

Philadelphia University

Faculty of Engineering - Department of Communications and Electronics Engineering

Course Information

Title:	Digital Electronics (0650344)		
Prerequisite:	Digital Logic (630211) & Electronics-1 (650242)		
Credit Hours:	3 credit hours (16 weeks per semester, approximately 44 contact hours)		
Textbook:	Sedra /Smith, "Microelectronic Circuits", 6 th edition, 2011, Oxford University Press		
References:	 Donald A. Neamen, "Microelectronics; Circuit Analysis and Design", 4th edition, 2010, McGraw-Hill. 		
	2- Digital Electronics, D. C. Green, 5 th edition.		
Catalog Description:	The course introduces the fundamental principles of various digital devices a discrete components and integrated components that find application in diselectronics. To study the characteristics and circuit diagrams of different different disfamilies such as TTL, ECL & MOSFETS. To apply the digital electronics component and ICs in the implementation of different communication circuits and systems.		

Course Topics

Week	Торіс			
1&2	Digital signals and systems, pulse waveforms, switching circuits, pulse distortion, RC circuits.			
3	Switching devices, diodes and transistors as switching devices, analysis of switching circuits and switching times.			
4	Logic technologies and families, digital terminology.			
5,6	TTL family, TTL loading rules, totem pole, open collector and tri-state.			
7	ECL family.			
8,9	MOS technology, operation and types, MOS inverter, MOS NAND, MOS NOR.			
10,11	NMOS, PMOS, CMOS, dynamic MOS, CMOS transmission circuits.`			
12,13	MOS memory elements and types, programmable logic devices			
14	Interfacing, TTL driving CMOS, flip-flops, multivibraters, monostables, astables, Schmitt trigger, bistables, 555 IC timer,			
15	Analog to digital converter and digital to analog converter.			
16	Review, and final exam			

Course Learning Outcomes and Relation to ABET Student Outcomes:

1.	Understand the operation and the structure of switching circuits.	[a]
2.	Use of diodes and transistors as switching circuits.	[e]
3.	Design and construct different logic families such as TTL, ECL, and MOSFET	[c, e]
4.	Design, organize, and use the memory element	[c, h]
5.	Understand the operation of multivibraters circuits: monostables, bistables, a stable and 555.	[e]
6.	Convert analog signals to digital signals and vice versa	[a, c, e]
7.	Understand and design electronic circuits for signal conversion	[a , c, e]

Upon successful completion of this course, a student should be able to:

Assessment Instruments:

Evaluation of students' performance (final grade) will be based on the following categories:

Exams:	Two written exams will be given. Each will cover about 3-weeks of lectures		
Quizzes:	Quizzes: 10-minute quizzes will be given to the students during the semester. These quizzes will cover material discussed during the previoulecture(s).		
Homework:	Problem sets will be given to students. Homework should be solved individually and submitted before the due date and to design project that will be given to the students using SPICE.		
	Copying homework is forbidden, any student caught copying the homework or any part of the homework will receive zero mark for that homework		
Participation:	Questions will be asked during lecture and the student is assessed based on his/her response		
Final Exam:	The final exam will cover all the class material.		

Grading policy:

First Exam		20%	
Second Exam		20%	
Homework and		10%	
Projects			
Quizzes		10%	
Final Exam		40%	
	Total:	100%	

Attendance policy:

Absence from classes and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse, acceptable to and approved by the Dean of the relevant college/faculty, shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.