

Software maintenance 2016-2017.2 by Prof. S. Ghoul Page 1 of 5

Course Syllabus

Course code: 750785
Course Title: Software Mmaintenance and

Evolution

Course prerequisite(s) and/or corequisite(s): None Course Level: Master

Credit hours: 3 Lecture Time:

Academic Staff Specifics

E-mail Address Office Hours Office Location Rank Name

Course Description

This course is intended for students already accepted to study the MSc in Computer Science in the Faculty of

Information Technology. Students can expect to gain from the course the skills and techniques required to undertake

Software Maintenance at MSc level. It aims to present theoretical and a practical techniques, tools, and methodologies

that help software developers to achieve this unavoidable task with a maximum of success.. The practical aspect should

be emphasized.

Course Objectives

This course aims to offer advanced skills in Software Maintenance: Software Change (Introduction to software

maintenance methods and tools: Corrective, adaptive , perfective, and preventive maintenance methods and tools),

Change Management (Software Configurations Management SCM: Concepts, Repository, Changes set, Workspace,

System/product model, Composition, Database, Long transaction, Versioning, tools, researches, …), Program

Comprehension – Reverse Engineering (Code reading: Code reading, top down reading, unfamiliar PL code reading;

Code Understanding: Software architecture, software understanding tools), Evolution of Legacy Systems

(Fundamentals and re-engineering by migration: Characteristics o f legacy systems, challenges for their evolution, the

re-technologies: reverse-engineering, re-structuring, and re-engineering by migration; Restructuring methods and tools:

Error avoidance tools, Architectural tools, reuse tools, Application; Change impact analysis methods and tools: Static

Analysis, Dependency Graph, Slicing), Looking to the future.

Course Components

Textbooks

1. John Krogsti (Author). Model-based development and evolution of information systems: a quality approach.

London: Springer. 2012

2. Tom Mens, Serge Demeyer. Software evolution, Computers, 2008

3. Penny Grubb, Armstrong A. Takang. Software maintenance: concepts and practice, Computers, 2003

‎
 In addition to the above, the students will be provided with handouts by the lecturer.

 جامعة فيلادلفيا

Philadelphia University

 Course Syllabus اسم النموذج:
QFO-AP-FI-MO02

 الجهة المصدرة: كلية تكنولوجيا المعلومات
 رقم الاصدار :
Revision))1

 قة: عمادة التطوير والجودةالجهة المدق

 05/11/2017التاريخ :

 عدد صفحات النموذج:

http://books.google.jo/books?q=+inauthor:%22Tom+Mens%22&lr=&hl=en
http://books.google.jo/books?q=+inauthor:%22Serge+Demeyer%22&lr=&hl=en
http://books.google.jo/books?q=+subject:%22Computers%22&lr=&hl=en
http://books.google.jo/books?q=+inauthor:%22Penny+Grubb%22&hl=en
http://books.google.jo/books?q=+inauthor:%22Armstrong+A.+Takang%22&hl=en
http://books.google.jo/books?q=+subject:%22Computers%22&hl=en
http://books.google.jo/books?id=ge8o_VkAsiYC&pg=PT1&dq=software+maintenance+textbooks&ei=dB9sS4_aCYqGzASRpq2yDg&hl=en&cd=2
http://books.google.jo/books?id=ge8o_VkAsiYC&pg=PT1&dq=software+maintenance+textbooks&ei=dB9sS4_aCYqGzASRpq2yDg&hl=en&cd=2

Software maintenance 2016-2017.2 by Prof. S. Ghoul Page 2 of 5

Teaching Methods

Duration: 15 weeks, 45 hours in total. Lectures: 15 hours, 1 per week. Tutorial (case study in classroom): 21 hours, 2

per week. Seminar: 3 (15 mn at the end of each lecture). Laboratories: 15 hours in total, 1-hour per week (free lab).

Exams: 6 hours (3h for the mid and 3 for final exam). The last week is reserved to practical works examination.

Learning Outcomes

 Knowledge and understanding

- be prepared for some of the demands of, and skills required for, work in IT and IT-related industries.

- have a knowledge and understanding of the importance of taking a long term view of software

development at all stages in the software life cycle.

- have a knowledge and understanding of the processes of change control for software systems

- have a knowledge and understanding of the specific problems inherent in the maintenance and

evolution of legacy software systems, and some of the techniques that can be of use.

- have a knowledge and understanding of the specific challenges inherent in the maintenance and

evolution of data-intensive systems, and some of the techniques that can be of use

- have a knowledge and understanding of the specific problems inherent in the maintenance and

evolution of package-based software systems, and some of the techniques that can be of use.

 Cognitive skills (thinking and analysis)

- Understand A wide range of principles, methodologies, and tools available to the software maintainer. All

these direction informed by research.

- be able to make use of standard tools and techniques for program comprehension, in order to gain an

understanding of an unfamiliar software system.

- have experience in reading, fixing and modifying software constructed by others, and be able to

apply current best practices for software modification

- be able to make appropriate choices regarding the tools and techniques to apply to software

evolution problems, trading off costs and limitations against the expected benefits

- Understand the professional and ethical responsibilities of the practicing computer professional including

understanding the need for quality.

- Understand the application of computing in a business context.

 Communication skills (personal and academic)

- Have skills and knowledge necessary to undertake projects.

- Be able to display an integrated approach to the deployment of communication skills, use IT skills and display

mature computer literacy; strike the balance between self-reliance and seeking help when necessary in new

situations, and display personal responsibility by working to multiple deadlines in complex activities.

 Practical and subject specific skills (Transferable Skills)

- Solve a wide range of problems related to software maintenance and evolution.

- Design, analysis and implementation of different kind of software maintenance.

- Plan and undertake a major individual project, and prepare and deliver coherent and structured verbal and written

technical report.

Assessment Instruments

Allocation of Marks

Mark Assessment Instruments

30% Midterm examination

40 % Final Exam (written unseen exam)

30% Reports, research projects

100% Total

* Make-up exams will be offered for valid reasons only with consent of the Dean. Make-up exams may be different

from regular exams in content and format.

Practical Submissions

The assignments that have work to be assessed will be given to the students in separate documents including the due

date and appropriate reading material.

Software maintenance 2016-2017.2 by Prof. S. Ghoul Page 3 of 5

Documentation and Academic Honesty

Submit your homework covered with a sheet containing your name, number, course title and number, and type and

number of the home work (e.g. assignment, and project).

Any completed homework must be handed in the class on the due date. After the deadline “zero” will be awarded. You

must keep a duplicate copy of your work because it may be needed while the original is being marked.

You should hand in with your assignments:

- A brief report to explain your findings.

- Your solution of given problem

For the research report, you are required to write a report similar to a scientific research paper. It should include:

- Ab-stract: It describes the main synopsis of your paper.

- Introduction: It provides background information necessary to understand the research and getting readers

interested in your subject. The introduction is where you put your problem definition, summary of contribution,

related work, and is likely where the bulk of your sources will appear.

- Methods (Algorithms and Implementation): Describe your methods here. Summarize the algorithms (if any)

generally, highlight features relevant to your project, and refer readers to your references for further details.

Information from sources must be rephrased in own words, “copy-and-paste” from documents, found for

example on the Internet, is NOT allowed. It is allowed to use short quotations, or figures, from other documents,

but then the source MUST be clearly stated in the reference list (please check copy rights). Papers not fulfilling

these rules will be failed.

- Results and Discussion (Benchmarking and Analysis): This section is the most important part of your paper. It is

here that you demonstrate the work you have accomplished on this project and explain its significance. The

quality of your analysis will impact your final grade more than any other component on the paper. You should

therefore plan to spend the bulk of your project time not just gathering data, but determining what it ultimately

means and deciding how best to showcase these findings.

- Conclusion: The conclusion should give your reader the points to “take home” from your paper. It should state

clearly what your results demonstrate about the problem you were tackling in the paper. It should also generalize

your findings, putting them into a useful context that can be built upon. All generalizations should be supported

by your data, however; the discussion should prove these points, so that when the reader gets to the conclusion,

the statements are logical and seem self-evident.

- Bibliography: Refer to any reference that you used in your assignment. Citations in the body of the paper should

refer to a bibliography at the end of the paper.

 Protection by Copyright

1. Coursework, laboratory exercises, reports, and essays submitted for assessment must be your own work, unless in the

case of group projects a joint effort is expected and is indicated as such.

2. Use of quotations or data from the work of others is entirely acceptable, and is often very valuable provided that the

source of the quotation or data is given. Failure to provide a source or put quotation marks around material that is

taken from elsewhere gives the appearance that the comments are ostensibly your own. When quoting word-for-

word from the work of another person quotation marks or indenting (setting the quotation in from the margin) must

be used and the source of the quoted material must be acknowledged.

3. Sources of quotations used should be listed in full in a bibliography at the end of your piece of work.

 Avoiding Plagiarism
1. Unacknowledged direct copying from the work of another person, or the close paraphrasing of somebody else's

work, is called plagiarism and is a serious offence, equated with cheating in examinations. This applies to copying

both from other students' work and from published sources such as books, reports or journal articles.

2. Paraphrasing, when the original statement is still identifiable and has no acknowledgement, is plagiarism. A close

paraphrase of another person's work must have an acknowledgement to the source. It is not acceptable for you to

put together unacknowledged passages from the same or from different sources linking these together with a few

words or sentences of your own and changing a few words from the original text: this is regarded as over-

dependence on other sources, which is a form of plagiarism.

3. Direct quotations from an earlier piece of your own work, if not attributed, suggest that your work is original, when

in fact it is not. The direct copying of one's own writings qualifies as plagiarism if the fact that the work has been or

is to be presented elsewhere is not acknowledged.

4. Plagiarism is a serious offence and will always result in imposition of a penalty. In deciding upon the penalty the

Department will take into account factors such as the year of study, the extent and proportion of the work that has

been plagiarized, and the apparent intent of the student. The penalties that can be imposed range from a minimum

of a zero mark for the work (without allowing resubmission) through caution to disciplinary measures (such as

suspension or expulsion).

Course/Module Academic Calendar

Week Basic and support material to be covered HW

Software maintenance 2016-2017.2 by Prof. S. Ghoul Page 4 of 5

(1) Part 1/ Software Change

Chapter 1. Introduction to software maintenance methods and tools

- Corrective, adaptive maintenance.

PW on

Cor& Ad

(2) - perfective, and preventive maintenance. Tutorial on relevant research papers PW P&P

(3) Chapter 2. Changes management/ Software Configurations Management (SCM)

 - Concepts, Repository, Changes set, Workspace, System/product model, Composition

PW SCM

(4) - Long transaction, Versioning, tools, researches. Tutorial on relevant research papers PW Vers.

(5) Part 2/ Program Comprehension (Reverse engineering)

Chapter 3. Code reading

- Code/ top down/ unfamiliar PL code reading. Tutorial on relevant research papers

Chapter 4. Code Understanding

 - Software architecture/ understanding tools. Tutorial on relevant research papers

 PW CR

PW A&U

(6) Part 3/ Evolution of Legacy Systems

Chapter 5. Fundamentals and re-engineering(by migration)

- Characteristics o f legacy systems, challenges for their evolution, re-technologies:

reverse-engin., re-structuring, and re-engineering. Tutorial on relevant research papers

PW REE

RW REE

(7) Chapter 6. Restructuring methods and tools

 - Error avoidance /Architectural/Reuse tools. Tutorial on relevant research papers

PW RM

(8) Chapter 7. Change impact analysis methods and tools

 - Static Analysis: Dependency Graph, Slicing. Tutorial on relevant research papers

PW Slice

(9) Mid Exam RW DIS

(10) Chapter 8. Evolution of Data-Intensive Systems

 - Data Reverse Engineering

PW DIS

(11) - Data Re- engineering. Tutorial on relevant research papers PW DRE

(12)

Part 3/ Look to the future

Chapter 9. Novel Trends in Software Evolution

- Bio-inspired software evolution

(13) Tutorial on relevant research papers

(14) Homework Exam

(15) Final Exam

Expected workload

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or

emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take

the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student

shall be considered to have withdrawn from the course.

Module References

Students will be expected to give the same attention to these references as given to the Module textbook(s)

1. John Krogsti. Model-based development and evolution of information systems: a quality approach. London:

Springer. 2012

2. Donald J. Reifer. Software change management: case studies and practical advice. Microsoft Press, 2011

3. Tom Mens, Serge Demeyer. Software evolution, Computers, 2008

4. Alain April, Alain Abran. Software Maintenance Management: Evaluation and Continuous Improvement‎,

Computers, 2008

5. Gopalaswamy Ramesh, Ramesh Bhattiprolu. Software maintenance: effective practices for geographically

distributed environments. McGraw-Hill, 2006

6. Eldad Eilam. Reversing: secrets of reverse engineering. Wiley, 2005

7. R.C. Seacord, D. Plakosh and G.A. Lewis. Modernising Legacy Systems, The SEI Series in Software Engineering,

Addison-Wesley, 2003

8. Penny Grubb, Armstrong A. Takang. Software maintenance: concepts and practice, Computers, 2003

Research papers in Software Maintenance (of Prof. S. Ghoul, others papers will be provided along with the

course):

1. Modelling Variability in Algorithms Design Methods - Divide and Conquer Case, IJSEIA, February 2015

2. Systems Versioning: A Features-Based Meta-modeling Approach. ONLINE SPECIAL JOURNAL ISSUES.
published in International Science Index Vol:8 No:06, 2014 at www.waset.org/Publications.

http://books.google.jo/books?q=+inauthor:%22Tom+Mens%22&lr=&hl=en
http://books.google.jo/books?q=+inauthor:%22Serge+Demeyer%22&lr=&hl=en
http://books.google.jo/books?q=+subject:%22Computers%22&lr=&hl=en
http://books.google.jo/books?q=+inauthor:%22Alain+April%22&lr=&hl=en
http://books.google.jo/books?q=+inauthor:%22Alain+Abran%22&lr=&hl=en
http://books.google.jo/books?id=7DciAQAAIAAJ&q=software+maintenance+textbooks&dq=software+maintenance+textbooks&lr=&ei=9iNsS7C2BJKCywSC45C5Cg&hl=en&cd=17
http://books.google.jo/books?q=+subject:%22Computers%22&lr=&hl=en
http://books.google.jo/books?q=+inauthor:%22Penny+Grubb%22&hl=en
http://books.google.jo/books?q=+inauthor:%22Armstrong+A.+Takang%22&hl=en
http://books.google.jo/books?q=+subject:%22Computers%22&hl=en
https://mail.philadelphia.edu.jo/OWA/redir.aspx?C=PZPL_vmYBUKqcu-EgvcnHyMwkYnYdtEIQr8RmTWLxGiPppYLO7QILEVFcxoO23Ss9gYNBwTvW1c.&URL=http%3a%2f%2fwww.waset.org%2fPublications%2c

Software maintenance 2016-2017.2 by Prof. S. Ghoul Page 5 of 5

3. A Genetic Methodology for Object Evolution. International Journal Of Software Engineering and Its

Applications, ITSEIA, Vol.8, No. 3, 2014, http://www.sersc.org/journals/IJSEIA/vol8_no3_2014.php

4. Systems Variability Modeling: A Textual Model Mixing Class and Feature Concepts. International Journal of

Computer Science & Information Technology (IJCSIT) Vol 5, No 5, October 2013,

http://airccse.org/journal/ijcsit2013_curr.html

5. Aspect mining using a specification driven program slicing approach, WSEAS Transactions on Information

Science and applications, 1(1), July 2004

6. T. Khammaci, ZE. Bouras, S. Ghoul, Program Slicing: Precise Shops Extraction Approaches, Hand book of

Software Engineering and Knowledge Engineering, Vol. 1, Fundamentals, S. K. Chang (editor), Word Scientific

Publishing, 200

7. R. Conardi and B. Westfechted, Versions Models for Software Configuration Management, ACM Computing

Surveys, Vol.30, Issue 2, 1998.

8. MS Bendelloul, S. Ghoul, T. Khammaci, An object-based Decomposition for Assistance to Software

Maintenance, Proc. of the 5th Magrrebian Conf. on Software Engineering and Artificial Intelligence,

MCSEAI’98, Tunis, Tunisia, 1998. 30

9. MS Bendelloul, S.Ghoul, An Object System for Software Maintenance, Proc. of the 4
th

 African Conference on

Computer Science, CARI’98, Dakar, Senegal, 1998.

10. J. Estublier, S. Ghoul. Preliminary Experience with a Configuration Control System for Modular Programs,

ACM SIGSOFT (USA), Vol.9, No.3, May 84. pp. 149 – 156.

Website(s):

http://ecourse.philadelphia.edu.jo/login/index.php // our e-course

 http://intranet.cs.man.ac.uk/Study_subweb/Ugrad/coursenotes/CS3331/ //Manchester maintenance course

http://www.sersc.org/journals/IJSEIA/vol8_no3_2014.php
http://airccse.org/journal/ijcsit2013_curr.html
http://ecourse.philadelphia.edu.jo/login/index.php
http://intranet.cs.man.ac.uk/Study_subweb/Ugrad/coursenotes/CS3331/

