Philadelphia University		Approved Date: 12/10/2021
Faculty: Pharmacy	PHILADELPHIA	Issue: 1
Department: -	THE WAY TO THE FUTURE	Credit Hours: 3
Academic Year: 22/23	Course Syllabus	Bachler: 2 nd year

Course Information

Course No.	Course Title			Prerequi	
051020600	Pharmaceutical Instrumental Analysis		S	052112300	
Course Type		Class T	ime	Room No.	
Univirs	ity Requirement	Fuclty Requirement			
□ Major Requirement □ Elective					
Compu	lsory				

Instructure Information

Name	Office No.	Phone No.	Office Hours	E-mail

Course Delivery Method

Blended	🗆 Online 📃 Physical		
Learning Model			
Demoentage	Synchronous	Asynchronous	Physical
rercentage			100%

Course Description

This course is devoted to the exploration of the instrumental methods of analysis used to check the purity of pharmaceutical products and raw materials while validating these methods according to the quality control requirements. These methods include chromatography (liquid and gas) and electrophoresis, molecular and atomic spectroscopy (UV-Visible, IR, NMR, mass spectrometry, atomic absorption and emission), and electrochemical methods of analysis.

Course Learning Outcomes

CLO	Outcome	PLO	Corresponding Compatencies	
	Knowledge			
K1	Describe the basic principles, the instrumental design and			
	advantages and limitations of a variety of analytical			
	techniques, including: electrochemical, spectrophotometric			
	(molecular and atomic), and chromatographic methods of			
1/2	analysis critically used in pharmaceutical analysis.			
K2	Distinguish the qualitative and quantitative methods for the			
	analysis of raw materials, and pharmaceutical linished			
K3	Demonstrate the differences between various types of			
K5	instruments used in chemical analysis in terms of basic			
	principles, parts, functions and applications.			
K4	Demonstrate the knowledge of data acquisition and analysis			
	for various techniques.			
Skills				
S1	Demonstrate capability of choosing the appropriate			
	instrumental method for a particular investigation pertinent			
	to a certain drug or pharmaceutical product.			
S2	Interpret the various types of spectra driven from			
	spectroscopic techniques under study and identify simple			
	organic and pharmaceutical molecules.			
S3	Work on different instruments critical for pharmaceutical			
~ .	analysis.			
S4	Read, evaluate, and interpret numerical, chemical and			
	general scientific information related to instrumental			
07	methods of chemical analysis.			
85	Search, use and evaluate the chemical literature in both			
	printed and electronic formats.			

CLOs: Course learning outcomes PLOs: Programme learning outcomes

Learning Resources

Course	Rouessac, Francis and Rouessac, Annick. Chemical analysis: modern		
Textbook	instrumentation methods and techniques. John Wiley & Sons, 2007.		
Supporting	• Skoog, Douglas A., Holler, F. James, and Crouch, Stanley R Principles		
References	of instrumental analysis. Brooks/Cole, 2007.		
	• Robinson, James W., Frame, Eileen M. Skelly, and Frame II., George M.		
	Undergraduate instrumental analysis. CRC Press, Taylor & Francis		
	Group, 2014		
	• Sharma, B. K Instrumental methods of chemical analysis. Krishna, 2015.		
	• Petrozzi, Sergio. Practical instrumental analysis : methods, quality		
	assurance and laboratory management. Wiley-VCH, 2013.		
Teaching Environment	Classroom Laboratory Learning Platform Other		

Meetings and Subjects Time Table

Week	Торіс	Learning Method*	Task	Learning Material
1	شرح رؤية ورسالة الكلية، واهداف ومخرجات تعلم المادة			الخطة الدراسية
2	Ultraviolet and visible spectroscopy. Basic principles of molecular spectroscopy, Beer-Lambert			
3	law, spectra of some representative drug molecules, applications to pharmaceutical quantitative analysis.			
4	Infrared spectroscopy. Basic principles of IR spectroscopy, instrumentation,			
5	application of IR in structure elucidation, near IR analysis and its pharmaceutical applications.			
6	Atomic spectrophotometry Basic principles of atomic emission, inductively coupled plasma and atomic absorption spectrophotometric techniques, some applications, standard addition technique			
7	Nuclear magnetic resonance spectroscopy Basic principles of NMR technique and instrumentation, proton-NMR and carbon-13 NMR Applications of NMR to			
8	structure confirmation in some drug molecules and to quantitative analysis			
9	Mass spectrometry Basic principles of mass spectrometry and instrumentation, mass spectra, molecular fragmentation. Applications in pharmaceutical applications and characterization of degradation products			
10	Theory of Chromatography			
11	Column efficiency, band broadening, van Deemter equation, parameters used in evaluating column performance			
12	Gas chromatography Instrumentation, types of columns, detectors, analytical applications.			
13	High performance liquid chromatography, HPLC Instrumentation, columns, detectors, applications to the quantitative analysis to the quantitative analysis of drugs in formulations			
14	Electroanalytical methods of chemical analysis Various types of electrodes ad ion-selective electrodes, Potentiometry and potentiometric titration, Karl Fischer			
15	titration, Automation of wet chemical methods, Applications of flow injection analysis technique in pharmaceutical analysis.			
16	Final Exam			

*Includes: lecture, flipped Class, project based learning, problem solving based learning, collaboration learning.

Course Contributing to Learner Skill Development

Using Technology

- Use Excel in numerical problems solving and calibration curve calculations.
- Use Powepoint to prepare presentations.

_

- Use varity of electronic databases in searching for published data.

Communication Skills

- Apply critical thinking and hypothesis-driven methods of scientific inquiry

Demonstrate effective written and oral communication skills

Application of Concept Learnt

Pharmaceutical analysis in deferent matrecies for varity fields (industrial, clinical, regulatory,...etc.)

Assessment Methods and Grade Distribution

Assessment	Grade	Assessment	Course Outcomes
Methods		Time (Week No.)	to be Assessed
Mid Term Exam	30%		
Term Works*	30%		
Final Exam	40%		
Total	100%		

* Include: quizzes, in-class and out of class assignment, presentations, reports, videotaped assignment, group or individual project.

Alignment of Course Outcomes with Learning and Assessment Methods

CLO	Learning Outcomes	Corresponding Compatencies	Learning Method*	Assessment Method**
	Knowledge			
K1	Describe the basic principles, the instrumental			
	design and advantages and limitations of a variety			
	of analytical techniques, including:			
	electrochemical, spectrophotometric (molecular			
	and atomic), and chromatographic methods of			
	analysis critically used in pharmaceutical analysis.			
K2	Distinguish the qualitative and quantitative			
	methods for the analysis of raw materials, and			
TZO	pharmaceutical finished products.			
K3	Demonstrate the differences between various types			
	of instruments used in chemical analysis in terms			
	on basic principles, parts, functions and			
TZ A	applications.			
K4	analysis for various techniques			
	analysis for various techniques.			
S1	Demonstrate capability of choosing the appropriate			
	instrumental method for a particular investigation			
	pertinent to a certain drug or pharmaceutical			
G •	product.			
S 2	Interpret the various types of spectra driven from			
	simple organic and pharmaceutical molecules			
62	Work on different instruments critical for			
55	nharmaceutical analysis			
S 4	Read, evaluate, and interpret numerical, chemical			
7	and general scientific information related to			
	instrumental methods of chemical analysis.			
S 5	Search, use and evaluate the chemical literature in			
~~	both printed and electronic formats.			

*Include: lecture, flipped class, project based learning, problem solving based learning, collaboration learning.

** Include: quizzes, in-class and out of class assignments, presentations, reports, videotaped assignments, group or individual projects.

Course Polices

Policy	Policy Requirements			
Passing Grade	The minimum pass for the course is (50%) and the minimum final mark is (35%) .			
Missing	• Anyone absent from a declared semester exam without a sick or compulsive excuse accepted by the dean of the college that proposes the course, a zero mark shall be placed on that exam and calculated in his final mark.			
Exams	• Anyone absent from a declared semester exam with a sick or compulsive excuse accepted by the dean of the college that proposes the course must submit proof of his excuse within a week from the date of the excuse's disappearance, and in this case, the subject teacher must hold a compensation exam for the student.			
	• Anyone absent from a final exam with a sick excuse or a compulsive excuse accepted by the dean of the college that proposes the material must submit proof of his excuse within three days from the date of holding that exam.			
Attendance	The student is not allowed to be absent more than (15%) of the total hours prescribed for the course, which equates to six lecture days (n t) and seven lectures (days). If the student misses more than (15%) of the total hours prescribed for the course without a satisfactory or compulsive excuse accepted by the dean of the faculty, he is prohibited from taking the final exam and his result in that subject is considered (zero), but if the absence is due to illness or a compulsive excuse accepted by the dean of the college that The article is introduced, it is considered withdrawn from that article, and the provisions of withdrawal shall apply to it			
Academic Integrity	Philadelphia University pays special attention to the issue of academic integrity, and the penalties stipulated in the university's instructions are applied to those who are proven to have committed an act that violates academic integrity, such as cheating, plagiarism (academic theft), collusion, intellectual property rights.			

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Targeted Performance level

Description of Program learning Outcomes Assessment Method

Number	Detailed Description of Assessment

Assessment Rubric of the Program Learning Outcomes