

Philadelphia University

Faculty of Engineering and Technology - Department of Mechanical Engineering Second Semester 2020/2021

Course Information

Title:	Heat Transfer-1 (620420)	
Prerequisite:	Thermodynamics-1 (620323)	
Credit Hours:	3 Credit hours (16 weeks per semester, approximately 44 contact	hours)
Textbook:	Fundementals of Mass and Heat Transfer, 8 th . Edition or L Incropera, DeWitt, Bergman and Lavine, Wiley	atest by
References:	Heat Transfer, By J. P. Holman, 6 th . Edition, McGraw-Hill	
Catalog Description:	Introduction to modes of heat transfer; One-dimensional stea conduction; Un-steady state conduction, Lumped heat capacity sy Introduction to convection; Hydro-dynamic and thermal boundar Laminar and turbulent boundary layers, Convection in exter internal flows; Empirical relations for forced convection heat	ady-state vstems; y layers; mal and transfer;
Instructor:	Heat exchangers. Prof. Ali Badran e-mail: <u>abadran@philadelphia.edu.jo</u> Engineering building, room E724, Ext. 2338 Office hours: Sun, Tue, Thurs 10:00- 11:00	
Course Topics Week No.	Description Cl	napter
1, 2	Introduction to heat transfer in various modes: conduction, convection and radiation.	1,2
3, 4	Introduction to conduction, conduction rate equation, thermal conductivity, Heat diffusion equation, Boundary and initial conditions.	3
5	1-D Un-steady state conduction, Lumped capacity systems	5
6	Introduction to convection. Convection boundary layer, Laminar and turbulent flow, Convection transfer equation Velocity and thermal boundary conditions, Boundary layer similarity.	6
7, 8	External flow; Flat-plate, unheated starting length, Cylinder in cross flow; Banks of tubes.	7
9, 10	Internal flow; Fully developed region, Energy balance equation, Heat transfer coefficient in laminar and turbulent flow, Non-circular tubes, Heat transfer enhancement.	8
11, 12	Heat exchangers; Heat exchanger types, Overall H.T.coefficient, Logarithmic Mean Temperature Difference (LMTD) Method, NTU Method	11
13-16	Review and final exam	

Course Learning Outcomes and Relation to ABET Student Outcomes:

Upon successful completion of this course, a student should:

1.	Be able to identify various modes of heat transfer in solids and fluids.	[1]	
2.	2. Be able to identify various thermal and physical properties of material in relation to heat transfer and to understand the effect of temperature on those properties.		
3.	3. Have the ability to calculate thermal resistances and heat losses of various engineering elements, such as plane and composite walls, cylinders and spheres.		
4.	Understand the basics of thermal performance of heat transfer in extended surfaces.	[1]	
5.	Analyze heat transfer in simple transient situations, such as lumped capacitance systems.	[1]	
6.	5. Estimate heat transfer by forced convection in various engineering situations, Such as vertical and horizontal plane walls and cylinders.		
7.	7. Size a heat exchanger.		

Assessment tools:

Evaluation of students' performance (final grade) will be based on the following categories:

- **Exams:** One Midterm exam will be given. It will cover about 8-weeks of lectures
- Quizzes and
participation:15-minute quizzes will be given to the students during the semester.
These quizzes will cover material based on homework problems
given to students earlier. Class participation will be based on taking
those quizzes.
 - **Homework**: Problem sets will be given to students. Homework should be solved individually but they do not have to be turned-in. Instead, students should be able to sit for a quiz in one of the homework problems given earlier, or a problem similar to it..

Final Exam: The final exam will cover all the class material.

Grading policy:

15 minute quizes		20%
Midterm exam		30%
Final Exam		50%
	Total:	100%

Attention to basic attendance policy:

Absence from classes and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse, acceptable to and approved by the Dean of the relevant college/faculty, shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Prepared by Prof. Ali Badran