

Philadelphia University

Faculty of Engineering - Mechatronics Engineering Department First Semester 2019/2020

Course Title: Reverse Engineering (0620437)

Prerequisite: Engineering Skills

Class Time Sun/Tues/Thurs 12:10 □1:00pm

Credit Hours: Three credit hours (16 weeks per semester, approximately 45 contact hours) **Textbook:** Product Design: Techniques in Reverse Engineering and New Product

Development by Otto and Wood. PE 2011

References 1. Reverse Engineering: Mechanisms, Structures, Systems & Materials by

Robert Messler 2013

3. Reverse Engineering by R. Hinrichs 2015

4. Reverse Engineering: An Industrial Perspective by Raja and Fernandes. 2008

4. Reversing: Recent Advances and Applications Edited by A. Teila 2012

Description: The course is a requirement for level 4th level engineering students. It introduces

students to Reverse Engineering Methodology through practical case studies and

class projects.

Website: http://www.philadelphia.edu.jo/academics/aateyat/page.php?id=36

Instructor: Ahmed Ateyat, MSc

Email: aateyat@philadelphia.edu.jo

Office: Mechanical & Mechatronics Engineering building, room 209. ext: 2134

Office hours: Sun, and Tue: 10:00 - 12:00pm

Course Learning Outcomes with reference to ABET Student Outcomes

Upon successful completion of this course, student should:

opon successful completion of this course, student should.			
1.	Understand the Reverse Engineering (RE) Methodology	[1, 7]	
2.	Compare forward design with re-engineering	[1, 7]	
3.	Analyze product functions and Evaluate their performance	[2, 6]	
4.	Disassemble products and specify interactions among	[1, 6, 7]	
	subsystems and their functionality		
5.	Understand Computer-Aided RE and Rapid Prototyping	[1, 6, 7]	
	Technology		
6.	Know the latest technologies used in RE for PCBs	[2,7]	
7.	Understand RE applications in software engineering	[6, 7]	
8.	Understand professional and ethical responsibilities regarding	[4]	
	RE		
9.	Apply RE methodologies in a multi-disciplinary within a team	[3, 5]	
	environment		
10	Write technical report and present results to the class	[3, 5]	

Course Academic Calendar				
Week	Subject	Notes		
Oct 06	Introduction			
Oct 13	Forward Engineering Design: Design thought and process, design steps			
Oct 20	Forward Engineering Design: examples			
Oct 27	System RE: RE methodology, RE steps	Prescreening		
Nov 03	System RE: product development, product functions			
Nov 10	System RE: Product teardown, engineering specs, product	Observation		
	architecture			
Exam I (Nov. 13-21)				
Nov 17	Case Studies; Group Discussions			
Nov 24	Mechanical RE: Computer aided RE			
Dec 01	Mechanical RE: rapid prototyping	Dissection		
Dec 08	Electronic RE: Identify components			
Dec 15	Electronic RE: PCB RE	Analysis		
Exam 2 (Dec. 18-29)				
Dec 22	Electronic RE: VHDL			
Dec 29	Software RE Source code, re-drawing charts, applications	Report Due		
Jan 05	Student Project Presentations			
Jan 12	Review			
FINAL EXAMS (Jan. 25 – Feb. 01)				

Assessment Guidance:

Evaluation of the student performance during the semester will be based on the following:

Exams: Two in-class exams will be given. Each will cover about 6-weeks of

lectures.

Project: A project assignment will be handed to the students. The assignment will

ask the students to reverse engineer a particular product. Students will be asked to write a technical report, show their work in the lab, and present

it. A group of two students are expected to work on the project.

Final Exam: The final exam will cover all the class material.

Quizzes: 10-minute quizzes will be given to the students throughout the semester

and will be used as bonus points.

Grading Policy:

First Exam	15%
Second Exam	15%
Project	30%
Final Exam	40%
Total:	100%