4 o pill Gt I il 3B aal) 4 e
2 (Rev) :J‘M\J‘ ?aJ UJJ‘“‘H U‘“:.”)X - HP! ML:G;;:
: — Ldtasld daals
2021-5-4 s el fo _ _
. 33 sall laal Llal) d3all) 5 d88aal) dgad) Philadelphia
N P clada e University

Course Title: Compiler Construction Course code: 750324

Course prerequisite (s) and/or co requisite (s):
Course Level: 3

(750224)
Lecture Time: : 08:15 - 09:45 Credit hours: 3
UR O] FR ] DR n C m |E O]

Academic Staff Specifics

Name Rank Office Office Hours E-mail Address

The Learning Style Used in Teaching the Course

The Learning Style
Blended Learning []
Electronic Learning []
Face-to-Face Learning ®
Face-to- Electronic Blended
Face Percentage

Course module description:

This module aims to show how to apply the theory of language translation introduced in the
prerequisite courses to build compilers and interpreters. It covers the building of translators
both from scratch and using compiler generators. In the process, the module also identifies and
explores the main issues of the design of translators. Topics include compiler design, lexical
analysis, parsing, symbol tables, declaration and storage management, code generation. The
construction of a compiler/interpreter for a small language is a necessary component of this
module, so students can obtain the necessary skKills.

Course/Module Obijectives:
In the realm of software development, it is imperative to construct scanners and parsers using
both top-down and bottom-up paradigms. This can be achieved through manual implementation
or with the assistance of tools. Additionally, the creation of abstract syntax trees is closely
associated with this process.
This paper aims to discuss the architecture and functionality of symbol tables, with a particular
focus on their utilisation in type checking and other semantic tests.
This paper aims to elucidate the process by which executable code can be derived from an
abstract syntax tree.



This response will provide an academic explanation of miscellaneous forms of optimisation,
with a focus on the utilisation of liveness analysis for register allocation. Optimization
techniques play a crucial role in enhancing the performance of computer programmes. Various
forms of optimisation exist, each targeting different aspects of programme execution. One such
form is liveness analysis, which aids in efficient register allocation. Liveness analysis is a static
analysis technique that determines the lifespan of variables within a programme. It identifies the
points in the programme where a variable is used and defines its live range, which encompasses
the instructions between its last use and its next definition. By analysing the liveness of
variables, compilers can make informed decisions regarding register allocation. Register
allocation is the process of assigning variables to

Explain the operational characteristics of the algorithms under consideration for garbage
collection.

Textbook:

Title: Compiler Design

Author(s): Kaushal Kishor Rastogi

Publisher: New Delhi: Global Academic Publishers & Distributors
Year of Publication: 2014

Support material (s):
Slides: MIT Computer Language Engineering Courseware

Teaching methods:
Lectures, tutorials, problem solving, laboratory

Duration: 15 weeks, 45 hours in total
Lectures: 36 hours
Tutorials: 06 hours
Laboratory: 03 hours

Learning outcomes:
e Knowledge and understanding
Al. Recognize basics of automata theory, principle and the structure of translators
A2. Recognize the relevant basic concepts inherent to translators, their
components, the difference between compilers and interpreters, the difference between
LL(1), LR (1), and SLR grammars, the difference between bottom up and top down
parsers.
e Cognitive Skills (thinking and analysis).
B1. Analyze and Compare bottom up and top-down parsing
B2. Design a compiler for a simple programming language.
e Practical Skills
C1. Plan and undertake a group project in the area of compilers
C2. Implement specific components of translators

¢ Transferable Skills and Personal Qualities
D1. Display an integrated approach to the deployment of communication skills,
use IT skills and display mature computer literacy

Learning Outcomes Achievements:

Al, A2, B1l, and B2 are achieved through lectures and assessed by quizzes and
examinations

2



C1, C2, and D1 are achieved and assessed by homework: practical and research works

Assessment instruments
e Quizzes.& Home works
e Final examination: 40 marks

Allocation of Marks
Assessment Instruments Mark
Mid Examination 30
Final Examination 40
Quizzes, Home works 30
Total 100

Assignments All assignments will be announced or handed out in class. Many assignments will
require programming in Python. All individual assignments, whether programming or not, are to be
done individually. While you may discuss the assignment in general terms with others, your
solutions should be composed, designed, written and tested by you alone. If you need help, consult
the TA or the instructor.

Documentation and academic honesty
Submit your home work covered with a sheet containing your name, number, course title and
number, and type and humber of the home work (e.g. tutorial, assignment, and project).

Any completed homework must be handed in to my office (room IT 602) by 15:00 on the due
date. After the deadline “zero” will be awarded. You must keep a duplicate copy of your work
because it may be needed while the original is being marked.

You should hand in with your assignments:
1- A printed listing of your test programs (if any).
2- A brief report to explain your findings.
3- Your solution of questions.

For the research report, you are required to write a report similar to a research paper. It should
include:

o Abstract: It describes the main synopsis of your paper.

o Introduction: It provides background information necessary to understand the research and
getting readers interested in your subject. The introduction is where you put your problem in
context and is likely where the bulk of your sources will appear.

o Methods (Algorithms and Implementation): Describe your methods here. Summarize the
algorithms generally, highlight features relevant to your project, and refer readers to your
references for further details.

o Results and Discussion (Benchmarking and Analysis): This section is the most important
part of your paper. It is here that you demonstrate the work you have accomplished on this
project and explain its significance. The quality of your analysis will impact your final grade
more than any other component on the paper. You should therefore plan to spend the bulk of
your project time not just gathering data, but determining what it ultimately means and
deciding how best to showcase these findings.

o Conclusion: The conclusion should give your reader the points to “take home” from your
paper. It should state clearly what your results demonstrate about the problem you were
tackling in the paper. It should also generalize your findings, putting them into a useful
context that can be built upon. All generalizations should be supported by your data,

3



however; the discussion should prove these points, so that when the reader gets to the
conclusion, the statements are logical and seem self-evident.

o Bibliography: Refer to any reference that you used in your assignment. Citations in the
body of the paper should refer to a bibliography at the end of the paper.

e Protection by Copyright

1. Coursework, laboratory exercises, reports, and essays submitted for assessment must be your
own work, unless in the case of group projects a joint effort is expected and is indicated as
such.

2. Use of quotations or data from the work of others is entirely acceptable, and is often very
valuable provided that the source of the quotation or data is given. Failure to provide a source
or put quotation marks around material that is taken from elsewhere gives the appearance that
the comments are ostensibly your own. When quoting word-for-word from the work of
another person quotation marks or indenting (setting the quotation in from the margin) must be
used and the source of the quoted material must be acknowledged.

3. Sources of quotations used should be listed in full in a bibliography at the end of your piece of
work.

¢ Avoiding Plagiarism.

1. Unacknowledged direct copying from the work of another person, or the close paraphrasing of
somebody else's work, is called plagiarism and is a serious offence, equated with cheating in
examinations. This applies to copying both from other students' work and from published
sources such as books, reports or journal articles.

2. Paraphrasing, when the original statement is still identifiable and has no acknowledgement, is
plagiarism. A close paraphrase of another person's work must have an acknowledgement to the
source. It is not acceptable for you to put together unacknowledged passages from the same or
from different sources linking these together with a few words or sentences of your own and
changing a few words from the original text: this is regarded as over-dependence on other
sources, which is a form of plagiarism.

3. Direct quotations from an earlier piece of your own work, if not attributed, suggest that your
work is original, when in fact it is not. The direct copying of one's own writings qualifies as
plagiarism if the fact that the work has been or is to be presented elsewhere is not
acknowledged.

4. Plagiarism is a serious offence and will always result in imposition of a penalty. In deciding
upon the penalty the Department will take into account factors such as the year of study, the
extent and proportion of the work that has been plagiarized, and the apparent intent of the
student. The penalties that can be imposed range from a minimum of a zero mark for the work
(without allowing resubmission) through caution to disciplinary measures (such as suspension
or expulsion).

Course/module academic calendar

week Basic and support material to be covered aHnO dﬂ%’gg{ggggz
(1 Introduction to Translators and Compilers
Lexical Analysis: Introduction, Regular Expressions,
(2) Grammar language
Lexical Analysis: Finite Automata (DFA, NFA),
3) Lex: Lexical generator tool
%) Tutoriall: Handwritten Lexical Analyzer
Syntactic Analysis: Introduction
5 Syntactic Analysis: Bottom Up Parsing Implementation of a
() Shift reduce parsing hand written lexical




analyzer
(6) Shift Reduce parsing
First Parse table
exam.
@) Tutorial2 _ _
Syntax Analysis: Top Down Parsing (1)
(8) Syntax Analysis: Top Down Parsing (2)
9) TutorigIB _ _
Semantic Analysis: Introduction
Type Checking (1) Implementation of a
(10) simple calculator
using lex/yacc tools
(1) Type checking (2)
Second Tutorial 4
exam.
(12) Intermediate Representation (1)
(13) Interm_ediate Representation (2)
Tutorial 5
(14) Machine Code Generation (1)
(15) Machine Code Generation (2)
Tutorial 6
(16) Revision
Final
Exam.

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute
lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit
without a medical or emergency excuse acceptable to and approved by the Dean of the relevant
college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for
the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn
from the course.

Module references

Books:

1. Keith Cooper, Linda Torczon, Engineering a Compiler, Imprint: Morgan Kaufmann, 2011

2. Alfred V. Aho, Ravi Sethi and Jeffry D. Ulman, Compilers: Principles, Techniques and
Tools, Addison Wesley Longman, 2007
3. W. Appel, Modern Compiler Implementation in Java, Prentice Hall, 2002
4. D. Watt, Brown, Programming Language Processors in Java: Compilers and
Interpreters, Prentice hall, 2000

Website:

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-035-

computer-language-engineering-spring-2010/ (MIT CourseWare)



http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-035-computer-language-engineering-spring-2010/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-035-computer-language-engineering-spring-2010/

	Title: Compiler Design
	Author(s): Kaushal Kishor Rastogi

