Philadelphia University
Faculty: Pharmacy

Department:
Academic Year: 21/22

PHILADELPHIA UNIVERSITY
THE WAY TO THE FUTURE

Approved Date: 12/10/2021
Issue: 1

Credit Hours: 3

Bachler: 2nd year

Course Information

Course No.	Course Title			Prerequisite	
051020600	Pharmac	05	51012200		
	Course T	уре	Class T	ime	Room No.
11	ity Requirement Requirement	☐Fuclty Requirement☐ Elective	Sec.1 S, T: 9:45-2 Sec.2	11:15	9314
Compu	-		M, W: 8:15- Sec.3	9:45	5507
			M, W: 11:15	5-12:45	9414
			Sec.4 S, T: 12:45	-14:15	5613

Instructure Information

Name	Office No.	Phone No.	Office Hours	E-mail
Dr. Ahmad Najjar	P 516	2609	S, T, 11:15-12:00 M, W 9:45-11:10	a.najjar@philadelphia.edu.jo

Course Delivery Method

☐ Blended	Online F		Physical		
	Learning Model				
Domontogo	Synchronous	Asynchronous	Physical		
Percentage			100%		

Course Description

This course is devoted to the exploration of the instrumental methods of analysis used to check the purity of pharmaceutical products and raw materials while validating these methods according to the quality control requirements. These methods include chromatography (liquid and gas) and electrophoresis, molecular and atomic spectroscopy (UV-Visible, IR, NMR, mass spectrometry, atomic absorption and emission), and electrochemical methods of analysis.

Course Learning Outcomes

CLO	Outcome	PLO	Corresponding Compatencies			
	Knowledge					
K 1	Describe the basic principles, the instrumental design and	K _P 1	C1			
	advantages and limitations of a variety of analytical					
	techniques, including: electrochemical, spectrophotometric					
	(molecular and atomic), and chromatographic methods of					
	analysis critically used in pharmaceutical analysis.					
K2	Distinguish the qualitative and quantitative methods for the	K_P1 ,	C1, C6			
	analysis of raw materials, and pharmaceutical finished	K _P 6				
****	products.	TT 1	G1 G1			
K3	Demonstrate the differences between various types of	K _P 1,	C1, C6			
	instruments used in chemical analysis in terms of basic	K _P 6				
T7.4	principles, parts, functions and applications.	TZ C	0.6			
K4	Demonstrate the knowledge of data acquisition and analysis	K _P 6	C6			
	for various techniques.					
G1	Skills	G 0	CO			
S1	Demonstrate capability of choosing the appropriate	S _P 2	C8			
	instrumental method for a particular investigation pertinent					
S2	to a certain drug or pharmaceutical product. Interpret the various types of spectra driven from	S _P 2,	C8, C15			
34	spectroscopic techniques under study and identify simple	S _P 2,	Co, C13			
	organic and pharmaceutical molecules.	SPA				
S3	Work on different instruments critical for pharmaceutical	S _P 9	C15			
55	analysis.	G _A G	CIS			
S4	Read, evaluate, and interpret numerical, chemical and	S _P 2,	C8, C15			
54	general scientific information related to instrumental	$S_{P}2$, $S_{P}9$	20, 213			
	methods of chemical analysis.	D _F /				
S5	Search, use and evaluate the chemical literature in both	S _P 9	C15			
	printed and electronic formats.	~1>				

CLOs: Course learning outcomes

PLOs: Programme learning outcomes C1: Learner; C6: Manufacturer; C8: Problem Solver; C9: Innovator

Learning Resources

Course Textbook	Chemical Analysis: Modern Instrumentation Methods and Techniques; F. Rouessac and A. Rouessac, John Wiley; 2 nd edition (2007).
Supporting References	 Undergraduate Instrumental Analysis", J., W. Robinson, Marcel Dekker, 7th edition; (2019). Handouts when needed
Supporting Websites	
Teaching Environment	Classroom laboratory Learning Platform Other

Meetings and Subjects Time Table

Week	Торіс	Learning Method*	Task	Learning Material
1	شرح رؤية ورسالة الكلية، واهداف ومخرجات تعلم المادة			الخطة الدراسية
2	Ultraviolet and visible spectroscopy. Basic principles of molecular spectroscopy, Beer- Lambert law, spectra of some representative drug	lecture, problem solving based	Quiz 1 Assign. 1	Chapter 9 & Handout
3	molecules, applications to pharmaceutical quantitative analysis.	learning, collaboration learning.		
4	Infrared spectroscopy. Basic principles of IR spectroscopy, instrumentation, application of IR in structure elucidation, near IR	lecture, problem solving based	Quiz 2 Project 1	Chapter 10 & Handout
5	analysis and its pharmaceutical applications.	learning, collaboration learning.		
6	Atomic spectrophotometry Basic principles of atomic emission, inductively coupled plasma and atomic absorption spectrophotometric techniques, some applications, standard addition technique	lecture		Chapter 13, Chapter 14 & Handout
7	Nuclear magnetic resonance spectroscopy Basic principles of NMR technique and instrumentation, proton-NMR and carbon-13 NMR.	lecture, problem solving based	Quiz 3 Assign. 2	Chapter 15 & Handout
8	Applications of NMR to structure confirmation in some drug molecules and to quantitative analysis	learning, collaboration learning.		
9	Mass spectrometry Basic principles of mass spectrometry and instrumentation, mass spectra, molecular fragmentation. Applications in pharmaceutical applications and characterization of degradation products	lecture, problem solving based learning, collaboration learning.	Quiz 4	Chapter 16 & Handout
10	Theory of Chromatography Column efficiency, band broadening, van Deemter	lecture, problem	Quiz 5	Chapter 1 & Handout
11	equation, parameters used in evaluating column performance	solving based learning.		
12	Gas chromatography Instrumentation, types of columns, detectors, analytical applications.	lecture, project based learning	Project 2	Chapter 2 & Handout
13	High performance liquid chromatography, HPLC Instrumentation, columns, detectors, applications to the quantitative analysis to the quantitative analysis of drugs in formulations	lecture, project based learning		Chapter 3 & Handout
14	Electroanalytical methods of chemical analysis Various types of electrodes ad ion-selective electrodes, Potentiometry and potentiometric titration, Karl Fischer titration, Automation of wet chemical	lecture		Chapter 19.
15	methods, Applications of flow injection analysis technique in pharmaceutical analysis.			
16	Final Exam			

^{*}Includes: lecture, flipped Class, project based learning, problem solving based learning, collaboration learning.

Course Contributing to Learner Skill Development

Using Technology

- Use Excel in numerical problems solving and calibration curve calculations.
- Use Powepoint to prepare presentations.
- Use varity of electronic databases in searching for published data.

Communication Skills

- Apply critical thinking and hypothesis-driven methods of scientific inquiry
- Demonstrate effective written and oral communication skills

Application of Concept Learnt

Pharmaceutical analysis in deferent matrecies for varity fields (industrial, clinical, regulatory,...etc.)

Assessment Methods and Grade Distribution

Assessment Methods	Grade	Assessment Time (Week No.)	Course Outcomes to be Assessed
Mid Term Exam	30%	10	K1, K2, K3, S1, S2
Term Works*	30%	Continuous	K1, K4, S2, S3, S4, S5
Final Exam	40%	16	K1, K2, K3, S1, S2
Total	100%		

^{*} Include: quizzes, in-class and out of class assignment, presentations, reports, videotaped assignment, group or individual project.

Alignment of Course Outcomes with Learning and Assessment Methods

CLO	Learning Outcomes	Corresponding Compatencies	Learning Method*	Assessment Method**
Knowledge				
K1	Describe the basic principles,	C1	lecture	exam,
	the instrumental design and			quizzes
	advantages and limitations of a			
	variety of analytical techniques,			
	including: electrochemical,			
	spectrophotometric (molecular			
	and atomic), and			
	chromatographic methods of			
	analysis critically used in			
	pharmaceutical analysis.			
K2	Distinguish the qualitative and	C1, C6	collaboration	exam
	quantitative methods for the		learning	
	analysis of raw materials, and			
	pharmaceutical finished			
170	products.	G1 G6	11 1	
К3	Demonstrate the differences	C1, C6	collaboration	exam
	between various types of		learning	
	instruments used in chemical			
	analysis in terms of basic			
	principles, parts, functions and			
17.4	applications.	C6	a all a b a matica	aggianmanta
K4	Demonstrate the knowledge of	C6	collaboration	assignments,
	data acquisition and analysis for		learning	quizzes
	various techniques.			

	Skills			
S1	Demonstrate capability of choosing the appropriate instrumental method for a particular investigation pertinent to a certain drug or pharmaceutical product.	C8	collaboration learning	exam
S2	Interpret the various types of spectra driven from spectroscopic techniques under study and identify simple organic and pharmaceutical molecules.	C8, C15	problem solving based learning, collaboration learning	exam, quizzes, assignments
S3	Work on different instruments critical for pharmaceutical analysis.	C15	lecture, Lab.	reports
S4	Read, evaluate, and interpret numerical, chemical and general scientific information related to instrumental methods of chemical analysis.	C8, C15	project based learning, problem solving based learning	individual projects, reports
S5	Search, use and evaluate the chemical literature in both printed and electronic formats.	C15	project based learning	individual projects, presentations

Course Polices

Policy	Policy Requirements				
Passing Grade	The minimum pass for the course is (50%) and the minimum final mark is (35%).				
Missing Exams • Anyone absent from a declared semester exam without a compulsive excuse accepted by the dean of the college that procourse, a zero mark shall be placed on that exam and calculate final mark.					
	• Anyone absent from a declared semester exam with a sick or compulsive excuse accepted by the dean of the college that proposes the course must submit proof of his excuse within a week from the date of the excuse's disappearance, and in this case, the subject teacher must hold a compensation exam for the student.				
	• Anyone absent from a final exam with a sick excuse or a compulsive excuse accepted by the dean of the college that proposes the material must submit proof of his excuse within three days from the date of holding that exam.				
Attendance	The student is not allowed to be absent more than (15%) of the total hours prescribed for the course, which equates to six lecture days (n t) and seven lectures (days). If the student misses more than (15%) of the total hours prescribed for the course without a satisfactory or compulsive excuse accepted by the dean of the faculty, he is prohibited from taking the final exam and his result in that subject is considered (zero), but if the absence is due to illness or a compulsive excuse accepted by the dean of the college that The article is introduced, it is considered withdrawn from that article, and the provisions of withdrawal shall apply to it.				
Academic Integrity	Philadelphia University pays special attention to the issue of academic integrity, and the penalties stipulated in the university's instructions are applied to those who are proven to have committed an act that violates academic integrity, such as cheating, plagiarism (academic theft), collusion, intellectual property rights.				

^{*}Include: lecture, flipped class, project based learning, problem solving based learning, collaboration learning.

** Include: quizzes, in-class and out of class assignments, presentations, reports, videotaped assignments, group or individual projects.

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Targeted Performance level

Description of Program learning Outcomes Assessment Method

Number	Detailed Description of Assessment		

Assessment Rubric of the Program Learning Outcomes	