QFO-AP-VA-008	رمز النموذج:	اسم النموذج: خطة المادة الدراسية	
2	رقم الإصدار: (Rev)	الجهة المصدرة: نائب الرئيس للشؤون الأكاديمية	جامعة فيلادلفيا
2021-5-4	تاريخ الإصدار:		
5	عدد صفحات النموذج:	الجهة المدققة: اللجنة العليا لضمان الجودة	Philadelphia University

Course Title: Digital Logic Design	Course code: 750230
Course Level: 3	Course prerequisite: 750110
Lecture Time: 12:45 – 14:00	Credit hours: 3
UR ☐ FR ☐ DR	□ C □ E □

Academic Staff Specifics

Name	Rank	Office Number and Location	Office Hours	E-mail Address

The Learning Style Used in Teaching the Course

The Learning Style				
Blended Lear	ning 🔲			
Electronic Le	arning 🔲			
Face-to-Face Learning				
Face-to-	Electronic	Blended		
Face			Percentage	
100%				

Course/Module Description:

This module introduces the concepts of the design and implementation of digital circuits. Laboratory experiments will be used to reinforce the theoretical concepts discussed in lectures. The lab experiments will involve the design and implementation of digital circuits. Emphasis is on the use computer aided tools in the design, simulation, and testing of digital circuits.

Course/Module Objectives:

The aim of the module is to introduce to the students the topics that include combinational and sequential circuit analysis and design, digital circuit design optimization methods using random logic gates, multiplexers, decoders, registers, counters and programmable logic arrays.

Course/ Module Components

- Textbook:

Title: Digital Logic Author: Morris Mano Publisher: Prentice Hall, 2012

- Support material (s)

Power point Slides

Teaching methods:

Duration: 15 weeks, 60 hours in total

Lectures: 45 hours, 3 per week + two exams (two hours)

Learning outcomes

A- Knowledge and Understanding

A1- Recognize a wide range of principles and tools to Minimize Boolean functions, and state the hardware used in the development of computer systems.

A2- Describe the professional and ethical responsibilities of the practicing computer professional including understanding the need for quality.

B- Intellectual skills (thinking and analysis)

B1- Analyze a wide range of problems and provide solutions through suitable algorithms, structures, diagrams, and other appropriate methods.

B2- Practice self learning by using the e-courses

C- Practical skills

C1- Work effectively with and for others, and balance between self-reliance and seeking help when necessary in new situations.

D- Transferable skills

D1. Prepare and deliver verbal and written technical reports, use the scientific literature effectively and make discriminating use of Web resources, write computer programs in appropriate languages.

Learning outcomes achievement

• Development: A1, A2, B1 are developed through lectures
B1, B2, D1 are developed through tutorials and practical works

 Assessment: A1, A2, B1, D1, and C1 and are assessed through Quizzes, written exams, and Practical Works Exams.

B2, D1, and C1 are assessed through Homework Exam..

Assessment instruments

- Short reports and/ or presentations, and/ or short research projects
- 3 Quizzes.
- Practical works
- Final examination: 40 marks

Allocation of Marks		
Assessment Instruments	Marks	
MID examination	30	
Final examination	40	
Quizzes & Home works	30	
Total	100	

* Make-up exams will be offered for valid reasons only with consent of the Dean. Make-up exams may be different from regular exams in content and format.

Practical Submissions

The assignments that have work to be assessed will be given to the students in separate documents including the due date and appropriate reading material.

Documentation and academic honesty

• Documentation style (with illustrative examples)

Submit your homework covered with a sheet containing your name, number, course title and number, and type and number of the home work (e.g., tutorial, assignment, and project).

Any completed homework must be handed in to my office by 15:00 on the due date. After the deadline "zero" will be awarded. You must keep a duplicate copy of your work because it may be needed while the original is being marked.

You should hand in with your assignments:

- 1- A printed listing of your test programs (if any).
- 2- A brief report to explain your findings.
- 3- Your solution of questions.

For the research report, you are required to write a report similar to a research paper. It should include:

- **Abstract**: It describes the main synopsis of your paper.
- **Introduction**: It provides background information necessary to understand the research and getting readers interested in your subject. The introduction is where you put your problem in context and is likely where the bulk of your sources will appear.
- **Methods (Algorithms and Implementation)**: Describe your methods here. Summarize the algorithms generally, highlight features relevant to your project, and refer readers to your references for further details.
- Results and Discussion (Benchmarking and Analysis): This section is the most important part of your paper. It is here that you demonstrate the work you have accomplished on this project and explain its significance. The quality of your analysis will impact your final grade more than any other component on the paper. You should therefore plan to spend the bulk of your project time not just gathering data, but determining what it ultimately means and deciding how best to showcase these findings.
- Conclusion: The conclusion should give your reader the points to "take home" from your paper. It should state clearly what your results demonstrate about the problem you were tackling in the paper. It should also generalize your findings, putting them into a useful context that can be built upon. All generalizations should be supported by your data, however; the discussion should prove these points, so that when the reader gets to the conclusion, the statements are logical and seem self-evident.
- **Bibliography:** Refer to any reference that you used in your assignment. Citations in the body of the paper should refer to a bibliography at the end of the paper.

• Protection by copyright

- 1. Coursework, laboratory exercises, reports, and essays submitted for assessment must be your own work, unless in the case of group projects a joint effort is expected and is indicated as such.
- 2. Use of quotations or data from the work of others is entirely acceptable, and is often very valuable provided that the source of the quotation or data is given Failure to provide a source or put quotation marks around material that is taken from elsewhere gives the appearance that the comments are ostensibly your own. When quoting word-for-word from the work of another person quotation marks or indenting (setting the quotation in from the margin) must be used and the source of the quoted material must be acknowledged.

3. Sources of quotations used should be listed in full in a bibliography at the end of your piece of work.

Avoiding plagiarism.

- 1. Unacknowledged direct copying from the work of another person, or the close paraphrasing of somebody else's work, is called plagiarism and is a serious offence, equated with cheating in examinations. This applies to copying both from other students' work and from published sources such as books, reports or journal articles.
- 2. Paraphrasing, when the original statement is still identifiable and has no acknowledgement, is plagiarism. A close paraphrase of another person's work must have an acknowledgement to the source. It is not acceptable for you to put together unacknowledged passages from the same or from different sources linking these together with a few words or sentences of your own and changing a few words from the original text: this is regarded as over-dependence on other sources, which is a form of plagiarism.
- 3. Direct quotations from an earlier piece of your own work, if not attributed, suggest that your work is original, when in fact it is not. The direct copying of one's own writings qualifies as plagiarism if the fact that the work has been or is to be presented elsewhere is not acknowledged.
- 4. Plagiarism is a serious offence and will always result in imposition of a penalty. In deciding upon the penalty, the Department will take into account factors such as the year of study, the extent and proportion of the work that has been plagiarized, and the apparent intent of the student. The penalties that can be imposed range from a minimum of a zero mark for the work (without allowing resubmission) through caution to disciplinary measures (such as suspension or expulsion).

Course/module academic calendar

Week	Basic and support material to be covered	Homework/ reports and their due dates
1	Digital Computers and digital systems	
2	Signed Binary Numbers	
3	Logic Gates	Homework/ Quiz
4, 5	Boolean Algebra.	Homework/ Quiz
6	Simplification Using Map Method	/Homework Quiz
7	Simplification Using Map Method	
8	Mid Exam	Exam
9	Combinational Logic Circuits	
10, 11	Combinational Logic Circuit with MSI and LSI	/Homework Quiz
12, 13	Sequential Circuits	/Homework Quiz
14	Design Procedure	Homework/ Quiz
15	Registers and Counters	
16	Final Exam	Exam

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module references

Books

- 1. Morris Mano, Charles R. Kime, Logic and computer design fundamentals, Pearson Prentice Hall, 2004.
- 2. Basavaraj, B., Digital fundamentals, New Delhi: Vikas Publishing House, 1999.
- 3. Kandel Langholz, Digital Logic Design, Prentice Hall, 1988. .
- 4. Rafiquzzaman & Chandra, Modern Computer Architecture, West Pub. Comp., 1988.

Journals

https://www.cs.utexas.edu/~byoung/cs429/slides5-logic.pdf https://en.wikiversity.org/wiki/Computer_Logic#Addition

http://american.cs.ucdavis.edu/academic/ecs154a.sum14/postscript/cosc205.pdf

Websites

https://www.philadelphia.edu.jo/academics/igabaja/