647
3	1.367376372	1.364957015	0.002419357
4	1.364957015	1.365264748	0.000307733
5	1.365264748	1.365225594	0.000039154
6	1.365225594	1.365230576	0.000004982

11	1.365230014	1.365230013	0.000000000
12	1.365230013	1.365230013	0.000000000

g_{4} Maps [1, 2] into [1, 2]

$\left|g_{4}^{\prime}(x)\right|<1$ on $[1,2]$

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$x=g(x)$ with $x_{0}=1.5$

$$
x=g_{1}(x)=x-x^{3}-4 x^{2}+10 \quad \text { Does not Converge }
$$

$$
x=g_{2}(x)=\sqrt{\frac{10}{x}-4 x} \quad \text { Does not Converge }
$$

$$
x=g_{3}(x)=\frac{1}{2} \sqrt{10-x^{3}}
$$

$$
x=g_{4}(x)=\sqrt{\frac{10}{4+x}}
$$

$$
x=g_{5}(x)=x-\frac{x^{3}+4 x^{2}-10}{3 x^{2}+8 x}
$$

Converges after 5 Iterations

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$$
x=g_{5}(x)=x-\frac{x^{3}+4 x^{2}-10}{3 x^{2}+8 x}
$$

Iteration for $x=g_{5}(x)$ Converges (Rapidly)

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$$
x=g_{5}(x)=x-\frac{x^{3}+4 x^{2}-10}{3 x^{2}+8 x}
$$

Iteration for $x=g_{5}(x)$ Converges (Rapidly)

For the iteration function $g_{5}(x)$, we obtain:

$$
g_{5}(x)=x-\frac{f(x)}{f^{\prime}(x)} \Rightarrow g_{5}^{\prime}(x)=\frac{f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}} \Rightarrow g_{5}^{\prime}(p)=0
$$

Solving $f(x)=x^{3}+4 x^{2}-10=0$

$$
x=g_{5}(x)=x-\frac{x^{3}+4 x^{2}-10}{3 x^{2}+8 x}
$$

Iteration for $x=g_{5}(x)$ Converges (Rapidly)

For the iteration function $g_{5}(x)$, we obtain:

$$
g_{5}(x)=x-\frac{f(x)}{f^{\prime}(x)} \Rightarrow g_{5}^{\prime}(x)=\frac{f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}} \Rightarrow g_{5}^{\prime}(p)=0
$$

It is straightforward to show that $0 \leq\left|g_{5}^{\prime}(x)\right|<0.28 \forall x \in[1,2]$ and the order of convergence is quadratic since $g_{5}^{\prime}(p)=0$.

Iteration Function: $x=g_{5}(x)=x-\frac{x^{3}+4 x^{2}-10}{3 x^{2}+8 x}$

Iterations starting with $p_{0}=1.5$

n	p_{n-1}	p_{n}	$\left\|p_{n}-p_{n-1}\right\|$
1	1.500000000	1.373333333	0.126666667
2	1.373333333	1.365262015	0.008071318
3	1.365262015	1.365230014	0.000032001
4	1.365230014	1.365230013	0.000000001
5	1.365230013	1.365230013	0.000000000

g_{5} Maps [1, 2] into [1, 2]

$\left|g_{5}^{\prime}(x)\right|<1$ on $[1,2]$

Questions?

Reference Material

Mean Value Theorem

If $f \in C[a, b]$ and f is differentiable on (a, b), then a number c exists such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

