Solutions of Equations in One Variable

Secant \＆Regula Falsi Methods

Numerical Analysis（9th Edition）
R L Burden \＆J D Faires
Beamer Presentation Slides
prepared by
John Carroll
Dublin City University

（C） 2011 Brooks／Cole，Cengage Learning

Outline

Outline

(1) Secant Method: Derivation \& Algorithm
(2) Comparing the Secant \& Newton's Methods

Outline

(1) Secant Method: Derivation \& Algorithm
(2) Comparing the Secant \& Newton's Methods
(3) The Method of False Position (Regula Falsi)

Outline

(2) Comparing the Secant \& Newton's Methods

(3) The Method of False Position (Regula Falsi)

Rationale for the Secant Method

Problems with Newton's Method

Rationale for the Secant Method

Problems with Newton's Method

- Newton's method is an extremely powerful technique, but it has a major weakness: the need to know the value of the derivative of f at each approximation.

Rationale for the Secant Method

Problems with Newton's Method

- Newton's method is an extremely powerful technique, but it has a major weakness: the need to know the value of the derivative of f at each approximation.
- Frequently, $f^{\prime}(x)$ is far more difficult and needs more arithmetic operations to calculate than $f(x)$.

Derivation of the Secant Method

$$
f^{\prime}\left(p_{n-1}\right)=\lim _{x \rightarrow p_{n-1}} \frac{f(x)-f\left(p_{n-1}\right)}{x-p_{n-1}} .
$$

Circumvent the Derivative Evaluation

Derivation of the Secant Method

$$
f^{\prime}\left(p_{n-1}\right)=\lim _{x \rightarrow p_{n-1}} \frac{f(x)-f\left(p_{n-1}\right)}{x-p_{n-1}}
$$

Circumvent the Derivative Evaluation

If p_{n-2} is close to p_{n-1}, then

$$
f^{\prime}\left(p_{n-1}\right) \approx \frac{f\left(p_{n-2}\right)-f\left(p_{n-1}\right)}{p_{n-2}-p_{n-1}}=\frac{f\left(p_{n-1}\right)-f\left(p_{n-2}\right)}{p_{n-1}-p_{n-2}} .
$$

Derivation of the Secant Method

$$
f^{\prime}\left(p_{n-1}\right)=\lim _{x \rightarrow p_{n-1}} \frac{f(x)-f\left(p_{n-1}\right)}{x-p_{n-1}}
$$

Circumvent the Derivative Evaluation

If p_{n-2} is close to p_{n-1}, then

$$
f^{\prime}\left(p_{n-1}\right) \approx \frac{f\left(p_{n-2}\right)-f\left(p_{n-1}\right)}{p_{n-2}-p_{n-1}}=\frac{f\left(p_{n-1}\right)-f\left(p_{n-2}\right)}{p_{n-1}-p_{n-2}}
$$

Using this approximation for $f^{\prime}\left(p_{n-1}\right)$ in Newton's formula gives

$$
p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)\left(p_{n-1}-p_{n-2}\right)}{f\left(p_{n-1}\right)-f\left(p_{n-2}\right)}
$$

Derivation of the Secant Method

$$
f^{\prime}\left(p_{n-1}\right)=\lim _{x \rightarrow p_{n-1}} \frac{f(x)-f\left(p_{n-1}\right)}{x-p_{n-1}}
$$

Circumvent the Derivative Evaluation

If p_{n-2} is close to p_{n-1}, then

$$
f^{\prime}\left(p_{n-1}\right) \approx \frac{f\left(p_{n-2}\right)-f\left(p_{n-1}\right)}{p_{n-2}-p_{n-1}}=\frac{f\left(p_{n-1}\right)-f\left(p_{n-2}\right)}{p_{n-1}-p_{n-2}}
$$

Using this approximation for $f^{\prime}\left(p_{n-1}\right)$ in Newton's formula gives

$$
p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)\left(p_{n-1}-p_{n-2}\right)}{f\left(p_{n-1}\right)-f\left(p_{n-2}\right)}
$$

This technique is called the Secant method

Secant Method: Using Successive Secants

The Secant Method

$$
p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)\left(p_{n-1}-p_{n-2}\right)}{f\left(p_{n-1}\right)-f\left(p_{n-2}\right)}
$$

Procedure

The Secant Method

$$
p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)\left(p_{n-1}-p_{n-2}\right)}{f\left(p_{n-1}\right)-f\left(p_{n-2}\right)}
$$

Procedure

- Starting with the two initial approximations p_{0} and p_{1}, the approximation p_{2} is the x-intercept of the line joining $\left(p_{0}, f\left(p_{0}\right)\right)$ and $\left(p_{1}, f\left(p_{1}\right)\right)$.

The Secant Method

$$
p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)\left(p_{n-1}-p_{n-2}\right)}{f\left(p_{n-1}\right)-f\left(p_{n-2}\right)}
$$

Procedure

- Starting with the two initial approximations p_{0} and p_{1}, the approximation p_{2} is the x-intercept of the line joining $\left(p_{0}, f\left(p_{0}\right)\right)$ and $\left(p_{1}, f\left(p_{1}\right)\right)$.
- The approximation p_{3} is the x-intercept of the line joining $\left(p_{1}, f\left(p_{1}\right)\right)$ and $\left(p_{2}, f\left(p_{2}\right)\right)$, and so on.

The Secant Method

$$
p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)\left(p_{n-1}-p_{n-2}\right)}{f\left(p_{n-1}\right)-f\left(p_{n-2}\right)}
$$

Procedure

- Starting with the two initial approximations p_{0} and p_{1}, the approximation p_{2} is the x-intercept of the line joining $\left(p_{0}, f\left(p_{0}\right)\right)$ and $\left(p_{1}, f\left(p_{1}\right)\right)$.
- The approximation p_{3} is the x-intercept of the line joining $\left(p_{1}, f\left(p_{1}\right)\right)$ and ($\left.p_{2}, f\left(p_{2}\right)\right)$, and so on.
- Note that only one function evaluation is needed per step for the Secant method after p_{2} has been determined.

The Secant Method

$$
p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)\left(p_{n-1}-p_{n-2}\right)}{f\left(p_{n-1}\right)-f\left(p_{n-2}\right)}
$$

Procedure

- Starting with the two initial approximations p_{0} and p_{1}, the approximation p_{2} is the x-intercept of the line joining $\left(p_{0}, f\left(p_{0}\right)\right)$ and $\left(p_{1}, f\left(p_{1}\right)\right)$.
- The approximation p_{3} is the x-intercept of the line joining $\left(p_{1}, f\left(p_{1}\right)\right)$ and ($\left.p_{2}, f\left(p_{2}\right)\right)$, and so on.
- Note that only one function evaluation is needed per step for the Secant method after p_{2} has been determined.
- In contrast, each step of Newton's method requires an evaluation of both the function and its derivative.

The Secant Method: Algorithm

To find a solution to $f(x)=0$ given initial approximations p_{0} and p_{1}; tolerance $T O L$; maximum number of iterations N_{0}.

The Secant Method: Algorithm

To find a solution to $f(x)=0$ given initial approximations p_{0} and p_{1}; tolerance $T O L$; maximum number of iterations N_{0}.

1 Set $i=2, q_{0}=f\left(p_{0}\right), q_{1}=f\left(p_{1}\right)$

The Secant Method: Algorithm

To find a solution to $f(x)=0$ given initial approximations p_{0} and p_{1}; tolerance TOL; maximum number of iterations N_{0}.

1 Set $i=2, q_{0}=f\left(p_{0}\right), q_{1}=f\left(p_{1}\right)$
2 While $i \leq N_{0}$ do Steps 3-6:

The Secant Method: Algorithm

To find a solution to $f(x)=0$ given initial approximations p_{0} and p_{1}; tolerance TOL; maximum number of iterations N_{0}.

1 Set $i=2, q_{0}=f\left(p_{0}\right), q_{1}=f\left(p_{1}\right)$
2 While $i \leq N_{0}$ do Steps 3-6:

$$
3 \text { Set } p=p_{1}-q_{1}\left(p_{1}-p_{0}\right) /\left(q_{1}-q_{0}\right) . \quad\left(\text { Compute } p_{i}\right)
$$

The Secant Method: Algorithm

To find a solution to $f(x)=0$ given initial approximations p_{0} and p_{1}; tolerance TOL; maximum number of iterations N_{0}.

1 Set $i=2, q_{0}=f\left(p_{0}\right), q_{1}=f\left(p_{1}\right)$
2 While $i \leq N_{0}$ do Steps 3-6:
3 Set $p=p_{1}-q_{1}\left(p_{1}-p_{0}\right) /\left(q_{1}-q_{0}\right)$. (Compute $\left.p_{i}\right)$
4 If $\left|p-p_{1}\right|<T O L$ then
OUTPUT (p); (The procedure was successful.) STOP

The Secant Method: Algorithm

To find a solution to $f(x)=0$ given initial approximations p_{0} and p_{1}; tolerance TOL; maximum number of iterations N_{0}.

1 Set $i=2, q_{0}=f\left(p_{0}\right), q_{1}=f\left(p_{1}\right)$
2 While $i \leq N_{0}$ do Steps 3-6:
3 Set $p=p_{1}-q_{1}\left(p_{1}-p_{0}\right) /\left(q_{1}-q_{0}\right)$. (Compute $\left.p_{i}\right)$
4 If $\left|p-p_{1}\right|<T O L$ then
OUTPUT (p); (The procedure was successful.) STOP
5 Set $i=i+1$

The Secant Method: Algorithm

To find a solution to $f(x)=0$ given initial approximations p_{0} and p_{1}; tolerance TOL; maximum number of iterations N_{0}.

1 Set $i=2, q_{0}=f\left(p_{0}\right), q_{1}=f\left(p_{1}\right)$
2 While $i \leq N_{0}$ do Steps 3-6:
3 Set $p=p_{1}-q_{1}\left(p_{1}-p_{0}\right) /\left(q_{1}-q_{0}\right)$. (Compute $\left.p_{i}\right)$
4 If $\left|p-p_{1}\right|<T O L$ then
OUTPUT (p); (The procedure was successful.) STOP
5 Set $i=i+1$
6 Set $p_{0}=p_{1} ;$ (Update $\left.p_{0}, q_{0}, p_{1}, q_{1}\right)$
$q_{0}=q_{1} ; p_{1}=p ; q_{1}=f(p)$

The Secant Method: Algorithm

To find a solution to $f(x)=0$ given initial approximations p_{0} and p_{1}; tolerance TOL; maximum number of iterations N_{0}.

1 Set $i=2, q_{0}=f\left(p_{0}\right), q_{1}=f\left(p_{1}\right)$
2 While $i \leq N_{0}$ do Steps 3-6:
3 Set $p=p_{1}-q_{1}\left(p_{1}-p_{0}\right) /\left(q_{1}-q_{0}\right)$. (Compute $\left.p_{i}\right)$
4 If $\left|p-p_{1}\right|<T O L$ then
OUTPUT (p); (The procedure was successful.) STOP
5 Set $i=i+1$
6 Set $p_{0}=p_{1} ;$ (Update $\left.p_{0}, q_{0}, p_{1}, q_{1}\right)$
$q_{0}=q_{1} ; p_{1}=p ; q_{1}=f(p)$
7 OUTPUT ('The method failed after N_{0} iterations, $N_{0}=$ ', N_{0}); (The procedure was unsuccessful) STOP

Outline

(1) Secant Method: Derivation \& Algorithm

(2) Comparing the Secant \& Newton's Methods

(3) The Method of False Position (Regula Falsi)

Comparing the Secant \& Newton's Methods

Example: $f(x)=\cos x-x$

Use the Secant method to find a solution to $x=\cos x$, and compare the approximations with those given by Newton's method with $p_{0}=\pi / 4$.

Formula for the Secant Method

Comparing the Secant \& Newton's Methods

Example: $f(x)=\cos x-x$

Use the Secant method to find a solution to $x=\cos x$, and compare the approximations with those given by Newton's method with $p_{0}=\pi / 4$.

Formula for the Secant Method

We need two initial approximations. Suppose we use $p_{0}=0.5$ and $p_{1}=\pi / 4$.

Comparing the Secant \& Newton's Methods

Example: $f(x)=\cos x-x$

Use the Secant method to find a solution to $x=\cos x$, and compare the approximations with those given by Newton's method with $p_{0}=\pi / 4$.

Formula for the Secant Method

We need two initial approximations. Suppose we use $p_{0}=0.5$ and $p_{1}=\pi / 4$. Succeeding approximations are generated by the formula

$$
p_{n}=p_{n-1}-\frac{\left(p_{n-1}-p_{n-2}\right)\left(\cos p_{n-1}-p_{n-1}\right)}{\left(\cos p_{n-1}-p_{n-1}\right)-\left(\cos p_{n-2}-p_{n-2}\right)}, \quad \text { for } n \geq 2
$$

Comparing the Secant \& Newton's Methods

Newton's Method for $f(x)=\cos (x)-x, p_{0}=\frac{\pi}{4}$

n	p_{n-1}	$f\left(p_{n-1}\right)$	$f^{\prime}\left(p_{n-1}\right)$	p_{n}	$\left\|p_{n}-p_{n-1}\right\|$
1	0.78539816	-0.078291	-1.707107	0.73953613	0.04586203
2	0.73953613	-0.000755	-1.673945	0.73908518	0.00045096
3	0.73908518	-0.000000	-1.673612	0.73908513	0.00000004
4	0.73908513	-0.000000	-1.673612	0.73908513	0.00000000

Comparing the Secant \& Newton's Methods

Newton's Method for $f(x)=\cos (x)-x, p_{0}=\frac{\pi}{4}$

n	p_{n-1}	$f\left(p_{n-1}\right)$	$f^{\prime}\left(p_{n-1}\right)$	p_{n}	$\left\|p_{n}-p_{n-1}\right\|$
1	0.78539816	-0.078291	-1.707107	0.73953613	0.04586203
2	0.73953613	-0.000755	-1.673945	0.73908518	0.00045096
3	0.73908518	-0.000000	-1.673612	0.73908513	0.00000004
4	0.73908513	-0.000000	-1.673612	0.73908513	0.00000000

- An excellent approximation is obtained with $n=3$.

Comparing the Secant \& Newton's Methods

Newton's Method for $f(x)=\cos (x)-x, p_{0}=\frac{\pi}{4}$

n	p_{n-1}	$f\left(p_{n-1}\right)$	$f^{\prime}\left(p_{n-1}\right)$	p_{n}	$\left\|p_{n}-p_{n-1}\right\|$
1	0.78539816	-0.078291	-1.707107	0.73953613	0.04586203
2	0.73953613	-0.000755	-1.673945	0.73908518	0.00045096
3	0.73908518	-0.000000	-1.673612	0.73908513	0.00000004
4	0.73908513	-0.000000	-1.673612	0.73908513	0.00000000

- An excellent approximation is obtained with $n=3$.
- Because of the agreement of p_{3} and p_{4} we could reasonably expect this result to be accurate to the places listed.

Comparing the Secant \& Newton's Methods

Secant Method for $f(x)=\cos (x)-x, p_{0}=0.5, p_{1}=\frac{\pi}{4}$

n	p_{n-2}	p_{n-1}	p_{n}	$\left\|p_{n}-p_{n-1}\right\|$
2	0.500000000	0.785398163	0.736384139	0.0490140246
3	0.785398163	0.736384139	0.739058139	0.0026740004
4	0.736384139	0.739058139	0.739085149	0.0000270101
5	0.739058139	0.739085149	0.739085133	0.0000000161

Comparing the Secant \& Newton's Methods

Secant Method for $f(x)=\cos (x)-x, p_{0}=0.5, p_{1}=\frac{\pi}{4}$

n	p_{n-2}	p_{n-1}	p_{n}	$\left\|p_{n}-p_{n-1}\right\|$
2	0.500000000	0.785398163	0.736384139	0.0490140246
3	0.785398163	0.736384139	0.739058139	0.0026740004
4	0.736384139	0.739058139	0.739085149	0.0000270101
5	0.739058139	0.739085149	0.739085133	0.0000000161

- Comparing results, we see that the Secant Method approximation p_{5} is accurate to the tenth decimal place, whereas Newton's method obtained this accuracy by p_{3}.

Comparing the Secant \& Newton's Methods

Secant Method for $f(x)=\cos (x)-x, p_{0}=0.5, p_{1}=\frac{\pi}{4}$

n	p_{n-2}	p_{n-1}	p_{n}	$\left\|p_{n}-p_{n-1}\right\|$
2	0.500000000	0.785398163	0.736384139	0.0490140246
3	0.785398163	0.736384139	0.739058139	0.0026740004
4	0.736384139	0.739058139	0.739085149	0.0000270101
5	0.739058139	0.739085149	0.739085133	0.0000000161

- Comparing results, we see that the Secant Method approximation p_{5} is accurate to the tenth decimal place, whereas Newton's method obtained this accuracy by p_{3}.
- Here, the convergence of the Secant method is much faster than functional iteration but slightly slower than Newton's method.

Comparing the Secant \& Newton's Methods

Secant Method for $f(x)=\cos (x)-x, p_{0}=0.5, p_{1}=\frac{\pi}{4}$

n	p_{n-2}	p_{n-1}	p_{n}	$\left\|p_{n}-p_{n-1}\right\|$
2	0.500000000	0.785398163	0.736384139	0.0490140246
3	0.785398163	0.736384139	0.739058139	0.0026740004
4	0.736384139	0.739058139	0.739085149	0.0000270101
5	0.739058139	0.739085149	0.739085133	0.0000000161

- Comparing results, we see that the Secant Method approximation p_{5} is accurate to the tenth decimal place, whereas Newton's method obtained this accuracy by p_{3}.
- Here, the convergence of the Secant method is much faster than functional iteration but slightly slower than Newton's method.
- This is generally the case. Order of Conereane

The Secant Method

Final Remarks

The Secant Method

Final Remarks

- The Secant method and Newton's method are often used to refine an answer obtained by another technique (such as the Bisection Method).

The Secant Method

Final Remarks

- The Secant method and Newton's method are often used to refine an answer obtained by another technique (such as the Bisection Method).
- Both methods require good first approximations but generally give rapid acceleration.

Outline

(1) Secant Method: Derivation \& Algorithm

2 Comparing the Secant \& Newton's Methods

(3) The Method of False Position (Regula Falsi)

The Method of False Position

Bracketing a Root

The Method of False Position

Bracketing a Root

- Unlike the Bisection Method, root bracketing is not guaranteed for either Newton's method or the Secant method.

The Method of False Position

Bracketing a Root

- Unlike the Bisection Method, root bracketing is not guaranteed for either Newton's method or the Secant method.
- The method of False Position (also called Regula Falsi) generates approximations in the same manner as the Secant method, but it includes a test to ensure that the root is always bracketed between successive iterations.

The Method of False Position

Bracketing a Root

- Unlike the Bisection Method, root bracketing is not guaranteed for either Newton's method or the Secant method.
- The method of False Position (also called Regula Falsi) generates approximations in the same manner as the Secant method, but it includes a test to ensure that the root is always bracketed between successive iterations.
- Although it is not a method we generally recommend, it illustrates how bracketing can be incorporated.

The Method of False Position

Construction of the Method

- First choose initial approximations p_{0} and p_{1} with $f\left(p_{0}\right) \cdot f\left(p_{1}\right)<0$.

The Method of False Position

Construction of the Method

- First choose initial approximations p_{0} and p_{1} with $f\left(p_{0}\right) \cdot f\left(p_{1}\right)<0$.
- The approximation p_{2} is chosen in the same manner as in the Secant method, as the x-intercept of the line joining $\left(p_{0}, f\left(p_{0}\right)\right)$ and $\left(p_{1}, f\left(p_{1}\right)\right)$.

The Method of False Position

Construction of the Method

- First choose initial approximations p_{0} and p_{1} with $f\left(p_{0}\right) \cdot f\left(p_{1}\right)<0$.
- The approximation p_{2} is chosen in the same manner as in the Secant method, as the x-intercept of the line joining $\left(p_{0}, f\left(p_{0}\right)\right)$ and $\left(p_{1}, f\left(p_{1}\right)\right)$.
- To decide which secant line to use to compute p_{3}, consider $f\left(p_{2}\right) \cdot f\left(p_{1}\right)$, or more correctly sgn $f\left(p_{2}\right) \cdot \operatorname{sgn} f\left(p_{1}\right)$:

The Method of False Position

Construction of the Method

- First choose initial approximations p_{0} and p_{1} with $f\left(p_{0}\right) \cdot f\left(p_{1}\right)<0$.
- The approximation p_{2} is chosen in the same manner as in the Secant method, as the x-intercept of the line joining $\left(p_{0}, f\left(p_{0}\right)\right)$ and $\left(p_{1}, f\left(p_{1}\right)\right)$.
- To decide which secant line to use to compute p_{3}, consider $f\left(p_{2}\right) \cdot f\left(p_{1}\right)$, or more correctly sgn $f\left(p_{2}\right) \cdot \operatorname{sgn} f\left(p_{1}\right)$:
- If $\operatorname{sgn} f\left(p_{2}\right) \cdot \operatorname{sgn} f\left(p_{1}\right)<0$, then p_{1} and p_{2} bracket a root. Choose p_{3} as the x-intercept of the line joining $\left(p_{1}, f\left(p_{1}\right)\right)$ and $\left(p_{2}, f\left(p_{2}\right)\right)$.

The Method of False Position

Construction of the Method

- First choose initial approximations p_{0} and p_{1} with $f\left(p_{0}\right) \cdot f\left(p_{1}\right)<0$.
- The approximation p_{2} is chosen in the same manner as in the Secant method, as the x-intercept of the line joining $\left(p_{0}, f\left(p_{0}\right)\right)$ and $\left(p_{1}, f\left(p_{1}\right)\right)$.
- To decide which secant line to use to compute p_{3}, consider $f\left(p_{2}\right) \cdot f\left(p_{1}\right)$, or more correctly sgn $f\left(p_{2}\right) \cdot \operatorname{sgn} f\left(p_{1}\right)$:
- If $\operatorname{sgn} f\left(p_{2}\right) \cdot \operatorname{sgn} f\left(p_{1}\right)<0$, then p_{1} and p_{2} bracket a root. Choose p_{3} as the x-intercept of the line joining $\left(p_{1}, f\left(p_{1}\right)\right)$ and $\left(p_{2}, f\left(p_{2}\right)\right)$.
- If not, choose p_{3} as the x-intercept of the line joining $\left(p_{0}, f\left(p_{0}\right)\right)$ and $\left(p_{2}, f\left(p_{2}\right)\right)$, and then interchange the indices on p_{0} and p_{1}.

The Method of False Position

Construction of the Method (Cont'd)

The Method of False Position

Construction of the Method (Cont'd)

- In a similar manner, once p_{3} is found, the sign of $f\left(p_{3}\right) \cdot f\left(p_{2}\right)$ determines whether we use p_{2} and p_{3} or p_{3} and p_{1} to compute p_{4}.

The Method of False Position

Construction of the Method (Cont'd)

- In a similar manner, once p_{3} is found, the sign of $f\left(p_{3}\right) \cdot f\left(p_{2}\right)$ determines whether we use p_{2} and p_{3} or p_{3} and p_{1} to compute p_{4}.
- In the latter case, a relabeling of p_{2} and p_{1} is performed.

The Method of False Position

Construction of the Method (Cont'd)

- In a similar manner, once p_{3} is found, the sign of $f\left(p_{3}\right) \cdot f\left(p_{2}\right)$ determines whether we use p_{2} and p_{3} or p_{3} and p_{1} to compute p_{4}.
- In the latter case, a relabeling of p_{2} and p_{1} is performed.
- The relabelling ensures that the root is bracketed between successive iterations.

Secant Method \& Method of False Position

Secant method

Method of False Position

In this illustration, the first three approximations are the same for both methods, but the fourth approximations differ.

The Method of False Position: Algorithm

To find a solution to $f(x)=0$, given the continuous function f on the interval [p_{0}, p_{1}] (where $f\left(p_{0}\right)$ and $f\left(p_{1}\right)$ have opposite signs) tolerance TOL and maximum number of iterations N_{0}.

The Method of False Position: Algorithm

To find a solution to $f(x)=0$, given the continuous function f on the interval $\left[p_{0}, p_{1}\right]$ (where $f\left(p_{0}\right)$ and $f\left(p_{1}\right)$ have opposite signs) tolerance $T O L$ and maximum number of iterations N_{0}.

1 Set $i=2 ; q_{0}=f\left(p_{0}\right) ; q_{1}=f\left(p_{1}\right)$.

The Method of False Position: Algorithm

To find a solution to $f(x)=0$, given the continuous function f on the interval $\left[p_{0}, p_{1}\right]$ (where $f\left(p_{0}\right)$ and $f\left(p_{1}\right)$ have opposite signs) tolerance $T O L$ and maximum number of iterations N_{0}.

1 Set $i=2 ; q_{0}=f\left(p_{0}\right) ; q_{1}=f\left(p_{1}\right)$.
2 While $i \leq N_{0}$ do Steps 3-7:

The Method of False Position: Algorithm

To find a solution to $f(x)=0$, given the continuous function f on the interval $\left[p_{0}, p_{1}\right]$ (where $f\left(p_{0}\right)$ and $f\left(p_{1}\right)$ have opposite signs) tolerance TOL and maximum number of iterations N_{0}.

1 Set $i=2 ; q_{0}=f\left(p_{0}\right) ; q_{1}=f\left(p_{1}\right)$.
2 While $i \leq N_{0}$ do Steps 3-7:

$$
3 \text { Set } p=p_{1}-q_{1}\left(p_{1}-p_{0}\right) /\left(q_{1}-q_{0}\right) . \quad\left(\text { Compute } p_{i}\right)
$$

The Method of False Position: Algorithm

To find a solution to $f(x)=0$, given the continuous function f on the interval $\left[p_{0}, p_{1}\right]$ (where $f\left(p_{0}\right)$ and $f\left(p_{1}\right)$ have opposite signs) tolerance TOL and maximum number of iterations N_{0}.

1 Set $i=2 ; q_{0}=f\left(p_{0}\right) ; q_{1}=f\left(p_{1}\right)$.
2 While $i \leq N_{0}$ do Steps 3-7:
3 Set $p=p_{1}-q_{1}\left(p_{1}-p_{0}\right) /\left(q_{1}-q_{0}\right)$. (Compute $\left.p_{i}\right)$
4 If $\left|p-p_{1}\right|<T O L$ then
OUTPUT (p); (The procedure was successful): STOP

The Method of False Position: Algorithm

To find a solution to $f(x)=0$, given the continuous function f on the interval $\left[p_{0}, p_{1}\right]$ (where $f\left(p_{0}\right)$ and $f\left(p_{1}\right)$ have opposite signs) tolerance TOL and maximum number of iterations N_{0}.

1 Set $i=2 ; q_{0}=f\left(p_{0}\right) ; q_{1}=f\left(p_{1}\right)$.
2 While $i \leq N_{0}$ do Steps 3-7:
3 Set $p=p_{1}-q_{1}\left(p_{1}-p_{0}\right) /\left(q_{1}-q_{0}\right)$. (Compute $\left.p_{i}\right)$
4 If $\left|p-p_{1}\right|<T O L$ then
OUTPUT (p); (The procedure was successful): STOP
5 Set $i=i+1 ; q=f(p)$

The Method of False Position: Algorithm

To find a solution to $f(x)=0$, given the continuous function f on the interval $\left[p_{0}, p_{1}\right]$ (where $f\left(p_{0}\right)$ and $f\left(p_{1}\right)$ have opposite signs) tolerance $T O L$ and maximum number of iterations N_{0}.

1 Set $i=2 ; q_{0}=f\left(p_{0}\right) ; q_{1}=f\left(p_{1}\right)$.
2 While $i \leq N_{0}$ do Steps 3-7:
3 Set $p=p_{1}-q_{1}\left(p_{1}-p_{0}\right) /\left(q_{1}-q_{0}\right)$. (Compute $\left.p_{i}\right)$
4 If $\left|p-p_{1}\right|<T O L$ then
OUTPUT (p); (The procedure was successful): STOP
5 Set $i=i+1 ; q=f(p)$
6 If $q \cdot q_{1}<0$ then set $p_{0}=p_{1} ; q_{0}=q_{1}$

The Method of False Position: Algorithm

To find a solution to $f(x)=0$, given the continuous function f on the interval $\left[p_{0}, p_{1}\right]$ (where $f\left(p_{0}\right)$ and $f\left(p_{1}\right)$ have opposite signs) tolerance TOL and maximum number of iterations N_{0}.

1 Set $i=2 ; q_{0}=f\left(p_{0}\right) ; q_{1}=f\left(p_{1}\right)$.
2 While $i \leq N_{0}$ do Steps 3-7:
3 Set $p=p_{1}-q_{1}\left(p_{1}-p_{0}\right) /\left(q_{1}-q_{0}\right)$. (Compute $\left.p_{i}\right)$
4 If $\left|p-p_{1}\right|<T O L$ then
OUTPUT (p); (The procedure was successful): STOP
5 Set $i=i+1 ; q=f(p)$
6 If $q \cdot q_{1}<0$ then set $p_{0}=p_{1} ; q_{0}=q_{1}$
7 Set $p_{1}=p ; q_{1}=q$

The Method of False Position: Algorithm

To find a solution to $f(x)=0$, given the continuous function f on the interval $\left[p_{0}, p_{1}\right]$ (where $f\left(p_{0}\right)$ and $f\left(p_{1}\right)$ have opposite signs) tolerance $T O L$ and maximum number of iterations N_{0}.

1 Set $i=2 ; q_{0}=f\left(p_{0}\right) ; q_{1}=f\left(p_{1}\right)$.
2 While $i \leq N_{0}$ do Steps 3-7:

```
3 Set \(p=p_{1}-q_{1}\left(p_{1}-p_{0}\right) /\left(q_{1}-q_{0}\right)\). (Compute \(\left.p_{i}\right)\)
```

4 If $\left|p-p_{1}\right|<T O L$ then
OUTPUT (p); (The procedure was successful): STOP
5 Set $i=i+1 ; q=f(p)$
6 If $q \cdot q_{1}<0$ then set $p_{0}=p_{1} ; q_{0}=q_{1}$
7 Set $p_{1}=p ; q_{1}=q$
8 OUTPUT ('Method failed after N_{0} iterations, $N_{0}=$ ', N_{0}); (The procedure was unsuccessful): STOP

The Method of False Position: Numerical Calculations

Comparison with Newton \& Secant Methods

Use the method of False Position to find a solution to $x=\cos x$, and compare the approximations with those given in a previous example which Newton's method and the Secant Method.

The Method of False Position: Numerical Calculations

Comparison with Newton \& Secant Methods

Use the method of False Position to find a solution to $x=\cos x$, and compare the approximations with those given in a previous example which Newton's method and the Secant Method.

To make a reasonable comparison we will use the same initial approximations as in the Secant method, that is, $p_{0}=0.5$ and $p_{1}=\pi / 4$.

The Method of False Position: Numerical Calculations

Comparison with Newton's Method \& Secant Method

	False Position	Secant	Newton
n	p_{n}	p_{n}	p_{n}
0	0.5	0.5	0.7853981635
1	0.7853981635	0.7853981635	0.7395361337
2	0.7363841388	0.7363841388	0.7390851781
3	0.7390581392	0.7390581392	0.7390851332
4	0.7390848638	0.7390851493	0.7390851332
5	0.7390851305	0.7390851332	
6	0.7390851332		

The Method of False Position: Numerical Calculations

Comparison with Newton's Method \& Secant Method

	False Position	Secant	Newton
n	p_{n}	p_{n}	p_{n}
0	0.5	0.5	0.7853981635
1	0.7853981635	0.7853981635	0.7395361337
2	0.7363841388	0.7363841388	0.7390851781
3	0.7390581392	0.7390581392	0.7390851332
4	0.7390848638	0.7390851493	0.7390851332
5	0.7390851305	0.7390851332	
6	0.7390851332		

Note that the False Position and Secant approximations agree through p_{3} and that the method of False Position requires an additional iteration to obtain the same accuracy as the Secant method.

The Method of False Position

Final Remarks

The Method of False Position

Final Remarks

- The added insurance of the method of False Position commonly requires more calculation than the Secant method, ...

The Method of False Position

Final Remarks

- The added insurance of the method of False Position commonly requires more calculation than the Secant method, ...
- just as the simplification that the Secant method provides over Newton's method usually comes at the expense of additional iterations.

Questions?

Reference Material

Order of Convergence of the Secant Method

Exercise 14, Section 2.4

It can be shown (see, for example, Dahlquist and Å. Björck (1974), pp. 228-229), that if $\left\{p_{n}\right\}_{n=0}^{\infty}$ are convergent Secant method approximations to p, the solution to $f(x)=0$, then a constant C exists with

$$
\left|p_{n+1}-p\right| \approx C\left|p_{n}-p\right|\left|p_{n-1}-p\right|
$$

for sufficiently large values of n. Assume $\left\{p_{n}\right\}$ converges to p of order α, and show that

$$
\alpha=(1+\sqrt{5}) / 2
$$

(Note: This implies that the order of convergence of the Secant method is approximately 1.62).

Dahlquist, G. and Å. Björck (Translated by N. Anderson), Numerical methods, Prentice-Hall, Englewood Cliffs, NJ, 1974.

