#### Solutions of Equations in One Variable

# Secant & Regula Falsi Methods

Numerical Analysis (9th Edition) R L Burden & J D Faires

> Beamer Presentation Slides prepared by John Carroll Dublin City University

© 2011 Brooks/Cole, Cengage Learning

<ロト <回ト < 国ト < 国ト = 国





크











< 6 b





3 The Method of False Position (Regula Falsi)

#### Rationale for the Secant Method

#### Problems with Newton's Method

Numerical Analysis (Chapter 2)

Secant & Regula Falsi Methods

R L Burden & J D Faires 4 / 25

#### Rationale for the Secant Method

#### Problems with Newton's Method

 Newton's method is an extremely powerful technique, but it has a major weakness: the need to know the value of the derivative of f at each approximation.

∃ >

### Rationale for the Secant Method

#### Problems with Newton's Method

- Newton's method is an extremely powerful technique, but it has a major weakness: the need to know the value of the derivative of f at each approximation.
- Frequently, f'(x) is far more difficult and needs more arithmetic operations to calculate than f(x).

$$f'(p_{n-1}) = \lim_{x \to p_{n-1}} \frac{f(x) - f(p_{n-1})}{x - p_{n-1}}.$$

#### Circumvent the Derivative Evaluation

Numerical Analysis (Chapter 2)

$$f'(p_{n-1}) = \lim_{x \to p_{n-1}} \frac{f(x) - f(p_{n-1})}{x - p_{n-1}}$$

#### Circumvent the Derivative Evaluation

If  $p_{n-2}$  is close to  $p_{n-1}$ , then

$$f'(p_{n-1}) \approx \frac{f(p_{n-2}) - f(p_{n-1})}{p_{n-2} - p_{n-1}} = \frac{f(p_{n-1}) - f(p_{n-2})}{p_{n-1} - p_{n-2}}$$

Numerical Analysis (Chapter 2)

$$f'(p_{n-1}) = \lim_{x \to p_{n-1}} \frac{f(x) - f(p_{n-1})}{x - p_{n-1}}$$

#### Circumvent the Derivative Evaluation

If  $p_{n-2}$  is close to  $p_{n-1}$ , then

$$f'(p_{n-1}) \approx \frac{f(p_{n-2}) - f(p_{n-1})}{p_{n-2} - p_{n-1}} = \frac{f(p_{n-1}) - f(p_{n-2})}{p_{n-1} - p_{n-2}}$$

Using this approximation for  $f'(p_{n-1})$  in Newton's formula gives

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}$$

Numerical Analysis (Chapter 2)

イロト イヨト イヨト イヨト

$$f'(p_{n-1}) = \lim_{x \to p_{n-1}} \frac{f(x) - f(p_{n-1})}{x - p_{n-1}}$$

#### Circumvent the Derivative Evaluation

If  $p_{n-2}$  is close to  $p_{n-1}$ , then

$$f'(p_{n-1}) \approx \frac{f(p_{n-2}) - f(p_{n-1})}{p_{n-2} - p_{n-1}} = \frac{f(p_{n-1}) - f(p_{n-2})}{p_{n-1} - p_{n-2}}$$

Using this approximation for  $f'(p_{n-1})$  in Newton's formula gives

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}$$

This technique is called the Secant method

Numerical Analysis (Chapter 2)

< ロ > < 同 > < 回 > < 回 >

# Secant Method: Using Successive Secants



Numerical Analysis (Chapter 2)

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}$$

#### Procedure

Numerical Analysis (Chapter 2)

Secant & Regula Falsi Methods

R L Burden & J D Faires 7 / 25

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}$$

#### Procedure

Starting with the two initial approximations p<sub>0</sub> and p<sub>1</sub>, the approximation p<sub>2</sub> is the *x*-intercept of the line joining (p<sub>0</sub>, f(p<sub>0</sub>)) and (p<sub>1</sub>, f(p<sub>1</sub>)).

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}$$

#### Procedure

- Starting with the two initial approximations p<sub>0</sub> and p<sub>1</sub>, the approximation p<sub>2</sub> is the *x*-intercept of the line joining (p<sub>0</sub>, f(p<sub>0</sub>)) and (p<sub>1</sub>, f(p<sub>1</sub>)).
- The approximation p<sub>3</sub> is the *x*-intercept of the line joining (p<sub>1</sub>, f(p<sub>1</sub>)) and (p<sub>2</sub>, f(p<sub>2</sub>)), and so on.

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}$$

#### Procedure

- Starting with the two initial approximations p<sub>0</sub> and p<sub>1</sub>, the approximation p<sub>2</sub> is the *x*-intercept of the line joining (p<sub>0</sub>, f(p<sub>0</sub>)) and (p<sub>1</sub>, f(p<sub>1</sub>)).
- The approximation p<sub>3</sub> is the *x*-intercept of the line joining (p<sub>1</sub>, f(p<sub>1</sub>)) and (p<sub>2</sub>, f(p<sub>2</sub>)), and so on.
- Note that only one function evaluation is needed per step for the Secant method after p<sub>2</sub> has been determined.

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}$$

#### Procedure

- Starting with the two initial approximations p<sub>0</sub> and p<sub>1</sub>, the approximation p<sub>2</sub> is the *x*-intercept of the line joining (p<sub>0</sub>, f(p<sub>0</sub>)) and (p<sub>1</sub>, f(p<sub>1</sub>)).
- The approximation p<sub>3</sub> is the *x*-intercept of the line joining (p<sub>1</sub>, f(p<sub>1</sub>)) and (p<sub>2</sub>, f(p<sub>2</sub>)), and so on.
- Note that only one function evaluation is needed per step for the Secant method after p<sub>2</sub> has been determined.
- In contrast, each step of Newton's method requires an evaluation of both the function and its derivative.

Secant & Regula Falsi Methods

To find a solution to f(x) = 0 given initial approximations  $p_0$  and  $p_1$ ; tolerance *TOL*; maximum number of iterations  $N_0$ .

・ 同 ト ・ ヨ ト ・ ヨ

To find a solution to f(x) = 0 given initial approximations  $p_0$  and  $p_1$ ; tolerance *TOL*; maximum number of iterations  $N_0$ .

1 Set 
$$i = 2, q_0 = f(p_0), q_1 = f(p_1)$$

To find a solution to f(x) = 0 given initial approximations  $p_0$  and  $p_1$ ; tolerance *TOL*; maximum number of iterations  $N_0$ .

- 1 Set  $i = 2, q_0 = f(p_0), q_1 = f(p_1)$
- 2 While  $i \leq N_0$  do Steps 3–6:

. . . . . . .

4 A N

To find a solution to f(x) = 0 given initial approximations  $p_0$  and  $p_1$ ; tolerance *TOL*; maximum number of iterations  $N_0$ .

- 1 Set  $i = 2, q_0 = f(p_0), q_1 = f(p_1)$
- 2 While  $i \leq N_0$  do Steps 3–6:
  - 3 Set  $p = p_1 q_1(p_1 p_0)/(q_1 q_0)$ . (Compute  $p_i$ )

To find a solution to f(x) = 0 given initial approximations  $p_0$  and  $p_1$ ; tolerance *TOL*; maximum number of iterations  $N_0$ .

- 1 Set  $i = 2, q_0 = f(p_0), q_1 = f(p_1)$
- 2 While  $i \leq N_0$  do Steps 3–6:

3 Set 
$$p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0)$$
. (Compute  $p_i$ )

4 If  $|p - p_1| < TOL$  then OUTPUT (*p*); (*The procedure was successful.*) STOP

To find a solution to f(x) = 0 given initial approximations  $p_0$  and  $p_1$ ; tolerance *TOL*; maximum number of iterations  $N_0$ .

- 1 Set  $i = 2, q_0 = f(p_0), q_1 = f(p_1)$
- 2 While  $i \leq N_0$  do Steps 3–6:

3 Set 
$$p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0)$$
. (Compute  $p_i$ )

4 If |p - p<sub>1</sub>| < TOL then OUTPUT (p); (*The procedure was successful.*) STOP
5 Set i = i + 1

< ロ > < 同 > < 回 > < 回 >

To find a solution to f(x) = 0 given initial approximations  $p_0$  and  $p_1$ ; tolerance *TOL*; maximum number of iterations  $N_0$ .

1 Set 
$$i = 2, q_0 = f(p_0), q_1 = f(p_1)$$

2 While  $i \leq N_0$  do Steps 3–6:

3 Set 
$$p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0)$$
. (*Compute*  $p_i$ )  
4 If  $|p - p_1| < TOL$  then  
OUTPUT ( $p$ ); (*The procedure was successful.*) STOP  
5 Set  $i = i + 1$   
6 Set  $p_0 = p_1$ ; (*Update*  $p_0, q_0, p_1, q_1$ )  
 $q_0 = q_1; p_1 = p; q_1 = f(p)$ 

To find a solution to f(x) = 0 given initial approximations  $p_0$  and  $p_1$ ; tolerance *TOL*; maximum number of iterations  $N_0$ .

1 Set 
$$i = 2, q_0 = f(p_0), q_1 = f(p_1)$$

2 While  $i \leq N_0$  do Steps 3–6:

3 Set 
$$p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0)$$
. (*Compute*  $p_i$ )  
4 If  $|p - p_1| < TOL$  then  
OUTPUT ( $p$ ); (*The procedure was successful.*) STOP  
5 Set  $i = i + 1$   
6 Set  $p_0 = p_1$ ; (*Update*  $p_0, q_0, p_1, q_1$ )  
 $q_0 = q_1; p_1 = p; q_1 = f(p)$ 

7 OUTPUT ('The method failed after  $N_0$  iterations,  $N_0 =$ ',  $N_0$ ); (*The procedure was unsuccessful*) STOP

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))





The Method of False Position (Regula Falsi)

#### Example: $f(x) = \cos x - x$

Use the Secant method to find a solution to  $x = \cos x$ , and compare the approximations with those given by Newton's method with  $p_0 = \pi/4$ .

#### Formula for the Secant Method

< ロ > < 同 > < 回 > < 回 >

#### Example: $f(x) = \cos x - x$

Use the Secant method to find a solution to  $x = \cos x$ , and compare the approximations with those given by Newton's method with  $p_0 = \pi/4$ .

#### Formula for the Secant Method

We need two initial approximations. Suppose we use  $p_0 = 0.5$  and  $p_1 = \pi/4$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Example: $f(x) = \cos x - x$

Use the Secant method to find a solution to  $x = \cos x$ , and compare the approximations with those given by Newton's method with  $p_0 = \pi/4$ .

#### Formula for the Secant Method

We need two initial approximations. Suppose we use  $p_0 = 0.5$  and  $p_1 = \pi/4$ . Succeeding approximations are generated by the formula

$$p_n = p_{n-1} - \frac{(p_{n-1} - p_{n-2})(\cos p_{n-1} - p_{n-1})}{(\cos p_{n-1} - p_{n-1}) - (\cos p_{n-2} - p_{n-2})}, \text{ for } n \ge 2.$$

#### Newton's Method for $f(x) = \cos(x) - x$ , $p_0 = \frac{\pi}{4}$

| n | $p_{n-1}$  | $f(p_{n-1})$ | $f'(p_{n-1})$ | <i>p</i> <sub>n</sub> | $ p_n - p_{n-1} $ |
|---|------------|--------------|---------------|-----------------------|-------------------|
| 1 | 0.78539816 | -0.078291    | -1.707107     | 0.73953613            | 0.04586203        |
| 2 | 0.73953613 | -0.000755    | -1.673945     | 0.73908518            | 0.00045096        |
| 3 | 0.73908518 | -0.000000    | -1.673612     | 0.73908513            | 0.00000004        |
| 4 | 0.73908513 | -0.000000    | -1.673612     | 0.73908513            | 0.0000000         |

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

#### Newton's Method for $f(x) = \cos(x) - x$ , $p_0 = \frac{\pi}{4}$

| n | $p_{n-1}$  | $f(p_{n-1})$ | $f'(p_{n-1})$ | p <sub>n</sub> | $ p_n - p_{n-1} $ |
|---|------------|--------------|---------------|----------------|-------------------|
| 1 | 0.78539816 | -0.078291    | -1.707107     | 0.73953613     | 0.04586203        |
| 2 | 0.73953613 | -0.000755    | -1.673945     | 0.73908518     | 0.00045096        |
| 3 | 0.73908518 | -0.000000    | -1.673612     | 0.73908513     | 0.00000004        |
| 4 | 0.73908513 | -0.000000    | -1.673612     | 0.73908513     | 0.00000000        |

• An excellent approximation is obtained with n = 3.

Numerical Analysis (Chapter 2)

#### Newton's Method for $f(x) = \cos(x) - x$ , $p_0 = \frac{\pi}{4}$

| n | $p_{n-1}$  | $f(p_{n-1})$ | $f'(p_{n-1})$ | p <sub>n</sub> | $ p_n - p_{n-1} $ |
|---|------------|--------------|---------------|----------------|-------------------|
| 1 | 0.78539816 | -0.078291    | -1.707107     | 0.73953613     | 0.04586203        |
| 2 | 0.73953613 | -0.000755    | -1.673945     | 0.73908518     | 0.00045096        |
| 3 | 0.73908518 | -0.000000    | -1.673612     | 0.73908513     | 0.00000004        |
| 4 | 0.73908513 | -0.000000    | -1.673612     | 0.73908513     | 0.00000000        |

• An excellent approximation is obtained with n = 3.

 Because of the agreement of p<sub>3</sub> and p<sub>4</sub> we could reasonably expect this result to be accurate to the places listed.

#### Secant Method for $f(x) = \cos(x) - x$ , $p_0 = 0.5$ , $p_1 = \frac{\pi}{4}$

| n | <i>p</i> <sub>n-2</sub> | <i>p</i> <sub>n-1</sub> | p <sub>n</sub> | $ p_n - p_{n-1} $ |
|---|-------------------------|-------------------------|----------------|-------------------|
| 2 | 0.500000000             | 0.785398163             | 0.736384139    | 0.0490140246      |
| 3 | 0.785398163             | 0.736384139             | 0.739058139    | 0.0026740004      |
| 4 | 0.736384139             | 0.739058139             | 0.739085149    | 0.0000270101      |
| 5 | 0.739058139             | 0.739085149             | 0.739085133    | 0.000000161       |

< ロ > < 同 > < 回 > < 回 >

#### Secant Method for $f(x) = \cos(x) - x$ , $p_0 = 0.5$ , $p_1 = \frac{\pi}{4}$

| n | <i>p</i> <sub>n-2</sub> | <i>p</i> <sub>n-1</sub> | pn          | $ p_n - p_{n-1} $ |
|---|-------------------------|-------------------------|-------------|-------------------|
| 2 | 0.500000000             | 0.785398163             | 0.736384139 | 0.0490140246      |
| 3 | 0.785398163             | 0.736384139             | 0.739058139 | 0.0026740004      |
| 4 | 0.736384139             | 0.739058139             | 0.739085149 | 0.0000270101      |
| 5 | 0.739058139             | 0.739085149             | 0.739085133 | 0.0000000161      |

 Comparing results, we see that the Secant Method approximation *p*<sub>5</sub> is accurate to the tenth decimal place, whereas Newton's method obtained this accuracy by *p*<sub>3</sub>.

#### Secant Method for $f(x) = \cos(x) - x$ , $p_0 = 0.5$ , $p_1 = \frac{\pi}{4}$

| n | <i>p</i> <sub>n-2</sub> | <i>p</i> <sub>n-1</sub> | p <sub>n</sub> | $ p_n - p_{n-1} $ |
|---|-------------------------|-------------------------|----------------|-------------------|
| 2 | 0.500000000             | 0.785398163             | 0.736384139    | 0.0490140246      |
| 3 | 0.785398163             | 0.736384139             | 0.739058139    | 0.0026740004      |
| 4 | 0.736384139             | 0.739058139             | 0.739085149    | 0.0000270101      |
| 5 | 0.739058139             | 0.739085149             | 0.739085133    | 0.0000000161      |

- Comparing results, we see that the Secant Method approximation *p*<sub>5</sub> is accurate to the tenth decimal place, whereas Newton's method obtained this accuracy by *p*<sub>3</sub>.
- Here, the convergence of the Secant method is much faster than functional iteration but slightly slower than Newton's method.

## Comparing the Secant & Newton's Methods

## Secant Method for $f(x) = \cos(x) - x$ , $p_0 = 0.5$ , $p_1 = \frac{\pi}{4}$

| n | <i>p</i> <sub>n-2</sub> | <i>p</i> <sub>n-1</sub> | p <sub>n</sub> | $ p_n - p_{n-1} $ |
|---|-------------------------|-------------------------|----------------|-------------------|
| 2 | 0.500000000             | 0.785398163             | 0.736384139    | 0.0490140246      |
| 3 | 0.785398163             | 0.736384139             | 0.739058139    | 0.0026740004      |
| 4 | 0.736384139             | 0.739058139             | 0.739085149    | 0.0000270101      |
| 5 | 0.739058139             | 0.739085149             | 0.739085133    | 0.0000000161      |

- Comparing results, we see that the Secant Method approximation *p*<sub>5</sub> is accurate to the tenth decimal place, whereas Newton's method obtained this accuracy by *p*<sub>3</sub>.
- Here, the convergence of the Secant method is much faster than functional iteration but slightly slower than Newton's method.
- This is generally the case. Order of Convergence

#### The Secant Method

#### **Final Remarks**

Numerical Analysis (Chapter 2)

Secant & Regula Falsi Methods

R L Burden & J D Faires 13/25

э

### The Secant Method

#### **Final Remarks**

• The Secant method and Newton's method are often used to refine an answer obtained by another technique (such as the Bisection Method).

Numerical Analysis (Chapter 2)

Secant & Regula Falsi Methods

R L Burden & J D Faires 13 / 25

4 A N

### The Secant Method

#### **Final Remarks**

- The Secant method and Newton's method are often used to refine an answer obtained by another technique (such as the Bisection Method).
- Both methods require good first approximations but generally give rapid acceleration.

. . . . . . .

A D b 4 A b





#### 2 Comparing the Secant & Newton's Methods



A (10) > A (10) > A (10)

#### Bracketing a Root

Numerical Analysis (Chapter 2)

Secant & Regula Falsi Methods

R L Burden & J D Faires 15

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

15/25

#### Bracketing a Root

 Unlike the Bisection Method, root bracketing is not guaranteed for either Newton's method or the Secant method.

#### Bracketing a Root

- Unlike the Bisection Method, root bracketing is not guaranteed for either Newton's method or the Secant method.
- The method of False Position (also called *Regula Falsi*) generates approximations in the same manner as the Secant method, but it includes a test to ensure that the root is always bracketed between successive iterations.

イロト イ押ト イヨト イヨト

#### Bracketing a Root

- Unlike the Bisection Method, root bracketing is not guaranteed for either Newton's method or the Secant method.
- The method of False Position (also called *Regula Falsi*) generates approximations in the same manner as the Secant method, but it includes a test to ensure that the root is always bracketed between successive iterations.
- Although it is not a method we generally recommend, it illustrates how bracketing can be incorporated.

< ロ > < 同 > < 回 > < 回 >

#### Construction of the Method

• First choose initial approximations  $p_0$  and  $p_1$  with  $f(p_0) \cdot f(p_1) < 0$ .

Numerical Analysis (Chapter 2)

< 同 ト < 三 ト < 三 ト

#### Construction of the Method

- First choose initial approximations  $p_0$  and  $p_1$  with  $f(p_0) \cdot f(p_1) < 0$ .
- The approximation p<sub>2</sub> is chosen in the same manner as in the Secant method, as the x-intercept of the line joining (p<sub>0</sub>, f(p<sub>0</sub>)) and (p<sub>1</sub>, f(p<sub>1</sub>)).

4 A N

#### Construction of the Method

- First choose initial approximations  $p_0$  and  $p_1$  with  $f(p_0) \cdot f(p_1) < 0$ .
- The approximation p<sub>2</sub> is chosen in the same manner as in the Secant method, as the x-intercept of the line joining (p<sub>0</sub>, f(p<sub>0</sub>)) and (p<sub>1</sub>, f(p<sub>1</sub>)).
- To decide which secant line to use to compute p<sub>3</sub>, consider f(p<sub>2</sub>) · f(p<sub>1</sub>), or more correctly sgn f(p<sub>2</sub>) · sgn f(p<sub>1</sub>):

#### Construction of the Method

- First choose initial approximations  $p_0$  and  $p_1$  with  $f(p_0) \cdot f(p_1) < 0$ .
- The approximation p<sub>2</sub> is chosen in the same manner as in the Secant method, as the x-intercept of the line joining (p<sub>0</sub>, f(p<sub>0</sub>)) and (p<sub>1</sub>, f(p<sub>1</sub>)).
- To decide which secant line to use to compute p<sub>3</sub>, consider f(p<sub>2</sub>) · f(p<sub>1</sub>), or more correctly sgn f(p<sub>2</sub>) · sgn f(p<sub>1</sub>):
  - If sgn f(p<sub>2</sub>) ⋅ sgn f(p<sub>1</sub>) < 0, then p<sub>1</sub> and p<sub>2</sub> bracket a root. Choose p<sub>3</sub> as the *x*-intercept of the line joining (p<sub>1</sub>, f(p<sub>1</sub>)) and (p<sub>2</sub>, f(p<sub>2</sub>)).

< ロ > < 同 > < 回 > < 回 >

#### Construction of the Method

- First choose initial approximations  $p_0$  and  $p_1$  with  $f(p_0) \cdot f(p_1) < 0$ .
- The approximation p<sub>2</sub> is chosen in the same manner as in the Secant method, as the x-intercept of the line joining (p<sub>0</sub>, f(p<sub>0</sub>)) and (p<sub>1</sub>, f(p<sub>1</sub>)).
- To decide which secant line to use to compute p<sub>3</sub>, consider f(p<sub>2</sub>) · f(p<sub>1</sub>), or more correctly sgn f(p<sub>2</sub>) · sgn f(p<sub>1</sub>):
  - If sgn f(p<sub>2</sub>) · sgn f(p<sub>1</sub>) < 0, then p<sub>1</sub> and p<sub>2</sub> bracket a root. Choose p<sub>3</sub> as the *x*-intercept of the line joining (p<sub>1</sub>, f(p<sub>1</sub>)) and (p<sub>2</sub>, f(p<sub>2</sub>)).
  - If not, choose  $p_3$  as the *x*-intercept of the line joining  $(p_0, f(p_0))$  and  $(p_2, f(p_2))$ , and then interchange the indices on  $p_0$  and  $p_1$ .

< ロ > < 同 > < 回 > < 回 >

#### Construction of the Method (Cont'd)

Numerical Analysis (Chapter 2)

Secant & Regula Falsi Methods

R L Burden & J D Faires 17 / 25

#### Construction of the Method (Cont'd)

 In a similar manner, once p<sub>3</sub> is found, the sign of f(p<sub>3</sub>) · f(p<sub>2</sub>) determines whether we use p<sub>2</sub> and p<sub>3</sub> or p<sub>3</sub> and p<sub>1</sub> to compute p<sub>4</sub>.

4 A N

#### Construction of the Method (Cont'd)

- In a similar manner, once p<sub>3</sub> is found, the sign of f(p<sub>3</sub>) · f(p<sub>2</sub>) determines whether we use p<sub>2</sub> and p<sub>3</sub> or p<sub>3</sub> and p<sub>1</sub> to compute p<sub>4</sub>.
- In the latter case, a relabeling of  $p_2$  and  $p_1$  is performed.

A D b 4 A b

#### Construction of the Method (Cont'd)

- In a similar manner, once p<sub>3</sub> is found, the sign of f(p<sub>3</sub>) ⋅ f(p<sub>2</sub>) determines whether we use p<sub>2</sub> and p<sub>3</sub> or p<sub>3</sub> and p<sub>1</sub> to compute p<sub>4</sub>.
- In the latter case, a relabeling of  $p_2$  and  $p_1$  is performed.
- The relabelling ensures that the root is bracketed between successive iterations.

A D b 4 A b

# Secant Method & Method of False Position



In this illustration, the first three approximations are the same for both methods, but the fourth approximations differ.

Numerical Analysis (Chapter 2)

Secant & Regula Falsi Methods

To find a solution to f(x) = 0, given the continuous function f on the interval  $[p_0, p_1]$  (where  $f(p_0)$  and  $f(p_1)$  have opposite signs) tolerance *TOL* and maximum number of iterations  $N_0$ .

To find a solution to f(x) = 0, given the continuous function f on the interval  $[p_0, p_1]$  (where  $f(p_0)$  and  $f(p_1)$  have opposite signs) tolerance *TOL* and maximum number of iterations  $N_0$ .

1 Set 
$$i = 2$$
;  $q_0 = f(p_0)$ ;  $q_1 = f(p_1)$ .

э

To find a solution to f(x) = 0, given the continuous function f on the interval  $[p_0, p_1]$  (where  $f(p_0)$  and  $f(p_1)$  have opposite signs) tolerance *TOL* and maximum number of iterations  $N_0$ .

- 1 Set i = 2;  $q_0 = f(p_0)$ ;  $q_1 = f(p_1)$ .
- 2 While  $i \leq N_0$  do Steps 3–7:

э

To find a solution to f(x) = 0, given the continuous function f on the interval  $[p_0, p_1]$  (where  $f(p_0)$  and  $f(p_1)$  have opposite signs) tolerance *TOL* and maximum number of iterations  $N_0$ .

- 1 Set i = 2;  $q_0 = f(p_0)$ ;  $q_1 = f(p_1)$ .
- 2 While  $i \leq N_0$  do Steps 3–7:
  - 3 Set  $p = p_1 q_1(p_1 p_0)/(q_1 q_0)$ . (Compute  $p_i$ )

э

To find a solution to f(x) = 0, given the continuous function f on the interval  $[p_0, p_1]$  (where  $f(p_0)$  and  $f(p_1)$  have opposite signs) tolerance *TOL* and maximum number of iterations  $N_0$ .

1 Set 
$$i = 2$$
;  $q_0 = f(p_0)$ ;  $q_1 = f(p_1)$ .

2 While  $i \leq N_0$  do Steps 3–7:

3 Set 
$$p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0)$$
. (Compute  $p_i$ )

4 If  $|p - p_1| < TOL$  then OUTPUT (*p*); (*The procedure was successful*): STOP

э

To find a solution to f(x) = 0, given the continuous function f on the interval  $[p_0, p_1]$  (where  $f(p_0)$  and  $f(p_1)$  have opposite signs) tolerance *TOL* and maximum number of iterations  $N_0$ .

1 Set 
$$i = 2$$
;  $q_0 = f(p_0)$ ;  $q_1 = f(p_1)$ .

2 While  $i \leq N_0$  do Steps 3–7:

3 Set 
$$p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0)$$
. (Compute  $p_i$ )

4 If |p - p<sub>1</sub>| < TOL then OUTPUT (p); (*The procedure was successful*): STOP
5 Set i = i + 1; q = f(p)

э

To find a solution to f(x) = 0, given the continuous function f on the interval  $[p_0, p_1]$  (where  $f(p_0)$  and  $f(p_1)$  have opposite signs) tolerance *TOL* and maximum number of iterations  $N_0$ .

1 Set 
$$i = 2$$
;  $q_0 = f(p_0)$ ;  $q_1 = f(p_1)$ .

2 While  $i \leq N_0$  do Steps 3–7:

3 Set 
$$p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0)$$
. (Compute  $p_i$ )

4 If 
$$|p - p_1| < TOL$$
 then  
OUTPUT (*p*); (*The procedure was successful*): STOP

5 Set 
$$i = i + 1$$
;  $q = f(p)$ 

6 If 
$$q \cdot q_1 < 0$$
 then set  $p_0 = p_1$ ;  $q_0 = q_1$ 

э

To find a solution to f(x) = 0, given the continuous function f on the interval  $[p_0, p_1]$  (where  $f(p_0)$  and  $f(p_1)$  have opposite signs) tolerance *TOL* and maximum number of iterations  $N_0$ .

1 Set 
$$i = 2$$
;  $q_0 = f(p_0)$ ;  $q_1 = f(p_1)$ .

2 While  $i \leq N_0$  do Steps 3–7:

3 Set 
$$p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0)$$
. (Compute  $p_i$ )

4 If 
$$|p - p_1| < TOL$$
 then  
OUTPUT (*p*); (*The procedure was successful*): STOP  
5 Set  $i = i + 1$ ;  $q = f(p)$ 

6 If 
$$q \cdot q_1 < 0$$
 then set  $p_0 = p_1$ ;  $q_0 = q_1$ 

7 Set 
$$p_1 = p; q_1 = q$$

э

To find a solution to f(x) = 0, given the continuous function f on the interval  $[p_0, p_1]$  (where  $f(p_0)$  and  $f(p_1)$  have opposite signs) tolerance *TOL* and maximum number of iterations  $N_0$ .

1 Set 
$$i = 2$$
;  $q_0 = f(p_0)$ ;  $q_1 = f(p_1)$ .

2 While  $i \leq N_0$  do Steps 3–7:

3 Set 
$$p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0)$$
. (Compute  $p_i$ )

4 If 
$$|p - p_1| < TOL$$
 then  
OUTPUT (*p*); (*The procedure was successful*): STOP

5 Set 
$$i = i + 1; q = f(p)$$

6 If 
$$q \cdot q_1 < 0$$
 then set  $p_0 = p_1; q_0 = q_1$ 

7 Set 
$$p_1 = p; q_1 = q$$

8 OUTPUT ('Method failed after  $N_0$  iterations,  $N_0 =$ ',  $N_0$ ); (*The procedure was unsuccessful*): STOP

Numerical Analysis (Chapter 2)

-

#### Comparison with Newton & Secant Methods

Use the method of False Position to find a solution to  $x = \cos x$ , and compare the approximations with those given in a previous example which Newton's method and the Secant Method.

Numerical Analysis (Chapter 2)

R L Burden & J D Faires 20 / 25

#### Comparison with Newton & Secant Methods

Use the method of False Position to find a solution to  $x = \cos x$ , and compare the approximations with those given in a previous example which Newton's method and the Secant Method.

To make a reasonable comparison we will use the same initial approximations as in the Secant method, that is,  $p_0 = 0.5$  and  $p_1 = \pi/4$ .

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

#### Comparison with Newton's Method & Secant Method

|   | False Position        | Secant         | Newton       |
|---|-----------------------|----------------|--------------|
| п | <i>p</i> <sub>n</sub> | p <sub>n</sub> | pn           |
| 0 | 0.5                   | 0.5            | 0.7853981635 |
| 1 | 0.7853981635          | 0.7853981635   | 0.7395361337 |
| 2 | 0.7363841388          | 0.7363841388   | 0.7390851781 |
| 3 | 0.7390581392          | 0.7390581392   | 0.7390851332 |
| 4 | 0.7390848638          | 0.7390851493   | 0.7390851332 |
| 5 | 0.7390851305          | 0.7390851332   |              |
| 6 | 0.7390851332          |                |              |

・ 同 ト ・ ヨ ト ・ ヨ

#### Comparison with Newton's Method & Secant Method

|   | False Position        | Secant         | Newton       |
|---|-----------------------|----------------|--------------|
| n | <i>p</i> <sub>n</sub> | p <sub>n</sub> | pn           |
| 0 | 0.5                   | 0.5            | 0.7853981635 |
| 1 | 0.7853981635          | 0.7853981635   | 0.7395361337 |
| 2 | 0.7363841388          | 0.7363841388   | 0.7390851781 |
| 3 | 0.7390581392          | 0.7390581392   | 0.7390851332 |
| 4 | 0.7390848638          | 0.7390851493   | 0.7390851332 |
| 5 | 0.7390851305          | 0.7390851332   |              |
| 6 | 0.7390851332          |                |              |

Note that the False Position and Secant approximations agree through  $p_3$  and that the method of False Position requires an additional iteration to obtain the same accuracy as the Secant method.

Numerical Analysis (Chapter 2)

Secant & Regula Falsi Methods

#### **Final Remarks**

Numerical Analysis (Chapter 2)

Secant & Regula Falsi Methods

R L Burden & J D Faires 22 / 25

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

#### **Final Remarks**

• The added insurance of the method of False Position commonly requires more calculation than the Secant method, ...

Numerical Analysis (Chapter 2)

Secant & Regula Falsi Methods

R L Burden & J D Faires 22 / 25

・ 同 ト ・ ヨ ト ・ ヨ

#### Final Remarks

- The added insurance of the method of False Position commonly requires more calculation than the Secant method, ...
- just as the simplification that the Secant method provides over Newton's method usually comes at the expense of additional iterations.

A (10) A (10) A (10)

# **Questions?**

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

# **Reference Material**

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

#### Exercise 14, Section 2.4

It can be shown (see, for example, Dahlquist and Å. Björck (1974), pp. 228–229), that if  $\{p_n\}_{n=0}^{\infty}$  are convergent Secant method approximations to p, the solution to f(x) = 0, then a constant C exists with

$$|p_{n+1}-p| pprox C |p_n-p| |p_{n-1}-p|$$

for sufficiently large values of *n*. Assume  $\{p_n\}$  converges to *p* of order  $\alpha$ , and show that

$$lpha = (1 + \sqrt{5})/2$$

(*Note:* This implies that the order of convergence of the Secant method is approximately 1.62).

Return to the Secant Method

Dahlquist, G. and Å. Björck (Translated by N. Anderson), *Numerical methods*, Prentice-Hall, Englewood Cliffs, NJ, 1974.