Interpolation & Polynomial Approximation

Lagrange Interpolating Polynomials I

Numerical Analysis (9th Edition) R L Burden & J D Faires

Beamer Presentation Slides prepared by John Carroll Dublin City University

© 2011 Brooks/Cole, Cengage Learning

A (10) > A (10) > A (10)

Inaccuracy of Taylor Polynomials

< 17 ▶

Inaccuracy of Taylor Polynomials

< 6 b

Inaccuracy of Taylor Polynomials

- 3 Constructing the Lagrange Polynomial
- Example: Second-Degree Lagrange Interpolating Polynomial

- 2 Inaccuracy of Taylor Polynomials
- 3 Constructing the Lagrange Polynomial
- Example: Second-Degree Lagrange Interpolating Polynomial

Weierstrass Approximation Theorem

Algebraic Polynomials

Numerical Analysis (Chapter 3)

Lagrange Interpolating Polynomials I

R L Burden & J D Faires 4 / 33

Weierstrass Approximation Theorem

Algebraic Polynomials

One of the most useful and well-known classes of functions mapping the set of real numbers into itself is the algebraic polynomials, the set of functions of the form

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where *n* is a nonnegative integer and a_0, \ldots, a_n are real constants.

Weierstrass Approximation Theorem

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0,$$

Algebraic Polynomials (Cont'd)

Weierstrass Approximation Theorem

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0,$$

Algebraic Polynomials (Cont'd)

• One reason for their importance is that they uniformly approximate continuous functions.

A (10) > A (10) > A (10)

Weierstrass Approximation Theorem

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0,$$

Algebraic Polynomials (Cont'd)

- One reason for their importance is that they uniformly approximate continuous functions.
- By this we mean that given any function, defined and continuous on a closed and bounded interval, there exists a polynomial that is as "close" to the given function as desired.

Weierstrass Approximation Theorem

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0,$$

Algebraic Polynomials (Cont'd)

- One reason for their importance is that they uniformly approximate continuous functions.
- By this we mean that given any function, defined and continuous on a closed and bounded interval, there exists a polynomial that is as "close" to the given function as desired.
- This result is expressed precisely in the Weierstrass Approximation Theorem.

Weierstrass Approximation Theorem

Suppose that *f* is defined and continuous on [*a*, *b*]. For each $\epsilon > 0$, there exists a polynomial *P*(*x*), with the property that

$$|f(x) - P(x)| < \epsilon$$
, for all x in [a, b].

A (10) > A (10) > A (10)

Benefits of Algebraic Polynomials

Numerical Analysis (Chapter 3)

Lagrange Interpolating Polynomials I

R L Burden & J D Faires 7 / 33

A (10) > A (10) > A (10)

Benefits of Algebraic Polynomials

 Another important reason for considering the class of polynomials in the approximation of functions is that the derivative and indefinite integral of a polynomial are easy to determine and are also polynomials.

4 A N

Benefits of Algebraic Polynomials

- Another important reason for considering the class of polynomials in the approximation of functions is that the derivative and indefinite integral of a polynomial are easy to determine and are also polynomials.
- For these reasons, polynomials are often used for approximating continuous functions.

A B b 4 B b

A D M A A A M M

Inaccuracy of Taylor Polynomials

- 3 Constructing the Lagrange Polynomial
- Example: Second-Degree Lagrange Interpolating Polynomial

The Lagrange Polynomial: Taylor Polynomials

Interpolating with Taylor Polynomials

Numerical Analysis (Chapter 3)

Interpolating with Taylor Polynomials

 The Taylor polynomials are described as one of the fundamental building blocks of numerical analysis.

(4) (5) (4) (5)

Interpolating with Taylor Polynomials

- The Taylor polynomials are described as one of the fundamental building blocks of numerical analysis.
- Given this prominence, you might expect that polynomial interpolation would make heavy use of these functions.

Interpolating with Taylor Polynomials

- The Taylor polynomials are described as one of the fundamental building blocks of numerical analysis.
- Given this prominence, you might expect that polynomial interpolation would make heavy use of these functions.
- However this is not the case.

Interpolating with Taylor Polynomials

- The Taylor polynomials are described as one of the fundamental building blocks of numerical analysis.
- Given this prominence, you might expect that polynomial interpolation would make heavy use of these functions.
- However this is not the case.
- The Taylor polynomials agree as closely as possible with a given function at a specific point, but they concentrate their accuracy near that point.

Interpolating with Taylor Polynomials

- The Taylor polynomials are described as one of the fundamental building blocks of numerical analysis.
- Given this prominence, you might expect that polynomial interpolation would make heavy use of these functions.
- However this is not the case.
- The Taylor polynomials agree as closely as possible with a given function at a specific point, but they concentrate their accuracy near that point.
- A good interpolation polynomial needs to provide a relatively accurate approximation over an entire interval, and Taylor polynomials do not generally do this.

< ロ > < 同 > < 回 > < 回 >

Example: $f(x) = e^x$

We will calculate the first six Taylor polynomials about $x_0 = 0$ for $f(x) = e^x$.

Example: $f(x) = e^x$

We will calculate the first six Taylor polynomials about $x_0 = 0$ for $f(x) = e^x$.

Note

Since the derivatives of f(x) are all e^x , which evaluated at $x_0 = 0$ gives 1.

10/33

< ロ > < 同 > < 回 > < 回 >

Example: $f(x) = e^x$

We will calculate the first six Taylor polynomials about $x_0 = 0$ for $f(x) = e^x$.

Note

Since the derivatives of f(x) are all e^x , which evaluated at $x_0 = 0$ gives 1.

The Taylor polynomials are as follows:

Taylor Polynomials for $f(x) = e^x$ about $x_0 = 0$

$$P_0(x) = 1$$

$$P_{1}(x) = 1 + x$$

$$P_{2}(x) = 1 + x + \frac{x^{2}}{2}$$

$$P_{3}(x) = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6}$$

$$P_4(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}$$

$$P_5(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120}$$

Taylor Polynomials for $f(x) = e^x$ about $x_0 = 0$

Notice that even for the higher-degree polynomials, the error becomes progressively worse as we move away from zero.

Numerical Analysis (Chapter 3)

Lagrange Interpolating Polynomials I

R L Burden & J D Faires

12/33

Taylor Polynomials for $f(x) = \frac{1}{x}$ about $x_0 = 1$

Example: A more extreme case

Numerical Analysis (Chapter 3)

Lagrange Interpolating Polynomials I

R L Burden & J D Faires

13/33

Taylor Polynomials for $f(x) = \frac{1}{x}$ about $x_0 = 1$

Example: A more extreme case

• Although better approximations are obtained for $f(x) = e^x$ if higher-degree Taylor polynomials are used, this is not true for all functions.

イロト イポト イヨト イヨ

Taylor Polynomials for $f(x) = \frac{1}{x}$ about $x_0 = 1$

Example: A more extreme case

- Although better approximations are obtained for $f(x) = e^x$ if higher-degree Taylor polynomials are used, this is not true for all functions.
- Consider, as an extreme example, using Taylor polynomials of various degrees for f(x) = ¹/_x expanded about x₀ = 1 to approximate f(3) = ¹/₃.

Taylor Polynomials for $f(x) = \frac{1}{x}$ about $x_0 = 1$

Calculations

Numerical Analysis (Chapter 3)

Taylor Polynomials for $f(x) = \frac{1}{x}$ about $x_0 = 1$

Calculations

Since

$$f(x) = x^{-1}, f'(x) = -x^{-2}, f''(x) = (-1)^2 2 \cdot x^{-3},$$

Taylor Polynomials for $f(x) = \frac{1}{x}$ about $x_0 = 1$

Calculations

Since

$$f(x) = x^{-1}, f'(x) = -x^{-2}, f''(x) = (-1)^2 2 \cdot x^{-3},$$

and, in general,

$$f^{(k)}(x) = (-1)^k k! x^{-k-1},$$

< ロ > < 同 > < 回 > < 回 >

Taylor Polynomials for $f(x) = \frac{1}{x}$ about $x_0 = 1$

Calculations

Since

$$f(x) = x^{-1}, f'(x) = -x^{-2}, f''(x) = (-1)^2 2 \cdot x^{-3},$$

and, in general,

$$f^{(k)}(x) = (-1)^k k! x^{-k-1},$$

the Taylor polynomials are

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(1)}{k!} (x-1)^k = \sum_{k=0}^n (-1)^k (x-1)^k.$$

Numerical Analysis (Chapter 3)

< ロ > < 同 > < 回 > < 回 >

Taylor Polynomials for $f(x) = \frac{1}{x}$ about $x_0 = 1$

To Approximate $\overline{f(3)} = \frac{1}{3}$ by $P_n(3)$

Numerical Analysis (Chapter 3)

Lagrange Interpolating Polynomials I

R L Burden & J D Faires

< ロ > < 同 > < 回 > < 回 >

15/33

Taylor Polynomials for $f(x) = \frac{1}{x}$ about $x_0 = 1$

To Approximate $f(3) = \frac{1}{3}$ by $P_n(3)$

• To approximate $f(3) = \frac{1}{3}$ by $P_n(3)$ for increasing values of *n*, we obtain the values shown below — rather a dramatic failure!

Taylor Polynomials for $f(x) = \frac{1}{x}$ about $x_0 = 1$

To Approximate $f(3) = \frac{1}{3}$ by $P_n(3)$

- To approximate $f(3) = \frac{1}{3}$ by $P_n(3)$ for increasing values of *n*, we obtain the values shown below rather a dramatic failure!
- When we approximate $f(3) = \frac{1}{3}$ by $P_n(3)$ for larger values of *n*, the approximations become increasingly inaccurate.

Taylor Polynomials for $f(x) = \frac{1}{x}$ about $x_0 = 1$

To Approximate $f(3) = \frac{1}{3}$ by $P_n(3)$

- To approximate $f(3) = \frac{1}{3}$ by $P_n(3)$ for increasing values of *n*, we obtain the values shown below rather a dramatic failure!
- When we approximate $f(3) = \frac{1}{3}$ by $P_n(3)$ for larger values of *n*, the approximations become increasingly inaccurate.

n	0	1	2	3	4	5	6	7	
$\overline{P_n(3)}$	1	-1	3	-5	11	-21	43	-85	

15/33

Example

The Lagrange Polynomial: Taylor Polynomials

Footnotes

Numerical Analysis (Chapter 3)

(4) (5) (4) (5)

Footnotes

 For the Taylor polynomials, all the information used in the approximation is concentrated at the single number x₀, so these polynomials will generally give inaccurate approximations as we move away from x₀.

• • • • • • • • • • • •

Footnotes

- For the Taylor polynomials, all the information used in the approximation is concentrated at the single number x₀, so these polynomials will generally give inaccurate approximations as we move away from x₀.
- This limits Taylor polynomial approximation to the situation in which approximations are needed only at numbers close to x₀.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Footnotes

- For the Taylor polynomials, all the information used in the approximation is concentrated at the single number x₀, so these polynomials will generally give inaccurate approximations as we move away from x₀.
- This limits Taylor polynomial approximation to the situation in which approximations are needed only at numbers close to x₀.
- For ordinary computational purposes, it is more efficient to use methods that include information at various points.

Footnotes

- For the Taylor polynomials, all the information used in the approximation is concentrated at the single number x₀, so these polynomials will generally give inaccurate approximations as we move away from x₀.
- This limits Taylor polynomial approximation to the situation in which approximations are needed only at numbers close to x₀.
- For ordinary computational purposes, it is more efficient to use methods that include information at various points.
- The primary use of Taylor polynomials in numerical analysis is not for approximation purposes, but for the derivation of numerical techniques and error estimation.

Outline

Inaccuracy of Taylor Polynomials

3 Constructing the Lagrange Polynomial

Example: Second-Degree Lagrange Interpolating Polynomial

Polynomial Interpolation

Numerical Analysis (Chapter 3)

э

イロト イヨト イヨト イヨト

Polynomial Interpolation

• The problem of determining a polynomial of degree one that passes through the distinct points

 (x_0, y_0) and (x_1, y_1)

is the same as approximating a function *f* for which

$$f(x_0) = y_0$$
 and $f(x_1) = y_1$

by means of a first-degree polynomial interpolating, or agreeing with, the values of f at the given points.

< ロ > < 同 > < 回 > < 回 >

Polynomial Interpolation

• The problem of determining a polynomial of degree one that passes through the distinct points

 (x_0, y_0) and (x_1, y_1)

is the same as approximating a function f for which

 $f(x_0) = y_0$ and $f(x_1) = y_1$

by means of a first-degree polynomial interpolating, or agreeing with, the values of f at the given points.

• Using this polynomial for approximation within the interval given by the endpoints is called polynomial interpolation.

< ロ > < 同 > < 回 > < 回 >

э

Define the functions

$$L_0(x) = rac{x - x_1}{x_0 - x_1}$$
 and $L_1(x) = rac{x - x_0}{x_1 - x_0}$.

19/33

A (10) > A (10) > A (10)

Define the functions

$$L_0(x) = rac{x-x_1}{x_0-x_1}$$
 and $L_1(x) = rac{x-x_0}{x_1-x_0}.$

Definition

The linear Lagrange interpolating polynomial though (x_0, y_0) and (x_1, y_1) is

$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1) = \frac{x - x_1}{x_0 - x_1}f(x_0) + \frac{x - x_0}{x_1 - x_0}f(x_1).$$

19/33

$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1) = \frac{x - x_1}{x_0 - x_1}f(x_0) + \frac{x - x_0}{x_1 - x_0}f(x_1).$$

Note that

$$L_0(x_0) = 1$$
, $L_0(x_1) = 0$, $L_1(x_0) = 0$, and $L_1(x_1) = 1$,

20/33

$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1) = \frac{x - x_1}{x_0 - x_1}f(x_0) + \frac{x - x_0}{x_1 - x_0}f(x_1).$$

Note that

$$L_0(x_0) = 1$$
, $L_0(x_1) = 0$, $L_1(x_0) = 0$, and $L_1(x_1) = 1$,

which implies that

$$P(x_0) = 1 \cdot f(x_0) + 0 \cdot f(x_1) = f(x_0) = y_0$$

and

$$P(x_1) = 0 \cdot f(x_0) + 1 \cdot f(x_1) = f(x_1) = y_1.$$

20/33

$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1) = \frac{x - x_1}{x_0 - x_1}f(x_0) + \frac{x - x_0}{x_1 - x_0}f(x_1).$$

Note that

$$L_0(x_0) = 1$$
, $L_0(x_1) = 0$, $L_1(x_0) = 0$, and $L_1(x_1) = 1$,

which implies that

$$P(x_0) = 1 \cdot f(x_0) + 0 \cdot f(x_1) = f(x_0) = y_0$$

and

$$P(x_1) = 0 \cdot f(x_0) + 1 \cdot f(x_1) = f(x_1) = y_1.$$

So *P* is the unique polynomial of degree at most 1 that passes through (x_0, y_0) and (x_1, y_1) .

Numerical Analysis (Chapter 3)

Lagrange Interpolating Polynomials I

Example: Linear Interpolation

Determine the linear Lagrange interpolating polynomial that passes through the points (2, 4) and (5, 1).

Example: Linear Interpolation

Determine the linear Lagrange interpolating polynomial that passes through the points (2, 4) and (5, 1).

Solution

In this case we have

$$L_0(x) = \frac{x-5}{2-5} = -\frac{1}{3}(x-5)$$
 and $L_1(x) = \frac{x-2}{5-2} = \frac{1}{3}(x-2),$

Example: Linear Interpolation

Determine the linear Lagrange interpolating polynomial that passes through the points (2, 4) and (5, 1).

Solution

In this case we have

$$L_0(x) = \frac{x-5}{2-5} = -\frac{1}{3}(x-5)$$
 and $L_1(x) = \frac{x-2}{5-2} = \frac{1}{3}(x-2)$,

SO

$$P(x) = -\frac{1}{3}(x-5) \cdot 4 + \frac{1}{3}(x-2) \cdot 1 = -\frac{4}{3}x + \frac{20}{3} + \frac{1}{3}x - \frac{2}{3} = -x + 6.$$

Example

The Lagrange Polynomial: The Linear Case

The linear Lagrange interpolating polynomial that passes through the points (2, 4) and (5, 1).

Numerical Analysis (Chapter 3)

Lagrange Interpolating Polynomials I

R L Burden & J D Faires

22/33

The Lagrange Polynomial: Degree *n* Construction

To generalize the concept of linear interpolation, consider the construction of a polynomial of degree at most *n* that passes through the n + 1 points

$$(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n)).$$

< ロ > < 同 > < 回 > < 回 >

Constructing the Degree *n* Polynomial

Constructing the Degree n Polynomial

• We first construct, for each k = 0, 1, ..., n, a function $L_{n,k}(x)$ with the property that $L_{n,k}(x_i) = 0$ when $i \neq k$ and $L_{n,k}(x_k) = 1$.

Constructing the Degree n Polynomial

- We first construct, for each k = 0, 1, ..., n, a function $L_{n,k}(x)$ with the property that $L_{n,k}(x_i) = 0$ when $i \neq k$ and $L_{n,k}(x_k) = 1$.
- To satisfy $L_{n,k}(x_i) = 0$ for each $i \neq k$ requires that the numerator of $L_{n,k}(x)$ contain the term

$$(x - x_0)(x - x_1) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n).$$

Constructing the Degree n Polynomial

- We first construct, for each k = 0, 1, ..., n, a function $L_{n,k}(x)$ with the property that $L_{n,k}(x_i) = 0$ when $i \neq k$ and $L_{n,k}(x_k) = 1$.
- To satisfy $L_{n,k}(x_i) = 0$ for each $i \neq k$ requires that the numerator of $L_{n,k}(x)$ contain the term

$$(x - x_0)(x - x_1) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n).$$

To satisfy L_{n,k}(x_k) = 1, the denominator of L_{n,k}(x) must be this same term but evaluated at x = x_k.

Constructing the Degree n Polynomial

- We first construct, for each k = 0, 1, ..., n, a function $L_{n,k}(x)$ with the property that $L_{n,k}(x_i) = 0$ when $i \neq k$ and $L_{n,k}(x_k) = 1$.
- To satisfy $L_{n,k}(x_i) = 0$ for each $i \neq k$ requires that the numerator of $L_{n,k}(x)$ contain the term

$$(x - x_0)(x - x_1) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n).$$

To satisfy L_{n,k}(x_k) = 1, the denominator of L_{n,k}(x) must be this same term but evaluated at x = x_k.

Thus

$$L_{n,k}(x) = \frac{(x-x_0)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n)}{(x_k-x_0)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n)}.$$

Numerical Analysis (Chapter 3)

Example

The Lagrange Polynomial: The General Case

$$L_{n,k}(x) = \frac{(x-x_0)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n)}{(x_k-x_0)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n)}.$$

< ロ > < 同 > < 回 > < 回 >

Theorem: *n*-th Lagrange interpolating polynomial

Numerical Analysis (Chapter 3)

Theorem: *n*-th Lagrange interpolating polynomial

If x_0, x_1, \ldots, x_n are n + 1 distinct numbers and f is a function whose values are given at these numbers,

Theorem: *n*-th Lagrange interpolating polynomial

If $x_0, x_1, ..., x_n$ are n + 1 distinct numbers and f is a function whose values are given at these numbers, then a unique polynomial P(x) of degree at most n exists with

$$f(x_k) = P(x_k)$$
, for each $k = 0, 1, ..., n$.

Theorem: *n*-th Lagrange interpolating polynomial

If $x_0, x_1, ..., x_n$ are n + 1 distinct numbers and f is a function whose values are given at these numbers, then a unique polynomial P(x) of degree at most n exists with

$$f(x_k) = P(x_k)$$
, for each $k = 0, 1, ..., n$.

This polynomial is given by

$$P(x) = f(x_0)L_{n,0}(x) + \dots + f(x_n)L_{n,n}(x) = \sum_{k=0}^n f(x_k)L_{n,k}(x)$$

where, for each k = 0, 1, ..., n, $L_{n,k}(x)$ is defined as follows:

< ロ > < 同 > < 回 > < 回 >

$$P(x) = f(x_0)L_{n,0}(x) + \cdots + f(x_n)L_{n,n}(x) = \sum_{k=0}^n f(x_k)L_{n,k}(x)$$

Definition of $L_{n,k}(x)$

$$L_{n,k}(x) = \frac{(x-x_0)(x-x_1)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n)}{(x_k-x_0)(x_k-x_1)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n)}$$

=
$$\prod_{\substack{i=0\\i\neq k}}^n \frac{(x-x_i)}{(x_k-x_i)}$$

We will write $L_{n,k}(x)$ simply as $L_k(x)$ when there is no confusion as to its degree.

Numerical Analysis (Chapter 3)

Lagrange Interpolating Polynomials I

Outline

2 Inaccuracy of Taylor Polynomials

- 3 Constructing the Lagrange Polynomial
- Example: Second-Degree Lagrange Interpolating Polynomial

28/33

Example: $f(x) = \frac{1}{x}$

Numerical Analysis (Chapter 3)

Lagrange Interpolating Polynomials I

R L Burden & J D Faires

29/33

Example: $f(x) = \frac{1}{x}$

(a) Use the numbers (called nodes) $x_0 = 2$, $x_1 = 2.75$ and $x_2 = 4$ to find the second Lagrange interpolating polynomial for $f(x) = \frac{1}{x}$.

29/33

Example: $f(x) = \frac{1}{x}$

(a) Use the numbers (called nodes) $x_0 = 2$, $x_1 = 2.75$ and $x_2 = 4$ to find the second Lagrange interpolating polynomial for $f(x) = \frac{1}{x}$.

(b) Use this polynomial to approximate $f(3) = \frac{1}{3}$.

29/33

< ロ > < 同 > < 回 > < 回 >

Part (a): Solution

Numerical Analysis (Chapter 3)

э

Part (a): Solution

We first determine the coefficient polynomials $L_0(x)$, $L_1(x)$, and $L_2(x)$:

$$L_0(x) = \frac{(x-2.75)(x-4)}{(2-2.5)(2-4)} = \frac{2}{3}(x-2.75)(x-4)$$
$$L_1(x) = \frac{(x-2)(x-4)}{(2.75-2)(2.75-4)} = -\frac{16}{15}(x-2)(x-4)$$
$$L_2(x) = \frac{(x-2)(x-2.75)}{(4-2)(4-2.5)} = \frac{2}{5}(x-2)(x-2.75)$$

Numerical Analysis (Chapter 3)

Part (a): Solution

We first determine the coefficient polynomials $L_0(x)$, $L_1(x)$, and $L_2(x)$:

$$L_0(x) = \frac{(x-2.75)(x-4)}{(2-2.5)(2-4)} = \frac{2}{3}(x-2.75)(x-4)$$
$$L_1(x) = \frac{(x-2)(x-4)}{(2.75-2)(2.75-4)} = -\frac{16}{15}(x-2)(x-4)$$
$$L_2(x) = \frac{(x-2)(x-2.75)}{(4-2)(4-2.5)} = \frac{2}{5}(x-2)(x-2.75)$$

Also, since $f(x) = \frac{1}{x}$:

 $f(x_0) = f(2) = 1/2,$ $f(x_1) = f(2.75) = 4/11,$ $f(x_2) = f(4) = 1/4$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Part (a): Solution (Cont'd)

Therefore, we obtain

$$P(x) = \sum_{k=0}^{2} f(x_k) L_k(x)$$

= $\frac{1}{3} (x - 2.75)(x - 4) - \frac{64}{165} (x - 2)(x - 4) + \frac{1}{10} (x - 2)(x - 2.75)$
= $\frac{1}{22} x^2 - \frac{35}{88} x + \frac{49}{44}.$

Numerical Analysis (Chapter 3)

R L Burden & J D Faires

31/33

Example

The Lagrange Polynomial: 2nd Degree Polynomial

$$P(x) = \frac{1}{22}x^2 - \frac{35}{88}x + \frac{49}{44}$$

(b) Use this polynomial to approximate $f(3) = \frac{1}{3}$.

Part (b): Solution

э

・ロト ・ 四ト ・ ヨト ・ ヨト

$$P(x) = \frac{1}{22}x^2 - \frac{35}{88}x + \frac{49}{44}$$

(b) Use this polynomial to approximate $f(3) = \frac{1}{3}$.

Part (b): Solution

An approximation to $f(3) = \frac{1}{3}$ is

$$f(3) \approx P(3) = \frac{9}{22} - \frac{105}{88} + \frac{49}{44} = \frac{29}{88} \approx 0.32955$$

Numerical Analysis (Chapter 3)

э

・ロト ・ 四ト ・ ヨト ・ ヨト

$$P(x) = \frac{1}{22}x^2 - \frac{35}{88}x + \frac{49}{44}$$

(b) Use this polynomial to approximate $f(3) = \frac{1}{3}$.

Part (b): Solution

An approximation to $f(3) = \frac{1}{3}$ is

$$f(3) \approx P(3) = \frac{9}{22} - \frac{105}{88} + \frac{49}{44} = \frac{29}{88} \approx 0.32955.$$

Earlier, we we found that no Taylor polynomial expanded about $x_0 = 1$ could be used to reasonably approximate f(x) = 1/x at x = 3.

・ロト ・ 四ト ・ ヨト ・ ヨト

э

Second Lagrange interpolating polynomial for $f(x) = \frac{1}{x}$

Numerical Analysis (Chapter 3)

Lagrange Interpolating Polynomials I