
 1

Course code: 750324

Course Title: Compiler Construction

Course prerequisite (s) and/or co requisite (s):

 (750224)
Course Level: 3

Credit hours: 3 Lecture Time: : 08:15 - 09:45

E C DR FR UR

Academic Staff Specifics

E-mail Address Office Hours Office Rank Name

The Learning Style Used in Teaching the Course

tyleSearning LThe

 Blended Learning

Electronic Learning

Face-to-Face Learning

Percentage

Blended Electronic Face-to-

Face

Course module description:
This module aims to show how to apply the theory of language translation introduced in the

prerequisite courses to build compilers and interpreters. It covers the building of translators

both from scratch and using compiler generators. In the process, the module also identifies and

explores the main issues of the design of translators. Topics include compiler design, lexical

analysis, parsing, symbol tables, declaration and storage management, code generation. The

construction of a compiler/interpreter for a small language is a necessary component of this

module, so students can obtain the necessary skills.

Course/Module Objectives:

In the realm of software development, it is imperative to construct scanners and parsers using

both top-down and bottom-up paradigms. This can be achieved through manual implementation

or with the assistance of tools. Additionally, the creation of abstract syntax trees is closely

associated with this process.

This paper aims to discuss the architecture and functionality of symbol tables, with a particular

focus on their utilisation in type checking and other semantic tests.

This paper aims to elucidate the process by which executable code can be derived from an

abstract syntax tree.

QFO-AP-VA-008 : خطة المادة الدراسية اسم النموذج : رمز النموذج

 جامعة فيلادلفيا

Philadelphia

University

 (Rev) : رقم الإصدار 2
نائب الرئيس للشؤون الجهة المصدرة:

 الأكاديمية

 :تاريخ الإصدار 4-5-2021
 اللجنة العليا لضمان الجودةالجهة المدققة :

 صفحات النموذج :د عد 4

 2

This response will provide an academic explanation of miscellaneous forms of optimisation,

with a focus on the utilisation of liveness analysis for register allocation. Optimization

techniques play a crucial role in enhancing the performance of computer programmes. Various

forms of optimisation exist, each targeting different aspects of programme execution. One such

form is liveness analysis, which aids in efficient register allocation. Liveness analysis is a static

analysis technique that determines the lifespan of variables within a programme. It identifies the

points in the programme where a variable is used and defines its live range, which encompasses

the instructions between its last use and its next definition. By analysing the liveness of

variables, compilers can make informed decisions regarding register allocation. Register

allocation is the process of assigning variables to

Explain the operational characteristics of the algorithms under consideration for garbage

collection.

Textbook:

 Title: Compiler Design
Kaushal Kishor Rastogi :Author(s)

 Publisher: New Delhi: Global Academic Publishers & Distributors

 Year of Publication: 2014

Support material (s):

 Slides: MIT Computer Language Engineering Courseware

 Teaching methods:

 Lectures, tutorials, problem solving, laboratory

 Duration: 15 weeks, 45 hours in total

 Lectures: 36 hours

 Tutorials: 06 hours
 Laboratory: 03 hours

Learning outcomes:

 Knowledge and understanding

 A1. Recognize basics of automata theory, principle and the structure of translators

 A2. Recognize the relevant basic concepts inherent to translators, their

components, the difference between compilers and interpreters, the difference between

LL(1), LR (1), and SLR grammars, the difference between bottom up and top down

parsers.

 Cognitive Skills (thinking and analysis).

 B1. Analyze and Compare bottom up and top-down parsing

 B2. Design a compiler for a simple programming language.

 Practical Skills

 C1. Plan and undertake a group project in the area of compilers

 C2. Implement specific components of translators

 Transferable Skills and Personal Qualities

 D1. Display an integrated approach to the deployment of communication skills,

use IT skills and display mature computer literacy

Learning Outcomes Achievements:

A1, A2, B1, and B2 are achieved through lectures and assessed by quizzes and

examinations

 3

C1, C2, and D1 are achieved and assessed by homework: practical and research works

Assessment instruments

 Quizzes.& Home works

 Final examination: 40 marks

Allocation of Marks

Mark Assessment Instruments

 30 Mid Examination

 40 Final Examination

 30 Quizzes, Home works

 100 Total

Assignments All assignments will be announced or handed out in class. Many assignments will

require programming in Python. All individual assignments, whether programming or not, are to be

done individually. While you may discuss the assignment in general terms with others, your

solutions should be composed, designed, written and tested by you alone. If you need help, consult

the TA or the instructor.

Documentation and academic honesty
Submit your home work covered with a sheet containing your name, number, course title and
number, and type and number of the home work (e.g. tutorial, assignment, and project).

Any completed homework must be handed in to my office (room IT 602) by 15:00 on the due

date. After the deadline “zero” will be awarded. You must keep a duplicate copy of your work
because it may be needed while the original is being marked.

You should hand in with your assignments:

1- A printed listing of your test programs (if any).

2- A brief report to explain your findings.
3- Your solution of questions.

For the research report, you are required to write a report similar to a research paper. It should

include:
o Abstract: It describes the main synopsis of your paper.

o Introduction: It provides background information necessary to understand the research and

getting readers interested in your subject. The introduction is where you put your problem in

context and is likely where the bulk of your sources will appear.
o Methods (Algorithms and Implementation): Describe your methods here. Summarize the

algorithms generally, highlight features relevant to your project, and refer readers to your

references for further details.
o Results and Discussion (Benchmarking and Analysis): This section is the most important

part of your paper. It is here that you demonstrate the work you have accomplished on this

project and explain its significance. The quality of your analysis will impact your final grade
more than any other component on the paper. You should therefore plan to spend the bulk of

your project time not just gathering data, but determining what it ultimately means and

deciding how best to showcase these findings.

o Conclusion: The conclusion should give your reader the points to “take home” from your
paper. It should state clearly what your results demonstrate about the problem you were

tackling in the paper. It should also generalize your findings, putting them into a useful

context that can be built upon. All generalizations should be supported by your data,

 4

however; the discussion should prove these points, so that when the reader gets to the

conclusion, the statements are logical and seem self-evident.
o Bibliography: Refer to any reference that you used in your assignment. Citations in the

body of the paper should refer to a bibliography at the end of the paper.

 Protection by Copyright
1. Coursework, laboratory exercises, reports, and essays submitted for assessment must be your

own work, unless in the case of group projects a joint effort is expected and is indicated as

such.
2. Use of quotations or data from the work of others is entirely acceptable, and is often very

valuable provided that the source of the quotation or data is given. Failure to provide a source

or put quotation marks around material that is taken from elsewhere gives the appearance that
the comments are ostensibly your own. When quoting word-for-word from the work of

another person quotation marks or indenting (setting the quotation in from the margin) must be

used and the source of the quoted material must be acknowledged.

3. Sources of quotations used should be listed in full in a bibliography at the end of your piece of
work.

 Avoiding Plagiarism.

1. Unacknowledged direct copying from the work of another person, or the close paraphrasing of
somebody else's work, is called plagiarism and is a serious offence, equated with cheating in

examinations. This applies to copying both from other students' work and from published

sources such as books, reports or journal articles.
2. Paraphrasing, when the original statement is still identifiable and has no acknowledgement, is

plagiarism. A close paraphrase of another person's work must have an acknowledgement to the

source. It is not acceptable for you to put together unacknowledged passages from the same or

from different sources linking these together with a few words or sentences of your own and
changing a few words from the original text: this is regarded as over-dependence on other

sources, which is a form of plagiarism.

3. Direct quotations from an earlier piece of your own work, if not attributed, suggest that your
work is original, when in fact it is not. The direct copying of one's own writings qualifies as

plagiarism if the fact that the work has been or is to be presented elsewhere is not

acknowledged.
4. Plagiarism is a serious offence and will always result in imposition of a penalty. In deciding

upon the penalty the Department will take into account factors such as the year of study, the

extent and proportion of the work that has been plagiarized, and the apparent intent of the

student. The penalties that can be imposed range from a minimum of a zero mark for the work
(without allowing resubmission) through caution to disciplinary measures (such as suspension

or expulsion).

Course/module academic calendar

week
Basic and support material to be covered

Homework/reports

and their due dates

(1) Introduction to Translators and Compilers

(2)
Lexical Analysis: Introduction, Regular Expressions,
Grammar language

(3)
Lexical Analysis: Finite Automata (DFA, NFA),

Lex: Lexical generator tool

(4)
Tutorial1: Handwritten Lexical Analyzer
Syntactic Analysis: Introduction

(5)
Syntactic Analysis: Bottom Up Parsing

Shift reduce parsing
Implementation of a

hand written lexical

 5

analyzer

(6)

First

exam.

Shift Reduce parsing
Parse table

(7)
Tutorial2

Syntax Analysis: Top Down Parsing (1)

(8) Syntax Analysis: Top Down Parsing (2)

(9)
 Tutorial3

 Semantic Analysis: Introduction

(10)

 Type Checking (1) Implementation of a

simple calculator

using lex/yacc tools

(11)

Second

exam.

 Type checking (2)

 Tutorial 4

(12) Intermediate Representation (1)

(13)
 Intermediate Representation (2)

 Tutorial 5

(14) Machine Code Generation (1)

(15)

 Machine Code Generation (2)

 Tutorial 6

(16)

Final

Exam.

Revision

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute

lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit

without a medical or emergency excuse acceptable to and approved by the Dean of the relevant

college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for

the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn

from the course.

Module references

Books:

1. Keith Cooper, Linda Torczon, Engineering a Compiler, Imprint: Morgan Kaufmann, 2011
2. Alfred V. Aho, Ravi Sethi and Jeffry D. Ulman, Compilers: Principles, Techniques and

Tools, Addison Wesley Longman, 2007

3. W. Appel, Modern Compiler Implementation in Java, Prentice Hall, 2002

4. D. Watt, Brown, Programming Language Processors in Java: Compilers and

Interpreters, Prentice hall, 2000

Website:

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-035-

computer-language-engineering-spring-2010/ (MIT CourseWare)

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-035-computer-language-engineering-spring-2010/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-035-computer-language-engineering-spring-2010/

	Title: Compiler Design
	Author(s): Kaushal Kishor Rastogi

