

Philadelphia University Faculty of Engineering Department of Computer Engineering First semester, 2015/2016

Course Syllabus

Course Title: : Algorithms and Data Structures	Course code: 630224			
Course Level:3 nd	Course prerequisite (s) and/or co requisite (s): Object Oriented Programming (630221)			
Class Time: 9:45-11:15 Mon., Wed.	Credit hours: 3			

		<u>Academic Staff</u> <u>Specifics</u>			
Name	Rank	Office Number and	Office	E-mail Address	
		Location	Hours		
Dr. laheeb Al-	Associate	711	14 :00-	lahaah alzuhaidu@uahaa aam	
Zubeidy	Prof.	/11	16 :00	lanceo_aizuoaidy@yanoo.com	

Course module description:

This course introduces the fundamentals of structuring and manipulating data: sorting, searching, recursion, lists, stacks, queues, trees, graphs, tables. Introduction to the analysis of algorithms. Advancement in C++ skills and techniques.

Course module objectives:

- Understand algorithms, time complexity and space calculating
- Understand the sorting and searching fundamentals.
- Describe and /or define the Abstract Data Types; including lists, stacks, queues, trees, hash tables and graph.
- Understand, explain, demonstrate, and evaluate alternate implementations of examples of the methods associated with Abstract Data Types.
- ✤ Implement and test Abstract Data Types in generic programs using C++.

Course/ module components

- ✤ Data Structures and Algorithms in C++, Second Edition ,By Adam Drozdek,2000
- Books (title, author (s), publisher, year of publication)
 C++ How to Program, 3rd By Deitel & Deitel, prentice-Hall, 2001, ISBN: 0-13-089571-7
- ✤ Support material (s) (vcs, acs, etc).
- Study guide (s) (if applicable)
- Homework and laboratory guide (s) if (applicable).

Teaching methods:

Duration: 16 weeks, 48 hours in total Lectures: 32 hours, 3 per week

Homework: 7-8 homework assignments

Learning outcomes:

- Knowledge and understanding
 - ✤ Have a clear understanding of the Data Abstraction term.
 - ♦ Have a good knowledge of what comprises a correct program in C++.
 - ✤ Have knowledge of design guidelines.
- Cognitive skills (thinking and analysis).
 - ✤ Be able to design, code, and test C++ programs, which meet requirements expressed in English.
 - ✤ Have knowledge of design guidelines.
 - ✤ Be able to write algorithms for solving problems.
- Communication skills (personal and academic).
 - \clubsuit Be able to understand the documentation for, and make use of, the C++ library.
 - ✤ Be able to write a C++ program.
 - ♦ Be able to design, code, and test C++ programs, which meet requirements expressed in English.
- Practical and subject specific skills (Transferable Skills).
 - write computer programs to solve practical engineering problems
 - Design efficient computer programs to solve practical engineering problems

Course Intended Learning Outcomes													
A - Kno	A - Knowledge and Understanding												
A1.	A2.		A3. A		A	4. A5		5.	A6.		A7.		A8.
B - Intel	lectual	Skills											
B1.	B2.	В	3.	B	4.	В	5.	B6	•	B7.	B8.		B9.
C - Practical Skills													
C1.	C2.	C3.	(C4.	(C5.	C6		C7.	C8.	C9		C10.
D - Transferable Skills													
D1.]	D2.		D3.		D	4.		D5.	Γ	D6.		D7.

Assessment instruments

- Short reports and/ or presentations, and/ or Short research projects
- Quizzes.
- Assignments.
- Final examination: 50 marks

Allocation of Marks					
Assessment Instruments	Mark				
First examination	20				
Second examination	20				
Final examination: 50 marks	40				
Reports, research projects, Quizzes, Assignments, Projects	20				
Total	100				

Documentation and academic honesty

- Documentation style (with illustrative examples)
- Protection by copyright (N/A)
- Avoiding plagiarism. (According to the university rules and regulations

Course/module academic calendar

	Basic and support	Homework/reports and their due dates
week	material to be covered	
(1)	Programs complexity	
(2)	Sorting and Searching	Building Several Functions to represent several sorting and
	algorithms	searching algorithms
(3)	Data representation :	Building linear linked list
	linear and linked lists	
(4)	Arrays & matrices	
(5)	Linear Stacks	Building linear Stack with some extra functions
(6)	First examination	
First		18-26\11\2015
examination		
(7)	Queue	Building linear and Dynamic Queue and used it with a given
		applications
(8)	Dynamic Stacks	Building Dynamic stack and calculate time complexity for some
(0)		methods.
(9)	Priorities queue	Building a dynamic Priorities Queue.
(10)	Binary tree & usual Tree	
(11)	Algorithm of	27\12\2015_5\1\2016
	converting trees	27\12\2015-5\1\2010
(12)		Building an application using polymorphism
(13)		
(14)	graphs	Build a Graph and applied some searching algorithm to travels through all nodes
(15)	Hash tables	Building and implementing Hash tables
Specimen		
examination		
(Optional)		
(16)		
Final		30\1-7\2\2016
Examination		

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module references

Books

- ✤ Data Structures Using C++, 2nd Edition, D.S. Malik
- ✤ Data Structures and Problem Solving Using C++, 2nd Edition, M. A. Weiss
- ♦ Algorithms and Data Structures in C++ . By Leendert Ammeraal. 1996.
- C++ How to program .By H.M.Deitel & P.J.Deitel. 2 ed , Prentice- hill, 1998.
 Data Structures and Algorithms in C++ ,1ST edition , by Michael T. Godrich, Roberto Tamassia, David M. Mount Michael T. Goodrich Wiley, 2002.

Journals

Websites
