Philadelphia University

Faculty of Information Technology Student
Handbook
Department of Software
Engineering (BSc)

September 2022

Y TRVEIVZ L a2 Y

\Tﬁkﬁ)ki&bﬁ/ﬁ?“éi
{

W (2 N NA >

CONTENT

I. Introduction 4
I1. Mission Statement 4
III. Important Dates 4

1. Registration
2. Time table

IV. Scope and Input Resources 5
1. Aims and Objectives
2. Staff
Academic Staff
Non-Academic Staff

3. Departmental Learning Resources
Code of Practice for Student Computer Usage
Explanatory Notes
Support for Computer Equipment
Learning Resource Center
Photocopying
Printing
Departmental Computer Club
Administrative Infrastructure
Academic Infrastructure
Lecture Support Facilities
University Computer Center
Networking Facilities
Type and Level of Access
Library Infrastructure
Bookshops
Extracurricular Activities

V. Student Support and Guidance 10
1. Assistant Dean Oftfice
2. Academic Guidance and Advisory Services
3. Students Affair Deanship
4. Tutoring Arrangements
5. Students Progress
6. Interruption of Degree Program
7. Transfer between Departments
8. Withdrawal from Modules

VI. Organization of Teaching 12
VII. Course Unit Choice 13

VIII. Assessment and Examination 13
Criteria for Assessing Examination Work

Assessment Regulation

Role of External Examination

Appeal Procedures

Unfair Practices

Department Guidelines on Plagiarism

AN

Philadelphia University

Oy 1A U

IX. Teaching Quality Assurance Committees 15

X. Students Feedback and Representation 15
1. Staff Students Consultative Committee
2. Departmental and Deanship Meetings
3. Module Evaluation Questionnaires

XI. Communications 16

Official Notices

Electronic Mail

Obscene or Offensive Mail
Group Mailing
Miscellaneous Hints

Nk W=

XII. Curriculum Design, Content and Organization 17

1. Curriculum Design and Content
2. Curriculum Organization

3. Curriculum Characteristics

4. Innovation of Curriculum

XIII. Health and Safety in the University 20
Buildings

Emergency Evacuation

Fire Action

Operating the Fire Alarm

Use of Fire Appliances

Action When the Alarm Rings

Personal Difficulties

Nk WD~

Appendix A: Outlines of Module Descriptions (2022-2023) 21
Appendix B: The Guidance Plan of Software Engineering Programme (2022-2023) 52
Appendix C: Study Plan of Software Engineering Programme (2022-2023) 54

AL -5 v - L' . AW

G EI&E
[{

W (2 N NA >

I. Introduction

This handbook contains important general information for students undertaking Undergraduate Degree program
in the Department of Software Engineering. This handbook is also available on the web.

Your degree program is subject to regulations contained in the University Students Guide. This departmental
handbook interprets the regulations and your tutors may give advice, but the University Students Guide defines
the regulations.

II. Mission Statement

The mission of The Software Engineering Department is derived from the overall IT Faculty and University
mission. The Software Engineering Department at Philadelphia University was founded in the year
2000 as one of the first Software Engineering Departments offering honors degree in Software
Engineering in Jordan. This undergraduate program addresses the growing need for professionals in
.this sophisticated field

The mission of the Software Engineering Department at Philadelphia University is to provide outstanding
education to its undergraduate students in accordance with the principles of the University mission, to advance
scholarship in key domains of software engineering, and to engage in activities that improve the welfare of
society. The Department aims to maintain an environment that promotes innovative thinking; values mutual
respect and diversity; encourages and supports scholarship; instills ethical behavior; and engenders life-long
learning

The strategies of the Department are set to meet the demands of a rapidly evolving world, and to meet the
needs of a developing job market in Information Technology. Graduates of this program will work with the
engineering of software, with special attention devoted to large and critical systems. This program addresses
both analytic and practical skills required by students to develop robust and efficient computer software systems
for manufacturing, industrial, medical, government, and business applications. They will have individual and
team hands-on experience with timely, cost-effective and state-of-the-art processes, methods and tools.

The curriculum of this program aims to prepare students for careers in software engineering, software
project management, and software development and integration. Software engineering comprises the core
principles consistent in software construction and maintenance. This mainly covers the fundamental software
processes and life-cycles, mathematical foundations of software engineering, requirements analysis, software
engineering methodologies and standard notations, principles of software architecture and reuse, software
quality frameworks and validation, software development, and maintenance environments and tools.

III. Important Dates

1. Registration:
Admission criteria are issued by the Higher Education Council, which governs all private universities (60% in
the Tawjihi exam). First year students must attend the University and they will be given a full timetable for
the introductory activities. Departmental and University registration must be completed at the time specified
in the introductory timetable. Returning students must also register in the times specified during introductory
week.

2. Timetable

Philadelphia University

Oy 1A U

Lectures timetable is published separately from this book. Whilst every attempt is made to timetable
reasonable combinations of course units (modules), various constraints make some combinations and
outside options impossible. If you have a timetable problem, please consult your personal tutor in the first
instance.
IV. Scope and Input Resources
1. Aims and Objectives
Aims: Software Engineering program at Philadelphia University gives you the opportunity to:

° study a body of knowledge relating to Software Engineering, Software reengineering, and
maintenance;

understand the principles of large scale software systems, and the processes that are used to build
them;

e develop skills in the most widely used approach to software construction — object-orientation (00),
including OO requirement specifications, OO analysis, OO design, OO programming, OO testing and
maintenance;

e use tools and techniques for producing application software solutions from informal and semi-
formal problem specifications;

e acquire and develop many valuable skills such as the ability to use computer aided software
engineering tools to analyze, evaluate, select and synthesise information sources for the purpose of
developing a software system;

° develop an appreciation of the cost, quality, and management issues involved in software
construction;

e develop an awareness of the role and responsibilities of the professional software engineer;

e acquire skills to think about problems and their solutions using appropriate methods of analysis
and design;

e be able to design and communicate ideas about software system solutions at different levels of
abstraction and have the opportunity to transfer such skills across a wide range of industrial and
commercial domains;

e have an ability to work with other people in a team, communicating computing ideas effectively in
speech and in writing;

e have abasis for going on to further study in software engineering, or for finding work in computing-
related industries.

be a graduate that can go on to employment in technical positions in software companies and with
large-scale scientific and engineering users;

e be a graduate that may seek to pursue research careers.
Objectives (Learning Outcomes). Learning outcomes describe what you should know and be able to do if you
make full use of the opportunities for learning that we provide. All these skills are described in the following

areas (A, B, C, D). In the individual module syllabi, the categories of learning outcomes (A, B, C, D) and the
individual learning outcomes appropriate to the module are identified

A- Knowledge and Understanding of
A1) the principles of system development lifecycle and different software process models.

A2) a wide range of principles available to the software developer, such as concepts, algorithms,

VLt 2RV LoV 02 V-
L-L\ﬁf;%r =
Y2/ N NAN>

models, languages, data structures, software libraries and user interface techniques.

A3) the principles of software construction.

A4) methods and techniques for requirements analysis, design, programming, testing and
maintenance.

AS5) the range of situations in which computer systems are used, and the ways in which people
interact with them;

A6) professional issues to cover: social, ethical and legal aspects;

A7) different architectural approaches to deal with large and complex software projects.

A8) the principles and techniques of new trends in application types and domains.

B- Intellectual (thinking) skills - able to
B1) specify and model software systems.

B2) analyze, investigate and improve the specification of a software system.
B3) design and plan software solutions to problems.

B4) identify a range of solutions and critically evaluate and justify proposed design solutions.
B5) apply methods and techniques for different phases of software development lifecycle.

B6) evaluate systems in terms of general quality attributes and possible trade-offs presented within the
given problem;

B7) reflect and reason concerning a given information handling problem or opportunity.

B8) identify some of the main risks of software development and use.

C- Practical skills - able to
C1) use software development technologies (platforms).

C2) use CASE tools for each phase of software development lifecycle.

C3) use generic and specific programming and modelling languages.

C4) use API libraries for software construction.

C5) use debugging tools.

C6) use network information services.

C7) prepare and deliver coherent and structured verbal and written technical reports.
C8) use the scientific literature effectively and make discriminating use of web resources.

C9) conduct interviews and brainstorming for requirements elicitation.

D- Transferable skills - able to
D1) acquire, manipulate and process data.

D2) use creativity and innovation.

Philadelphia University

Oy 1A U

D3) solve problems.

D4) communicate effectively with non —specialist as well as computer scientist professionals at a range of
level.

D5) give oral presentations and write report and technical documents.

D6) work as part of a team.
D7) manage time, tasks and resources

D8) use information Technology effectively.

In order to provide students with the “lifelong learning” attitude, the teaching method is essentially based on
self-learning (3 hours in classrooms and 6 hours out of classrooms: coursework, practical work, workshops,
seminars, etc.)

2. Staff
A. Academic Staff
e Qualifications
The academic staff members are divided into two categories: full-time and part-time. The number
of full-time staff members is 9, while the number of part-time staff depends upon the number of
students and the needs of the Department.
The academic staff members, who are between 27 and 68 years of age, have relatively adequate
experience ranging from 2 years to more than 30 years.
Six academic staff members at the Basic Sciences Department / Faculty of Science assist in teaching
the Mathematics and Discrete Structures course units.

e Specialisations
Full-time as well as part-time teaching staff members have various specialisations that can be divided
into four categories (Software, Communication and Interaction, Practice, Theory). At present, there
are six research teams at the Faculty of IT and young staff members belong to these teams.

B. Non-Academic Staff
Besides the academic staff, the Department has 2 other full time members hold a B.Sc. degree in Computer Science.
Those staff members have 3 to 7 years working experience and some of them have been appointed from
Philadelphia University graduates who hold bachelor degrees with Grade “Excellent” or “Very Good”.
All of the non-academic staff members are qualified as laboratory tutors and assist lecturers in the laboratory
hours. In addition, some of them are responsible for maintenance of computer hardware and software in the
laboratories.

3. Departmental Learning Resources

e Code of Practice for Student Computer Usage
At registration, you will be required to assent to the following departmental code of behavior, which
relates to the responsible use of Computer equipment. Misuse of the facilities is regarded as serious
disciplinary offences.
This code of practice is supplementary to University regulations concerning the use of computing
equipment to which you are required to assent at Registration.
1. Every student is allocated one PC in every laboratory session. But for UNIX laboratory, you have

A\l > viv>e L' » > AW

\A)* avvir |5
¢ {

son L - L — m e L

been allocated one or more usernames for your own personal use: you must not use other usernames
or permit other people to use your username. You must not use computers to which you have not
been granted access, or attempt to access information to which you have not been granted access.

2. You must not deliberately hinder or annoy other computer users.

3. You must not use machines belonging to the Department for commercial purposes without the prior
written permission of the Head of Department. You must not sell the results of any work you do
using Departmental facilities without the prior written permission of the Head of Department.

4. You must not write or knowingly store, on machines belonging to the Department, software that, if
executed, could hinder or annoy other users, except with the prior written permission of the Head
of Department.

5. You must not make an unauthorized copy, in any form, of copyright software or data.

6. You must not store personal information, except in a manner permitted by the Data Protection.

7. You must follow all rules, regulations and guidelines imposed by the Faculty of IT and the University
in addition to the Department’s Code of Practice.

e Explanatory Notes

The following notes indicate ways in which the Code of Practice applies to undergraduates for use of

computers. It is not intended to be a complete list of possible abuses of the equipment. Each note refers

to the corresponding paragraph above.

1. Undergraduate students are not normally granted access to the computers in the network, or to other
students’ files. You should not attempt to use another student’s account even if they have not set a
password. Of course, it is still important to set a password for your own privacy and security.

2. This will be interpreted very broadly. It includes
* Tampering with another user’s files.

* Tampering with another user’s screen.

* Setting up processes which persist after you log out and annoy subsequent users of the machine.
* Broadcasting of offensive messages.

* Display or storage of offensive pictures.

* Abuse of the mail system.

* Occupying a machine to play games while other students need it to do their laboratory work.

3. Clearly, the Head of Department would have to be convinced that any such use of the machines
would not conflict with their primary purpose.

4. Note carefully that this means you are not allowed to write or introduce a virus program, even if it is
never executed.

5. Note that this does not prevent your taking copies of your laboratory work home, or making copies
of non-copyright material, but does prevent your taking random pieces of software away on a disk.
You should assume that all material is copyright unless it specifically states otherwise. If in doubt, ask.

6. Personal information includes names, addresses, mailing lists, etc. You should contact the Data
Protection Officer, Mr. Mohamed Thalje, if you need to store such information.

7. In fact, you agreed to abide by the University and Faculty rules when you registered.

Please direct queries concerning the code of practice to Department Chair.

e Support for Computer Equipment
Students are encouraged to own their own machines. Please note, however, that you are NOT
REQUIRED to own your own computer. The Department has excellent facilities and undergraduate
students are allowed to use the facilities provided in the buildings of the Faculty of Information
Technology and the Faculty of Science. Whenever the buildings are open between 08 AM and 07 PM,
access is also allowed in this range of time, from Sunday to Thursday during term.

e Learning Resource Center
Photocopy facilities are available in the Learning Resource Center, room 103, Tel. 2453. Reference

8

Philadelphia University

gy PriA U

copies of textbooks are available for consultation. Copies of previous weeks’ tutorial solutions are also
available. The resource center holds non-loan copies of undergraduate textbooks. Lending copies of
textbooks are available in the University Library.

e Photocopying
Out of the library, photocopying may be done at different Bookshops, at an affordable cost.

e Printing
You can take printout (free of charge) in any lab of the Department. Each lab contains at least two
printers for this purpose.

e Departmental Computer Club
This is organized and run by students. It arranges various activities from time to time. See the notice
boards in the Faculty.

e Administrative Infrastructure
It is composed of six offices (Dean, 1 Advisory service, Dean Secretary, and Department’s Chair,
Department Secretary, and Meeting Room).

e Academic Infrastructure
It is composed of

- 7 Department classrooms plus some other classrooms shared with other faculties and one lecture
theatre equipped with support facilities: computer, data show, overhead projector.

3 laboratories (each contains 20 to 25 PCs or Monitors and 1 to 2 printers): Windows Laboratories,
Internet Laboratories. The department also shares some other laboratories with other departments.
19 staff offices where each staff member is supplied with a PC.

1 room for staff meetings.

1 office for the students’ guidance and examination committee.

e Lecture Support Facilities
In the Department, there are 7 fixed data shows and 7 PCs used to support modules and seminars
presentations.

- University Computer Centre
This centre provides the Department with training and maintenance facilities.

- Networking Facilities

Ethernet: The PCs in each laboratory are connected to an Ethernet platform 10/100 Mbps.
Intranet: All computing facilities of the University are connected to a Gigabit Intranet backbone.
Internet: The University is connected to the Internet by 2 Mbps lines.

- Type and Level of Access
For communication, computing, or information searching, the Department provides free access to
networking facilities at any time for the staff and the students.

- Library Infrastructure
ThisstructureincludestheUniversityMainLibrary,whichprovidesstudentsandstaffmemberswiththe
required recent text and reference books, journals, and CD ROMs. Through its collaboration and co-
ordination program, the library has relations with more than 120 universities and scientific organisations.
It opens from 08 AM to 04 PM. It includes:

Y TRVEIVZ L a2 Y

ﬂm‘d%?\g
{

W (2 N NA >

- Conventional Library, which contains books and journals. The books room contains more than
3354 different English titles in computing, where more than 12% are edited in years 2010 - 2016. The
room of journals contains 30 computing journals that are useful for research and teaching.

- Electronic Library, which contains CD ROMs for the taught programming languages and module
support tools. It is connected to approximately 800 universities’ electronic libraries via the World
University Library that is endorsed by the United Nations University. The World University Library
has four databases that contain more than 3300 periodicals available online. The online resources in
the electronic library include sites that list more than 40000 online books and access to online libraries
and encyclopaedias and other databases on the Internet.

- Internet Access Service, available in a room containing more than 20 PCs.
e Bookshops: contain books, exercises with solutions, solutions to previous examinations and so on.

e Extracurricular Activities
The University provides some entertainment for the students to enrich their talents in their free time.
This includes

- A Deanship of Student Affairs that organises the social, cultural, and sport activities for the students
in the University. It also has an alumnae office that keeps track of the graduates’ information and news.

- Several spaces for different sports.

- Several spaces for cultural activities.

- Several common rooms for meetings, snacks, and cafeterias.

- One Students Club.

V. Student Support and Guidance

1. Assistant Dean Office
The Assistant Dean Office (Room IT 604) is mainly for students advisory services. It deals also with all routine
undergraduate enquiries. Problems, which cannot be dealt with by the Assistant Dean, will be referred to an
appropriate person in the Department or University.

2. Academic Guidance

All new students should have academic (personal) tutors. The new students are grouped into 20 — 30 students
per group and each group is assigned to an academic staff member who is their academic tutor. The students
remain with the same tutor till their graduation. The tutor deals with all routine undergraduate inquiries,
advises on academic registration at the beginning of each semester, and any other raised problems. However,
problems, which cannot be dealt with by the tutor, will be referred to the head of the Department, the Dean
of the Faculty, or to an appropriate member of academic staff. The academic guidance is available on specified
dates in the terms, and any advisory service offered by the Assistant Dean is available daily to all students in the
Software Engineering Department (including both Full- and Part-time students).
The advisory service offers advice on departmental and University matters and helps with anything that
concerns you, whether in your studies, in the Department, in the University or in your life outside the
university. Each of the staff in these offices is available with knowledge of the Department and University and
who is willing to listen and help with whatever you bring. Note that

e All visits to the advisory service offices are strictly confidential.

o Ifyou have difficulties with material on particular course units you should normally first approach your

tutors (or lecturers/project supervisors). You may also consult your tutors on matters that are more general

10

Philadelphia University

gy PriA U

but you can equally well call in at the Assistant Dean Offices.
¢ Ifyou have health problems, you are welcome to consult an advisor in the Department but may prefer to
go directly to your doctor or to the University Clinic.

Feel free to make use of these services at any time on any matter.
3. Students’ Affairs Deanship

Confidential, individual counseling on any matter affecting personal well-being or effectiveness is available
at the Philadelphia University Students Affair Deanship. The Deanship sees well over a hundred students a
year and gives expert advice on problems such as low motivation, personal decision making, relationships,
and anxiety and family difficulties. People there, are willing to help in finding fresh ways of coping with
the emotional and personal aspects of problems and seeks to do so in a collaborative, straightforward and
empowering way with the individual concerned. Advice is available concerning referral to other services,
helping others and dealing with common student problems such as exam anxiety.

The Deanship is open from 8.00 AM to 4.00 PM, from Sunday to Thursday throughout the year and
appointments can be made by calling into the office of the Dean of Students affairs. All inquiries will be
treated confidentially.

4. Tutoring Arrangements
Some of your course units will have tutorials, where you can discuss topics on a course unit and run through
exercises. Usually, the lecturer of the course unit runs the tutorial. There will be an opportunity for you to ask
questions on matters you do not understand.
As you have a personal tutor from the beginning of your University life, your tutor is here to help you in your
way through University life. He/she will watch your progress and offer help and advice wherever necessary.
If you get into difficulties, you should contact your personal tutor or visit the Assistant Dean at the earliest
possible opportunity. Do not let things slide until it is difficult to remedy the situation, especially if you
are falling behind with your work. Your personal tutor will also advise on your choice of course units, on
departmental or University procedures and will provide references for jobs and other purposes.
Course lecturers are always available to discuss questions or problems with the course unit material. Each
lecturer fixes at least six office hours on his timetable, which is fixed on his office door. You can call at these
hours. For any reason, if these lecturers could not see you during these office hours, they may arrange an
appointment at another time. It is important that any matter that affects your ability to work is notified to
the Department - through your personal tutor, through the Assistant Dean or otherwise. The following
are examples of matters that may affect your work: illness, personal or family difficulties (including illness in
the family) or financial problems. In assessing your performance, the Department has a policy of trying to
compensate for difficulties you have encountered whilst studying. We can only do this if we are notified of
difficulties and have some idea of their extent.

5. Student Progress

Work and Attendance. The University regulations governing the Work and Attendance of students are
given in the Student Guide 2001/2002. Full attendance is required at all lectures, laboratories, and any
tutorials, which may be scheduled. Completed laboratory work should be handed in on time. Attendance at
laboratories and at many lectures is monitored and attendance registers kept. Please note that the expectation
is that students will undertake approximately thirty six hours per week of study i.e. an average of two hours
private study will be required for every scheduled hour of lectures, laboratories etc. and some students may
require much more time than this. Being a student is a full time occupation! Absence for holidays is not
permitted in term-time. The experience of the Department confirms that lack of attendance leads to study
problems and any student with problems should consult his/her subject tutors or personal tutor. In addition,
failure to attend can result ultimately in refusal by the University to allow a student to sit for the degree
examinations. The duty of the lecturer is to keep continuous review of the work and attendance of the
students with whom he is concerned. If the rate of student absences, in a course unit, is greater than 15% (or
20% for student representing the University in sportive or cultural activities) of the completely accredited

11

AL -5 v - L' . AW

G EI&E
[{

W (2 N NA >

hours and the student has no acceptable justification, then this student is excluded from that course unit. If
the Dean of the faculty accepts the justifications of absence, then this student is mentioned as withdrawn
without refunding the registration fees. A formal process is defined to tackle the problem of any student
whose work and attendance appear unsatisfactory. Direct approaches by lecturer to solve the problem are as
follows: He may choose to issue an “informal” warning, which has a precisely defined format and permits
recovery of the situation. If this is unsatisfactory, a “formal” warning is issued. This is again of a precisely
defined format. Failure to recover the situation at this stage leads to an exclusion from the course. A copy
of this correspondence is held in a student’s file.

6. Interruption of Degree Program
Any interruption (taking at most 2 years) of your degree program requires special permission from Faculty.
Regulations state that a B.Sc. degree is a continuous 4-year period of study. Permission will only be granted
if satisfactory reasons are given. A written case with supporting evidence must be presented to the Faculty.
Reasons might include prolonged illness. Consult your tutor for advice.

7. Transfer between Departments
e If you are contemplating any change of Faculty or Department, consult your primary tutor as soon
as possible.
¢ You can change your Department by filling out a special form at the beginning of the semester. It is
only required that the Tawjihi average imposed in the new faculty or department must be less than
or equal to your Tawjihi average. A specialized committee will decide what courses will be retained
from your actual Department.

8. Withdrawal from Modules
If you are contemplating withdrawing from a module, please discuss the situation with your personal tutor
at the earliest opportunity.
e You can withdraw a module at most during the thirteenth week of the first or second term, and at
most during the seventh week of the summer term.
e The minimal number of modules (which is 9) required in each term should be followed.

VI. Organization of Teaching

An individual course of lectures is known as a “course unit” or sometimes as a “module”.

The curriculum contains modules that are from University Requirements (Univ. Reqts.), Faculty Requirements
(Fac. Reqts.), and Department Requirements (Dept. Reqts.). Each module has 3 credit hours per week. However,
some modules are supported by tutorials and some continuous assessment, such as seminars or laboratory work,
usually amounting to 1 hour per week. When you register for course units, you should follow the academic
guidance plan that the Department arranges for you. In fact, you can register on any module only if you have
taken its prerequisite(s) with the exception that you can register on the module and its prerequisite only if you
are in the graduation semester.

In each semester, you can register for at least 12 credit hours and at most 18 credit hours, except for the semester
in which you are expected to graduate when you can register for 21 hours. The complete four years academic
guidance plan is listed in Appendix A of this Handbook. For more information about module numbering and
outline module descriptions, see Appendix B of this Handbook.

In the First Year, you are encouraged to take 18 credit hours in each semester (first and second, the summer
term is not taken into account). The fourth digit of each course unit code (see Appendix B) tells you the year
in which the course is offered. During each 16 weeks semester, students will normally attend 6 modules. Thus,
each teaching week contains 18 hours or more of scheduled work. In addition, each scheduled hour typically
requires two extra hours of unscheduled work (e.g. writing up lecture notes, preparing for a tutorial, finishing
off a laboratory exercise etc.). The selection of a University elective module (one module) depends upon your

12

Philadelphia University

gy PriA U

choice. Five of the 12 modules of the first year are from the University requirements, two from the Faculty
requirements, three from the supportive requirements, and two from the Department requirements.

In the Second Year, the number and size of modules is similar to that of the first year. Two of the 12 modules
of the second year are from the University requirements, three from the Faculty requirements, and seven from
the Department requirements.

Meanwhile, in the Third Year, you should take six modules in the first semester and five modules in the
second semester. Eight modules are from the compulsory Department Requirements, one module from the
University requirements and two modules form the Faculty requirements. One of the compulsory modules is
the Practical Training module, which consists of realizing a supervised training in an industrial organization, or
using distance online training. You should take this module in the first semester.

In the Fourth Year, you should take nine modules in this year. In the first semester, you must select one
departmental elective module, three compulsory modules that are all from the Department requirements, and
one module from the Faculty requirements. In the second semester, you must take the Graduation Project
module, one departmental elective module, one University elective module, and one free module from any
department in the University.

VII. Course Unit Choices

You may choose a course unit (module) if you have already taken all its prerequisite modules and
your personal tutor must supervise this choice.

An initial choice is made before or at Departmental Registration. After that, changes can be made as follows:
e The deadline for changing modules in each semester is one week after lectures start (three days for summer
semester). Normally, no changes of modules will be permitted after these dates except for the withdrawal
mentioned in point (8) of the previous section.

e In the first instance, you should discuss any plan to change modules with your primary tutor. You must
check that the new module you wish to take is a valid option for your degree program and find out if
there are likely to be any timetable problems. Such as timetable clashes this will probably prevent you
from changing module.

VIII. Assessment and Examinations
1. Criteria for Assessing Examination Work

First class (84 — 100 marks). First class answers demonstrate depth of knowledge or problem solving skills,
which is beyond that expected from a careful and conscientious understanding of the lecture material. Answers
will show that the student
1. has a comprehensive knowledge of a topic (often beyond that covered directly in the program) with
an absence of misunderstandings;
2. is able to apply critical analysis and evaluation;
3. can solve unfamiliar problems not drawn directly from lecture material and can adjust problem
solving procedures as appropriate to the problem;
4. can set out reasoning and explanation in a logical, incisive and literate style.

Upper Second class (76 — 83 marks). Upper second class answers provide a clear impression of competence
and show that the student

1. has a good knowledge base and understanding of all the principal subject matter in the program;

2. can solve familiar problems with ease and can make progress towards the solution of unfamiliar

13

AL -5 v - L' . AW

G EI&E
[{

W (2 N NA >

problems;
3. can set out reasoning and explanation in a clear and coherent manner.
Lower Second class (68 — 75 marks). Lower second class answers will address a reasonable part of the
question with reasonable competence but may be partially incomplete or incorrect. The answer will provide
evidence that the student:
¢ has a satisfactory knowledge and understanding of the principal subject matter of the program but
limited to lecture material and with some errors and omissions;
e can solve familiar problems through application of standard procedures;

e can set out reasoning and explanation which, whilst lacking in directness and clarity of
presentation can nevertheless be followed and readily understood.

Third Class (60 — 67 marks). Third class answers will demonstrate some relevant knowledge but may fail
to answer the question directly and/or contain significant omissions or incorrect material. Nevertheless, the
answer will provide evidence that the student

o has some basic knowledge and a limited understanding of the key aspects of the lecture material;

e can attempt to solve familiar problems albeit inefficiently and with limited success.

Pass (50 — 59 marks). Answers in this category represent the very minimum acceptable standard. Such
answers will contain very little appropriate material, major omissions and will be poorly presented lacking in
any coherent argument or understanding. However the answer will suggest that the student
o has some familiarity with the general subject area;
o whilst unable to solve problems can at least formulate a problem from information given in a sensible
manner.

2. Assessment Regulations

In general, every module is assessed as follows: 60% is given for two 1-hour midterm exams, coursework
and/or seminars, projects, or essays, and 40% for the final exam that may be a written exam only or a written
exam plus final laboratory exam (if applicable), final small project, or seminar presentation. The 40% of the
final exam is from the University regulations. The minimum pass mark is 50% for any module, whereas the
minimum passing accumulated average in each semester is 60%. Students will be warned if they could not
obtain average of at least 60%. In this case, students are encouraged to repeat studying those modules with
low marks in order to increase their accumulated averages. However, students will be dismissed from the
University if this average is not achieved in the third attempt.

For the practical training module, each student should submit a technical report of his/her training, and a team
of academic staff members makes several observations on the trainers’ work in their place of training. Then
according to the observations and the report, they assess the students.

3. Role of Internal and External Examiners

For each module, the Department assigns a module coordinator and an internal examiner who is one of
the senior staff members. If many lecturers teach the same module concurrently, they should suggest exam
questions (for the first, second and final exams) and run the same exam for all sections. The main coordinator
of the module will collect these questions from lecturers and select some of them to be in the exam paper.
On the other hand, external examiners validate the standard of degree program. The external examiners are
expected to look at the question papers, inspect a selection of scripts and project reports (particularly those on
borderlines). They supply an assessment report to the Department.

4. Appeal Procedures

If you have good reason to question a mark you have been given (in midterm exams or in coursework), you
should in the first instance approach the module lecturer. If the problem is not solved, you must submit it to

14

Philadelphia University

¢ o
Oetpy 1A \m\“‘"

your primary tutor. He will find the appropriate solution with administrative structures.

Problems with final examinations are resolved by submitting complaints or appeals in writing (within three
days of the announcement of examination results) to the Examination Committee of the Faculty. The
examination committee will consider these cases and check if there is a mistake in the summation of the
marks and so on.

5. Unfair Practices
The University treats attempting to cheat in examinations severely. The penalty is usually more severe than a
zero in the paper concerned. More than one student of this Department were dismissed from the University
because of this. Plagiarism, or copying of course or lab work, is also a serious academic offense as explained
in the University guidelines. In Software Engineering Department these guidelines apply also to laboratory
exercises.

6. Department Guidelines on Plagiarism

1. Coursework, laboratory exercises reports and essays submitted for assessment must be your own work,
unless in the case of group projects a joint effort is expected and is indicated as such.

2. Unacknowledged direct copying from the work of another person, or the close paraphrasing of somebody
else’s work, is called plagiarism and is a serious offence, equated with cheating in examinations. This
applies to copying both from other students’ work and from published sources such as books, reports or
journal articles.

3. Use of quotations or data from the work of others is entirely acceptable, and is often very valuable provided
that the source of the quotation or data is given. Failure to provide a source or put quotation marks
around material that is taken from elsewhere gives the appearance that the comments are ostensibly your
own. When quoting word-for-word from the work of another person quotation marks or indenting
(setting the quotation in from the margin) must be used and the source of the quoted material must be
acknowledged.

4. Paraphrasing, when the original statement is still identifiable and has no acknowledgement, is plagiarism.
A close paraphrase of another person’s work must have an acknowledgement to the source. It is not
acceptable for you to put together unacknowledged passages from the same or from different sources
linking these together with a few words or sentences of your own and changing a few words from the
original text: this is regarded as over-dependence on other sources, which is a form of plagiarism.

5. Direct quotations from an earlier piece of your own work, if not attributed, suggest that your work is
original, when in fact it is not. The direct copying of one’s own writings qualifies as plagiarism if the fact
that the work has been or is to be presented elsewhere is not acknowledged.

6. Sources of quotations used should be listed in full in a bibliography at the end of your piece of work.

7. Plagiarism is a serious offence and will always result in imposition of a penalty. In deciding upon the
penalty the Department will take into account factors such as the year of study, the extend and proportion
of the work that has been plagiarized and the apparent intent of the student. The penalties that can be
imposed range from a minimum of a zero mark for the work (without allowing resubmission) through
caution to disciplinary measures (such as suspension or expulsion).

IX. Teaching Quality Assurance Committee
The Departmental Teaching Quality Assurance and Enhancement Committee is responsible for the quality of
teaching in the Department, including the analysis of Course Evaluation Questionnaire responses.

I. Feedback and Representation
1. Staff-Student Consultative Committees

Student representatives are elected onto the departmental staff student committees at the start of each term. All
simultaneous sections of a module have a staff student committee. Each committee meets at least three times

15

II.

Y TRVEIVZ L a2 Y

ﬂm‘d%?\g
{

W (2 N NA >

each semester and may discuss any matter of concern with the module. The staff members of each committee
are the lecturers of the concerned sections.

Departmental and Deanship Meetings

The meetings, held by the head of Department and the Dean of the Faculty during term time, has mainly an
advisory role, where students may raise their problems that need some concern from these authorized persons.
These meetings are held separately for each year students.

Module Evaluation Questionnaires

The Department attaches great importance to the opinion of students on the quality of the teaching
provided, and every student is asked to complete a Module Evaluation Questionnaire for each module. The
questionnaires are anonymous.

. 1 Notices

Official notices are posted on the notice boards at the Department and at the Faculty. Electronic mail is also
used extensively for communication with the Department and University. Each lecturer provides the students
with his/her e-mail at the beginning of the term. Most official information including copies of this handbook,
the undergraduate syllabus and timetables are available on the University Web pages. This includes directories
of staff and students for internal use, completed with photographs.

. Mail

Electronic mail is used widely for administrative purposes within the Department. It is frequently useful for
communicating between individuals and small groups (e.g. between a tutor and his/her tutorial group), and
occasionally for broadcasting important messages to wider groups. It is important that you know how to use
email. It will be covered in the introductory laboratory sessions. The code of practice for computer usage
covers electronic mail, please note the points below.

. e or Offensive Mail

DO NOT SEND OBSCENE OR OFFENSIVE MAIL. If you receive mail, which you regard as offensive
or obscene, you may wish to complain to a member of staff so that appropriate disciplinary action can be taken
against the offender.

. Mailing

You are strongly discouraged from sending emails to groups of people. The newsgroups should be used for
this purpose.

Hints

e Be brief in your communications.

e Compose your message as if ALL of your recipients were physically present.

e Limit the distribution of messages to the people who are likely to be interested.

e Keep a copy of the mail you send out, for future reference. Learn to use folders to keep useful messages.

e Read all your incoming mail before replying to any of it. There may be other relevant messages for
you to read.

e Be careful when replying to messages. You probably want your reply to go only to original message
sender - not to the whole of the distribution list.

e When you reply to a message, it is frequently helpful to include some of the original message to help
your recipients to remember and understand the context of the reply.

16

Philadelphia University

III. m Design, Content and Organization

1. m Design and Content.
Students should complete 46 modules (132 credit hours) summarised as follows:

- 9 modules (University requirements) (27 credit hours) (20.45%)
- 8 modules (Faculty requirements) (24 credit hours) (18.18%)
- 15 modules (Departmental Compulsories) (42 credit hours) (31.81%)
- 3 modules (Departmental Electives) (9 credit hours) (6.81%)
-10 modules (Supportive modules) (30 credit hours) (22.72 %)

The Department covers the Software Engineering program from the areas listed below:

1-Algorithms and Computing Science

2-Programming
3-Computing Architecture

4-Software Engineering

5-Applications and Sciences of Information

6-Statistics and Numerical Analysis
7-Practical Modules

8-Training

9-Project

Table (1) gives the number of covered modules in each area. Note that the ratios are calculated
according to 45, which is the total number of modules that each student should study. In this table, the
total number of the compulsory modules is shown as 34 rather than 24. This is because some modules
from University and Faculty requirements are included as they are strongly related to the compulsory
modules. Table (2) illustrates the taught modules in each area.

Table (1) Areas of Specialization and Number of Modules

Compulsory Elective rotal No. of
Area Modules Modules NT;ZM:S o
No. | (No./46)% | No. | (No./46)%
1- | Algorithms and Computing Science 3 6.52 % 0 --- 3
2- | Programming 5 10.86 % 0 - 5
3- | Computing Architecture 4 8.69% 0 - 4
4- | Software Engineering 11 23.19% 7 15.21% 18
5- | Applications and Sciences of Information 4 8.69% 0 --- 4
6- | Statistics and Numerical Analysis 3 6.52 % 0 - 3
7- | Training 1 2.17 % 0 -—- 1
8- | Graduation Project 2 4.34% 0 --- 2
38
Total 33 | 7033% | | 6.52%
3 (82.6%)

17

Y TRVEIVZ L a2 Y

T‘Mﬁ%?\g
{

W (2 N NA >

2. m Organization. The curriculum is organised as it is shown in the study plan in Appendix C.

3. m Characteristics

e Objectives of the Main University-Requirement Modules. These requirements are
designed to broaden the student’s base for different topics such as culture, languages, and
computer skills.

e Objectives of the Main Faculty-Requirement Modules. These requirements are to
consolidate mainly the student’s background in Mathematics and some other common topics.
They constitute the common knowledge required for all students in the Faculty of Information
Technology.

e Objectives of the Main Computing Modules in the Curriculum. The modules in the
curriculum are organized into three types: introductory, intermediate, and advanced
modules. The curriculum is designed according to the Imperative First Strategy for the
introductory modules. This model also focuses on programming, but emphasises the principles
of object-oriented programming and Design from the second semester of the first year. The
curriculum of Intermediate modules is designed according to the Topics-based approach,
which is the most common approach for the intermediate modules. Students take separate
modules in each of the core areas enumerated below (programming fundamentals with object-
oriented paradigm, Software Engineering, Multimedia, Professional Practices, etc.). For the
advanced modules, the Department wishes to orient such modules to its own areas of expertise.
The advanced and elective modules contain more advanced topics in the areas of Software
Engineering, Real Time Systems, and Project and Training.

Recent methodology in programming such as object-oriented programming, software tools, and current
technologies in multimedia systems and network systems are included in the curriculum.

e Objectives of the Training and Graduation Project Modules. The objectives of these
modules are to allow students to gain practice in problem analysis, design, implementation,
report writing, and presentation.

e Elaboration on Content and Emphasis of Practical Components of Modules. Most of
the modules contain practical work that increases students involvement in using current
software tools and computing technologies. Thus, the practical part of modules accounts
for at least 25% of the total number of hours. Many laboratory assignments are given during
the semester through which the students can practice what they have learned from the
theoretical part of the module, or develop their skills in using most recent software tools and
programming languages. For example, the practical work in “Programming Fundamentals”
and “Object-Oriented Paradigm” modules emphasize on problem solving and structured and
object-oriented programming via C++ language and Java language. However, the practical
work in Operating System module is concerned with inter-process communication, while in
Net-Centric computing it is concerned with client server applications and simulation of OSI
protocols.

4. n of Curriculum. The curriculum is constantly evolving to cope with new technologies and rapidly
developing software. The first curriculum was designed in 2000 and updated in 2004, 2005, 2006,
2008, and 2009. This development is through regular internal monitoring and reviews, and is inline
with recent local developments in teaching and learning. For example, the Curriculum 2005/2006
reflected a clear specialisation in development of software and information systems that are supported
by the object-oriented technology. Proceeding in this way provides a curriculum that matches the aims
and objectives of the Department and the University. The Scientific Committee with the Syllabus setup
committee of the Department usually recommend development and modification of curriculum.

18

&
ety 1A e

Philadelphia University

Table (2): The Taught Modules in Each Area of Specialization

A-The Compulsory Specialisation Modules

B- The Elective Specialisation Modules

1. Programming Fundamentals
e 750120 Discrete Mathematics

e 750113 Programming Fundamentals-1
e 750114 Programming Fundamentals-2

e 721223 Object-Oriented Programming
e 721224 Data Structures

1. Programming Fundamentals None

2. Languages / Algorithms
e 750323 Algorithms

1.2. Languages / Algorithms None

3. Architecture / Operating Systems

e 721350 Computer Organization and Architecture
e 750335 Operating Systems

3. Architecture / Operating Systems None

4. Networks / Distributed Computing

e 731340 Fundamentals of Computer Networks

4. Networks / Distributed Computing

e 721443 Telecommunication Software Design

5. Information Systems / Intelligent Systems

e 731110 Introduction to Systems and Information Technology

5. Information Systems / Intelligent Systems

None

6. Information Management

e 750260 Database Fundamentals

e 721351 Database Management

6. Information Management None

7. Human-Computer Interaction/Applications

e 731213 Introduction to World Wide Web Programming

7. Human-Computer Interaction / Applications None

8. Professional Practice / Software Engineering
e 721111 Software Engineering Fundamentals
e 722250 Computing Ethics
e 721222 Software Modeling
e 721230 Software Requirements

e 721320 Software Architecture

e 721330 Software Production

e 721322 System Analysis and Design

e 721424 Software Development and Documentation
e 721433 Software Testing

e 721331 Software Project Management

8. Professional Practice / Software Engineering
e 721442 Software Engineering for Web Applications

e 721447 Advanced
Engineering

Modeling in Software

e 721421 Software Reengineering

e 721423 Graphical User Interface Design
e 721324 Advanced OO Programing

e 721410 Secure Software Construction

e 721439 Special Topics in SE

9. Project/ Training
e 721438 Practical Training

e 721448 Research Project-1
e 721449 Research Project-2

10. Project / Training None

19

Y TRVEIVZ L a2 Y

ﬂm‘d%?\g
{

W (2 N NA >

IV. Safety in the University

The University has a Health and Safety Committee, which comprises representatives of all services within the
University. It is the responsibility of this committee to investigate complaints and potential hazards, to examine
the cause of all accidents and to carry out periodic inspections of all areas of the Department. At registration,
you will be required to assent to the departmental code of behavior, which relates to health and safety.

1.

The Department comprises two kinds of buildings: the Rooms Building and the IT Laboratories. The
buildings are generally open between 08.00 and 19.30 (Sunday — Thursday). In accordance with University
policy, smoking is prohibited throughout all buildings.

. Evacuation

It is the responsibility of every individual to familiarize themselves with the Department’s buildings and be
aware of the fire exits.
o After evacuation of any building, please assemble well away from the building, and do not block any exits.
e Do not return to any building until authorized to do so.

. e Action

Fire Action notices are located at, or adjacent to, fire alarm actuation points, and all staff and students should
make them acquainted with this routine.

. g the Fire Alarm

The manual fire alarm system can be activated by breaking the glass in the red contact boxes sited at strategic
points throughout the premises.

of Fire Appliances
Fire appliances are sited at strategic points throughout the Department to deal with fires. Fires should only be
tackled provided there is no personal danger and after the alarm has been set off.

. n when the Alarm Rings

On hearing the intermittent alarm, you should prepare yourselfto leave the building.
On hearing the continuous alarm, you should evacuate the building immediately through the nearest exit.

. Difficulties

Please inform the Department’s counselors or your tutor of any difficulties with which the Department can
be of assistance.

20

Philadelphia University

¢ <
ety 1A e

Appendix A

FULL DESCRIPTION OF MODULES

This chapter presents the full description of the Department modules and those modules from the Faculty and
University requirements that are computer-oriented modules.

3.1 Module Descriptor

The Department organised a format for the module descriptor that includes much information on the module.
This sub-section presents the components of the adopted module descriptor that are shown in Figure (3-1). The
University Quality Assurance Catalogue explains in details the components of the module descriptor.

Figure (3-1) Components of the Module Description

Module Number, Module Title
Providing Department:
Module Coordinator(s):
Year:
Credit:
Prerequisites: Required modules or background
Aims:
Teaching Methods:
Learning Outcomes:

Assessment of Learning Outcomes:
Contribution to Programme Learning Outcome:
Syllabus: Bulleted list providing an outline of the topics covered.
Modes of Assessment:

Textbook and Supporting Materials:
Instructor:

3.2 Introductory Modules

Table (3-1) presents the Introductory (Level 1) modules whose full descriptions are given below.
Table (3-1) Introductory Modules in SE Department

Module Number Module Title Prerequisite
750120 Discrete Mathematics None
250101 Differentiation and Integration-1 None
250231 Introduction to Statistics and Probabilities None
750113 Programming Fundamental (1) None
750114 Programming Fundamental (2) 750113
731110 Introduction to Systems and Information Technology None
721111 Software Engineering Fundamentals 77530111113O+
750230 Digital Logic Design 731110
750260 Database Fundamentals 721223
731340 Fundamentals of Computer Networks 721224
731213 Introduction to World Wide Web Programming 750114
780110 Introduction to Internet and Web None

21

Y TRVEIVZ L a2 Y

ﬂm‘d%?\g
{

W (2 N NA >

721111, Software Engineering Fundamentals

Course Hours: 3 hours per week, 3 credit hours (total of 48 hours)
Level: 1

Prerequisite: 750113, 731110

Aims:

This module aims to provide students a concise introduction to software engineering. It gives a survey of the
core concepts, principles and techniques used in software engineering. This module gives an introduction to
methods for analysis, design, testing, and implementation of small and medium size software systems. Simple
and realistic case studies will be used along all the software process steps.

Teaching Methods: Lectures: 36 hours, Tutorials: 12 hours

Synopsis: Software product, Software crisis, Software problem, software engineering, software process,
, methodologies, methods, tools, artefacts; Software Project planning, Software Processes , Software
Requirement Engineering, Software Prototyping; Architectural Design, Object Oriented Design, UML
notation, Software Coding and Testing.

Assessment: Two 1-hour midterm exams (20% each); Assignments (20%); One 2-hours Final Examination
(40%)

Textbook and supporting material:
1- Jalote, Pankaj A Concise Introduction to Software Engineering, Springer Verlag, 2008

http://www.cse.iitd.ac.in/~jalote/ConciselntroToSE

2- R. S. Pressman Software Engineering: A Practitioner’s Approach, last version, McGraw Hill
http:www.software-engin.com

731213, Introduction to World Wide Web Programming
3 hours per week, 3 credit hours, prerequisite: 750114
Aims:

This module aims to give students an introduction and general concepts of the Internet and Intranet technology,
the World Wide Web, TCP/IP and Web design languages (HTML, CSS, JavaScript, and ASP). It also involves
the necessary background that student needs to develop different tasks of programming aspects concerning the
foregoing objectives. Sufficient study levels are supposed to be studied and learned by the students within the
course for the sake of applying the different fields of education, learning, economical, E-Business and other
approaches.

Teaching Methods: 32 hours Lectures (2 per week) + 8 hours Tutorials (1 per 2 weeks) + 24 hours Laboratory
(1-2 per week)

Synopsis: Internet and Intranet Technology: Concepts, protocols, Services, and architecture, TCP/IP Architecture
and Protocols (Client & Server), DNS, Internet Service Providers (ISP), Internet Services: USENET News, E-Mail,
FTP, and Telnet; The Web: Basic Concepts, WWW and Web Servers, Links: Hyperlinks & Hypermedia, Web
pages and home pages, Browsers & Search Engines; Introduction to Markup Languages; Editing HTML, HTML
Tags: Headers, HTML Tags: Text Styling and Formatting, and linking; HTML Tags: Images and Image maps;

22

http://www.cse.iitd.ac.in/~jalote/ConciseIntroToSE
http://www.software-engin.com/
http://www.software-engin.com/
http://www.software-engin.com/

Philadelphia University

gy PriA U

Basic HTML Lists and Tables; Basic HTML Forms and Frames; Frames and Cascading Style Sheets; Cascading
Style Sheets and Introduction to Client Scripting; Simple JavaScript Programs; JavaScript: Control Structures,
if, if/else, While, for, and switch. JavaScript: Break and Continue statements; JavaScript: Functions, Arrays.

Modes of Assessment: Two 1-hour midterm exams (15% each); Lab work (15%); Tutorial contribution (5%);
2-hours Final Exam (50%).

Textbooks and reference books:

1- Deitel & Deitel, Internet and World Wide Web How to Program, Prentice Hall, 3™ Edition, 2004.

2- Douglas Comer, Computer Networks & Internets, Prentice Hall, 2003
3- Brian Salter, A simple guide to HTML, Prentice Hall, 2002.

4- Ellenn Behoriam, “HTML and XHTML: Creating Web Pages”, Prentice Hall, 2002

5- Gary Rebholz, “How to Use HTML & XHTML”, Sams, 2001
6- Ellie Quigley, “JavaScript by Examples”, Prentice Hall, 2004

7- Tom Negrino, “JavaScript for the World Wide Web: Visual QuickStart Guide”, Student Edition, 5/E,
Peachpit Press, 2004

8- Susan Anderson-Freed, “Weaving a Website: Programming in HTML, Java Script, Perl and Java”, Prentice
Hall, 2002

Website(s):

1. www.w3schools.com

6. www.w3.org.

7. www.webdeveloper.com

2. www.webteacher.org. _)
8. www.javascriptmall.com

3. www.microsoft.com.))
9. www.javascripts.com/toc.cfim

4. www.whatis.com.)
10. www.Deitel.com

5. www.idocs.org.

021612100, Introduction to Probability and Statistics
3 hours per week, 3 credit hours, prerequisite: none
Teaching Method: 30 hours Lectures (2 per week) + 15 hours Tutorials (1 per week)

Aims: This module aims to help students grasp basic statistical techniques and concepts, and to present real-
life opportunities for applying them.

Textbooks:

1- D.C. Montgomery and .G.C. Runger, Applied Statistics and Probability For Engineers, 2" Edition, Wiley,
2002

2- William, Probability and Statistics in Engineering and Management, Wiley, 2002

23

http://www.w3schools.com/
http://www.webteacher.org/
http://www.microsoft.com/
http://www.whatis.com/
http://www.idocs.org/
http://www.w3.org/
http://www.webdeveloper.com/
http://www.javascriptmall.com/
http://www.javascripts.com/toc.cfm
http://www.deitel.com/

Y TRVEIVZ L a2 Y

ﬂm‘d%?\g
{

W (2 N NA >

Synopsis: Descriptive statistics and probability distribution; Sampling distribution Estimation for the mean,
variance and proportions; Testing for the mean, variance and proportions; Regression and correlation; One-
way analysis of variance.

Assessment: Two 1-hour midterm exams (15% each); Assignments/Quizzes (10%); Tutorial Contribution
(10%); 2-hours Final Exam (50%).

731110, Introduction to Systems and Information Technology
3 hours per week, 3 credit hours, prerequisite: 750112

Aims: This module aims to provide students with some concepts of information systems and some applications
in business and management systems. This is a major introductory course which presents problems in business
environment and solutions with computer-based tools. It focuses on systems and information systems concepts
and techniques. Students will learn the most effective ways to use information systems. Case studies are
examined to highlight new technology and applications like multimedia.

Teaching Methods: 20 hours Lectures (1-2 hours per week) + 25 hours Class workshop and labs/E-Learning
(1-2 per week) + 3 hours Workshops

Modes of Assessment: Two midterm exams (15% each); Homework (10%); Workshop Contribution (10%);
2-hours Final Exam (50%).
Textbooks and reference books:

1- Ralph M. Stair, George W. Reynolds, Fundamentals of Information Systems. Course Technology; 4th edition,
2007
2- Gerald M. Weinberg, an Introduction to General Systems Thinking, Silver Anniversary Edition, 2001.

3- The Analysis, Design, and Implementation of Information Systems, Henry C. Lucas, Jr, 4" ed. McGraw-Hill,
1992.

4- Leonard M. Jessup and Josef S. Valacich, Information Systems Foundations, 1999, Que E&T

5- James A. O’Brien, Introduction to Information Systems: Essentials for the e-Business Enterprise. 11*" ed.
2003, McGraw-Hill Higher Education

6- David Kroenke, Management Information System, 1999.

0250101 Differentiation and Integration - 1
Level: 1
Prerequisite: None

Aims:
This course deals with the following main topics: differentiation of algebraic and transcendental functions,
an introduction to analytic geometry, applications of differentiation, and a brief introduction to integration.

Teaching Methods: 38 hours Lectures (2-3 per week) + 10 hours Tutorial

Synopsis:Functions: Representations of Functions. The Vertical Line Test. Symmetry. Linear Function.
Polynomials. Piecewise Defined Functions. Rational Functions. Root Function. Trigonometric Functions.
Combinations of Functions: Sum, Difference, Product, Quotient, Composition. Inverse Functions: Functions.

24

Philadelphia University

Oy 1A U

Horizontal Line Test. Inverse Trigonometric Functions. Exponential and Logarithmic Functions. Hyperbolic
Functions. Limits and Continuity: An Introduction to Limits. Calculating Limits using the Limit Laws. Limits
at Infinity and Infinite Limits. Limits Involving (sin6/8). Continuous Functions. The Derivative: The Derivative
as a Function. Differentiation Rules and Higher Derivatives. The Chain Rule. Implicit Differentiation. Tangent
Line. Applications of Differentiation: L’Hospital’s Rule. Rolle’s Theorem; Mean-Value Theorem. Analysis of
Functions: Increase, Decrease, and Concavity. Relative Extrema; Graphing Polynomials. Absolute Maxima and
Minima. Integration: Anti-derivatives. Indefinite Integrals. Integration by Substitution. The Definite Integral.
The Fundamen.

Modes of Assessment:
Two 1-hour midterm exams (20% each); Assignments (20%); One 2-hours Final Examination (40%)
Textbook

Howard Anton, Irl C. Bivens and Stephen Davis, Calculus: Early Transcendentals, 10th Edition, John Wiley &
Sons, Inc. 2013. - James Stewart, Calculus: Early Transcendentals, Brooks/ Cole.

0750120 Discrete Mathematics
Level: 1
Prerequisite: None

Aims:

This course is an introduction to Discrete Mathematics for students from the IT majors, covering main topics
in number theory, propositional logic, proof techniques, sets and relations, counting techniques, and graph
theory, together with selected applications in computer algorithms.

Teaching Methods: 38 hours Lectures (2-3 per week) + 10 hours Tutorial

Synopsis:Logic: logic operators AND, OR, IFF, XOR, truth table, tautology, equivalence. Normal forms,
predicates and quantifiers. Sets: set operations, set identities, power set, cardinality, cross product, power
set. Modulo operation, divisibility, GCD and LCM, the Euclidean algorithm. Combinatorics: the addition
and multiplication principles, the Pigeonhole principle. Inclusion-exclusion principles, permutations and
combinations, permutations on multisets. Recurrence relation: solving first order homogeneous sequences.
Methods of proof: mathematical induction. Relations: properties of relations, representation by digraphs,
zero-one matrices, transitive closures. Equivalence relations, partial order relations, total order, Hasse
diagrams. Graph Theory: complete graphs, complete bipartite, representations by adjacency matrix, incidence
matrix, distance matrix. Trees, minimal spanning trees, Euler circuit, the Chinese postman problem. Coloring
algorithms, planar graphs, maps and dual graphs.

Modes of Assessment:
Two 1-hour midterm exams (20% each); Assignments (20%); One 2-hours Final Examination (40%)
Textbook

Amin Witno, Discrete Structures in Five Chapters, CreateSpace 2010

25

Y TRVEIVZ L a2 Y

ﬂm‘d%?\g
{

W (2 N NA >

750113 Programming Fundamentals (1)

Course Hours: 3 hours per week, 3 credit hours (total of 48 hours)
Level: 1
Prerequisite: None

Aims:

This module aims to introduce computer programming and emphasis in problem solving based on the
fundamentals of structured design using the principles of Top Down problem solving strategy (divide and
conquer). This includes development, testing, implementation, and documentation.

The module also aims to explore the logic of programming via the algorithm concepts and implement them in
programming structures including functions, arrays, strings, and pointers.

. Teaching Methods Duration: 16 weeks, 80 hours in total
Lectures: 32 hours (2 hours per week), Tutorials: 16 hours (1 per week),
Laboratories: 32 hours, 2 per week

Synopsis: problem solving strategies, algorithmic language to describe such problem solving, introduces the
principles of procedural programming, data types, control structures, data structures and functions, data
representation on the machine level. Various problems are considered to be solved using C-like procedural
programming language.

Assessment: Two 1-hour midterm exams (15% each); lab (30%); one 2-hours Final Examination (40%)
Textbook:

- P. Deitel & H. Deitel, C++ How to program, Pearson Education Limited, 2013.

- Guttag, John. Introduction to Computation and Programming Using Python. Spring 2013 edition. MIT
Press, 2013. ISBN: 9780262519632. - MIT

750114 Programming Fundamentals (2)

Course Hours: 3 hours per week, 3 credit hours (total of 48 hours)
Level: 1

Prerequisite: 750113

Aims:

This module aims to introduce computer programming and emphasis in problem solving on the fundamentals
of structured design using the principles of Top Down problem solving strategy (divide and conquer). This
includes development, testing, implementation, documentation.

The module also aims to explore the logic of programming via the algorithm concepts and implement them in
programming structures including functions, arrays, strings, and pointers

. Teaching Methods Duration: 16 weeks, 80 hours in total
Lectures: 32 hours (2 hours per week), Tutorials: 16 hours (1 per week),

Laboratories: 32 hours, 2 per week

26

Philadelphia University

gy PriA U

Synopsis: Functions definition, Parameters definition and passing , One dimensional array, Two dimensional
array, use of main operations of a sequential file: open, reset, rewrite, read, write, eof, Introduction to Class
and object, Generics, components reuse, component programming

Various problems are considered to be solved using C-like procedural programming language.

Assessment: Two 1-hour midterm exams (15% each); lab (30%); One 2-hours Final Examination (40%)
Textbook

D.S. Malik, Thomson, C++ Programming: From Problem Analysis to Program Design, Sixth Edition,
Course Technology, 2011

750230, Digital Logic Design

Providing Department: Computer Science, Faculty of IT

Module Coordinator(s):

Year: 2

Credit: 3 credit hours

Prerequisite: 0731110

Aims: This module introduces you to the design and implementation of digital circuits. Topics include:
combinational and sequential circuit analysis and design, digital circuit design optimization methods using
random logic gates, multiplexers, decoders, registers, counters and programmable logic arrays. Laboratory
experiments will be used to reinforce the theoretical concepts discussed in lectures. The lab experiments will
involve the design and implementation of digital circuits. Emphasis is on the use of computer aided tools in
the design, simulation, and testing of digital circuits.

Teaching Methods: 41 hours Lectures (2-3 per week) + 4 hours Tutorials (1 per 3 weeks) + 3 hours Laboratory
(1 per 4 weeks)
Learning Outcomes:
A student completing this module should be able to:
1. Define the problem (Inputs and Outputs), write its functions. (A, B, C)

2. Minimize functions using any type of minimizing algorithms (Boolean Algebra, Karnaugh map or
Tabulation Method). (A, B)

3. Implement functions using digital circuit (Combinational or Sequential). (A, B)
4. Have knowledge in analysing and designing procedures of Combinational and Sequential circuits. (B, C)
5. Have knowledge in designing and analysing circuits with Flip-Flops, Counters and Registers. (B, C)
6. Work effectively with others. (D)
7. Use simulation software, for testing the designed circuit. (C, D)
Assessment of Learning Outcomes
Learning outcomes (1), (2), and (3) are assessed by examinations, tutorial and in the laboratory. Learning
outcomes (4), (5), and (6) is assessed by course work/workshops. Learning outcomes (7) is assessed in the

laboratory.

Contribution to Programme Learning Outcomes:
A1, A3, A5, B1, B3, C6, D3, D6

27

Y TRVEIVZ L a2 Y

T‘Mﬁ%?\g
{

W (2 N NA >

Synopsis: Introduction to Digital logic Design; Binary Systems and Codes: Binary Numbers, Octal and
Hexadecimal Numbers, Number Base Conversions, Arithmetic Operation with different Bases, Complements,
Signed Binary Numbers, Binary Codes: BCD, Gray, ASCIl and EBCDIC; Binary Logic and Logic Gates: AND, OR
and NOT; Boolean Algebra and Logic Gates: Basic Definition, Basic Theorems, Boolean Functions; Standard
Forms: Minterm and Maxterm, Simplification of Boolean Functions using SOP and POS; Logic Operations:
NAND, NOR, Exclusive-OR and Equivalence, Integrated Circuits; Gate-Level Minimization: The Map Method,
Two- and Three-Variable Map, Four-Variable Map, Product of Sums Simplification, Don’t-Care Conditions,
NAND and NOR Implementation, The Tabulation Method, Simplification of Boolean Functions using
Tabulation Method; Analysis and Synthesis of Combinational Circuits: Combinational Circuits, Analysis and
Design Procedure, Binary Adders-Subtractor, Decoders and Multiplexers; Analysis and Synthesis of Sequential
Circuits: Sequential Circuits, Latches, Flip-Flops: RS, D, JK and T, Analysis of Clocked Sequential Circuits,
Design Procedure; Registers and Counters: Registers, Shift Registers, Synchronous Counters, Ripple Counters;
Sequential Circuits with Programmable Logic Devices: Introduction, Random-Access Memory, Memory
Decoding, Read-Only Memory, Programmable Logic Array.

Modes of Assessment:
Two 1-hour midterm exams (20% each); Assignments (20%); one 2-hours Final Examination (40%)

Textbook and supporting material:
1- Morris Mano, Digital Logic, Prentice-Hall, 2012

2- Morris Mano, Charles R. Kime, Logic and computer design fundamentals, Pearson Prentice Hall, 2004

3- Basavaraj,B., Digital fundamentals, New Delhi: Vikas Publishing House, 1999.

4- Kandel Langholz, Digital Logic Design, Prentice Hall, 1988.

5- Rafiquzzaman & Chandra, Modern Computer Architecture, West Pub. Comp., 1988.

750260, Database Fundamentals

Providing Department: Computer Information Systems, Faculty of IT

Module Coordinator(s):

Year: 2

Credit: 3 credit hours

Prerequisite: 721223

Aims:

This module aims to give the students the main concepts of database, designing the database, database
models, normalization techniques, query languages, object oriented database, query optimization and
database and the web. Furthermore the students have to practice and write some applications regarding the
database.

Teaching Methods: 26 hours Lectures (average 2 per week) + 16 hours Laboratory (1 per
week) + 6 hours Tutorials (1 each fortnight)
Learning Outcomes:
When completing this module, a student should be able to:

1. Discuss/explain the importance of data, and the difference between file

management and databases. (A)

2. Discuss/explain the design of database management system architectures
and environments. (A)
Discuss/explain the principals of database design. (A)
4. Discuss, explain and apply conceptual design methodologies, in particular

(98]

28

(A Philadelphia University

Oetpy 1A \m\“‘"

conceptual design using Extended Entity Relationship modelling. (A, B,
C,D)

5. Discuss, explain and apply the relational model and mappings from
conceptual designs, in particular normalizations. (A, B, C, D)

6. Discuss/explain physical and performance related design considerations.
(A)

7. Discuss/explain transaction processing. (A)

8. Discuss, explain and apply SQL and the Oracle DBMS. (A, C, D)

Assessment of Learning Outcomes:
Learning outcomes (1) through (7) are assessed by examinations. Learning outcomes (3), (4), and (8) are assessed
by projects design and implementation.

Contribution to Programme Learning Outcomes:
A2, A3, A4, A5, B1, B2, B3, Cl1, C2, C6, D1, D3

Synopsis: Introduction to Data base and DBMS; Database Models; Database Design; Relational Algebra and
Relational Calculus; Query Languages (SQL); DB normalization; Database Integrity and Security; Indexing
Techniques; Query Optimization; Distributed Data Base; Object-Oriented Database

Modes of Assessment:

Two 1-hour midterm exams (20% each); Assignments (20%); One 2-hours Final Examination (40%)
Textbooks and Supporting Material:

1- A. Silberschatz, H.F. Korth & S. Sudarshan, Database System Concepts, McGraw Hill, 2002

2- ElI-Masri & Navathe, Fundamentals of Database Systems, Prentice Hall, 2002.
3- Jeffry Ullman, Principles of Database Systems, SU Publishers, 1999

4- C.J. Date, An Introduction to Database Systems, Addison Wesley, 1995

731340, Fundamentals of Computer Networks

Providing Department: Computer Information Systems, Faculty of IT

Module Coordinator(s):

Year: 3

Credit: 3 credit hours

Prerequisite: 721224

Aims:

This module is the first module of the curriculum related to the computer network field. Its aim is to provide
students with a broad coverage of the basic computer networking concepts of the four layers of I1SO, circuit
switch, packet switch, etc.

The module, however, does not focus on a detailed study nor cover the technologies. The concepts given in
this module will be deeply handled in the next level module (750441).

Teaching Methods: 32 hours Lectures (2 per week (including two 1-hour midterm exams)) + 16 hours Tutorial
(1 per week) + 16 hours Laboratory

Learning Outcomes:

A student completing this module should be able to:

1. Discuss important network standards in their historical context (A)

29

Y TRVEIVZ L a2 Y

ﬂm‘d%?\g
{

W (2 N NA >

2. Describe the responsibilities of the first four layers of the I1SO reference model. (A)

3. Discuss the differences between circuit switching and packet switching along with the advantages and
disadvantages of each. (A, B)

4. Explain how a network can detect and correct transmission errors. (A, B)
5. lllustrate how a packet is routed over the Internet. (C)

6. Install a simple network with two clients and a single server using standard host-configuration software
tools such as DHCP. (C, D)

Assessment of Learning Outcomes:

Learning outcomes (1) - (3) are assessed by examination and tutorials. Learning outcomes (4) — (6) are assessed
by assignments and seminars.

Contribution to Programme Learning Outcomes

A3, A4, B2, C6, D2, D5, D6.

Synopsis: Introduction; Network Model; Data and Signal; Digital signal; Analog signal; Switching; Error
Detection and Control; Error Detection and Control; Data Link Control; Multiple Access; Network Layer:
Logical Addressing; Network Layer: Delivery, Forwarding, and Routing; Network Layer: Delivery, Forwarding,
and Routing; Process-to process Delivery; Congestion Control and Quality of service.

Modes of Assessment:

Two 1-hour midterm exams (20% each); Assignments (20%); One 2-hours Final Examination (40%)

Textbooks and Supporting Material:

1- Behrouz A. Forouzan, Data Communications and Networking, McGraw Hill Higher Education, Fourth
Edition, 2007

2- Andrew S. Tanenbaum, Computer Networks, Prentice Hall, Last Edition.

Website(s):

www.mhhe.com/forouzan

0780110, Introduction to Internet and Web
Providing Department: Web Engineering, Faculty of IT
Module Coordinator(s):

Year: 1

Credit: 3 credit hours

Prerequisite: None

Course Module Description:

The course provides a comprehensive coverage of internet and web concepts, with no assumption of any
experience with the internet or the web.

Course Module Objectives:

1. Toteach internet and web history and concepts

2. Todemonstrate how to use a browser and online search tools

3. Tointroduce different types of online communication tools

4. To develop an exercise-oriented approach that allows teaching by doing

5. Toencourage independent study and help those who are working alone

30

http://www.mhhe.com/forouzan

(A Philadelphia University

Oetpy 1A \m\“‘"

3.3 Intermediate Modules

The Intermediate (Level 2) modules are listed in Table (3-2) and their full descriptions are given below.

Table (3-2) Intermediate Modules in Software Engineering Department

Module Number Module Title Prerequisite
721350 Computer Organization and Architecture 750230
750335 Operating Systems 750332
721220 Object Oriented Programming 750114
721250 Computing Ethics and Technical Writing 731150
721222 Software Modelling 721110

721220
721224 Data Structures +

250104
750215 Visual Programming 721220
721230 Software Requirements 721110
721322 Software Analysis and Design 721230+ 721320
721320 Software Architecture 721222
750323 Algorithms 721224
250241 Linear Algebra (1) 250101
750272 Numerical Analysis 750114

721230, Object-Oriented Programming

Course Hours: 4 hours per week (1 hour for practice), 3 credit hours
Prerequisite: 750114

Teaching Method: 30 hours lectures (2 hours per week) + 15 hours Tutorials (1 per week) + 15 hours
Laboratory (1 per week)

Aims: The module aims to develop an understanding of the principles of the object-oriented paradigm; to
provide familiarity with approaches to object-oriented modelling and design; to provide a familiarity with the
syntax, class hierarchy, environment and simple application construction for an object-oriented programming
language. The module emphasizes developing fundamental programming skills in the context of a language
that supports the object-oriented

Synopsis: Introduction: Classes, Objects, Methods, and Properties, A method deeper Look: static Methods,
static Variables, Scope of Declarations, and Method Overloading, Declaring and Creating Arrays, Array of
Object, and Generic Collection, Classes and Objects A Deeper Look: Data Abstraction and Encapsulation,
Controlling Access to Members, static Class Members, Referring to the Current Object’s, Overloaded,
Constructors, and Composition, Inheritance : Base Classes and Derived Classes, protected Members,
Relationship between Base Classes and Derived Classes, Constructors in Derived Classes, and Class object,
Polymorphism: Polymorphic Behavior, Abstract Classes and Methods, Using Interfaces, Inheritance : Base
Classes and Derived Classes, protected Members, Relationship between Base Classes and Derived Classes,
Constructors in Derived Classes, and Class object, Polymorphism: Polymorphic Behavior, Abstract Classes and
Methods, Using Interfaces, Exception Handling.

Assessment: Two midterm exams (20% each); Laboratory (20%); Tutorial contribution (20%); Final exam
(40%).

31

Y TRVEIVZ L a2 Y

T‘Mﬁ%?\g
{

W (2 N NA >

Textbooks:

1. Deitel & Deitel, C# 2010 for Programmers, Publisher: Prentice Hall, 2011, ISBN-10: 0132618206 | ISBN-13:
9780132618205.

2. Purdum, Jack, “ Beginning C# 3.0 : an introduction to object oriented programming “, Wiley Publishing,
Inc., 2007.

3. Deitel, Paul J., Deitel, Harvey M., “C# 2008 for programmers”, 3rd ed., Prentice Hall, 2009 (ISBN: 978-0-
13-714415-0).

4. Palmer, Grant, Barker, Jacquie, “Beginning C# 2008 objects: from concepts to code”, Berkeley: Apress,
2008. (ISBN: 978-1-4302-1088-7).

5. Marshall, Donis, “ Programming Microsoft Visual C# 2008 : the language”, Redmond, Washington:
Microsoft Press, 2008. (ISBN: 978-0-7356-2540-2)

721224, Data Structures

Course Hours: 4 hours per week (1 hour for practice), 3 credit hours
Prerequisite: 721220, 250104

Teaching Method: 30 hours lectures (2 hours per week) + 15 hours Tutorials (1 per week) + 15 hours
Laboratory (1 per week)

Aims: This is a programming-intensive module where students learn the fundamentals of designing data
structures for use in complex programs. Data structures module is an essential area of study for computer
scientists and for anyone who will ever undertake any serious programming task. This module deals with
the fundamentals of organizing and manipulating data efficiently using clean conceptual models. Students
study many of the important conceptual data types, their realization through implementation, and analysis
of their efficiency. Implementations in this module are carried out in the Java programming language, but the
principles are more generally applicable to most modern programming environments.

Topics include recursion, the underlying philosophy of object-oriented programming, fundamental
data structures (including stacks, queues, linked lists, hash tables, trees, and graphs), and the basics of
algorithmic analysis.

Synopsis: Data Design and Implementation, Abstract Data Types, Lists, Stacks and Queues, Linked Lists,
Programming with Recursion, Binary Search Trees, Priority Queues and Heaps, Graphs, Introduction to
Algorithms analysis, Sorting and Search Algorithms.

Assessment: Two 1-hour midterm exams (20% each); Assignments (20%); 2-hours final exam (40%).

Textbooks:

1. Daniel T. Joyce & Chip Weems,, Object-Oriented Data Structures Using Java, Third Edition, Nell Dale, Jones
and Bartlett Publishers Inc, 2012, ISBN-13: 9781449613549.

2.Kaur, Samarjeet, “ Data structure: complete course book”, New Delhi: Deep & Deep Publications, 2006.
(ISBN: 81-7629-774-7)

3.Main,Michael, “ Data structures & other objects using Java: using J2SE 5.0”, Boston: Pearson Addison
Wesley, 2006. (ISBN: 0-321-36412-0)

4.Malik,D. S, “ Data structures using C++ “, Boston, MA: Course Technolog, 2010. (ISBN: 978-1-4390-4023-
2)

32

Philadelphia University

gy PriA U

721320, Software Architecture

Course Hours: 3 hours per week (48 hours in total)
Prerequisite: 721222
Level: 3

Teaching Method: Lectures: 40 hours, Tutorial: 8 hours
Aims:

Successful design of complex software systems requires the ability to describe, evaluate, and create systems at
an architectural level of abstraction. This course introduces architectural design of complex software systems.
The course considers commonly-used software system structures, techniques for designing and implementing
these structures, models and formal notations for characterizing and reasoning about architectures, tools for
generating specific instances of an architecture, and case studies of actual system architectures. It teaches the
skills and background you need to evaluate the architectures of existing systems and to design new systems in
principled ways using well-founded architectural paradigms.

Synopsis: Architecture in Context, Architecture Styles, Styles and Greenfield Design, Software Connectors, Modelling
and Notations, Visualizing Software Architectures, Implementing Architectures.

Two 1-hour midterm exams (20% each); Course work (20%); Assignments (20%); Final Exam (40%)
Textbooks:

1. Title: Software Architecture: Foundations, Theory, and Practice

Author(s)/Editor(s): R. N. Taylor, N. Medvidovic, and E. M. Dashofy
Publisher: John Wiley & Sons, 2010.

ISBN-10: 0470167742

ISBN-13: 978-0470167748

2. Software Architecture in Practice

Author(s)/Editor(s): Len Bass, Paul Clements and Rick Kazman
Publisher: Addison-Weslt, 2007

721322, System Analysis and Design

Course Hours: 3 hours per week (48 hours in total)
Prerequisite: 721230 + 721320

Level: 3

Teaching Method: 32 hours Lectures +16 hours Tutorials.

Aims: This course completes the student knowledge on Software Design. This course introduces the major
design goals (correctness, reusability, robustness, flexibility). Then the course focuses on basic concepts of
software architecture, component technologies, architectural design principles and design patterns. The
objective of this course is to introduce and detail the factors and the practices that tend to produce good
quality software designs.

Synopsis: Software Design: purpose, motivation, design levels, Software Design Principles(Flexibility,
Reusability, Efficiency), Object-oriented analysis (Unified Process), Design Patterns, Component Technologies,

Assessment: Two 1-hour midterm exams (20% each) + Assignments (15%) + Tutorial contributions (5%) +
2-hours final exam (40%).

33

Y TRVEIVZ L a2 Y

ﬂm‘d%?\g
{

W (2 N NA >

Textbooks:

1. Introduction to Software Engineering Design: Processes, Principles and Patterns withUML2,

Christopher Fox, Addison Wesley, 2007
2. Object Oriented Modelling and Design with UML, Michael Blaha, James Rumbaugh, Person Editions,
2005

3. Software Design: from programming to architecture, Braude Eric, John Wiley & sons, 2004.
4. The Art of Software Architecture: Design Methods and Techniques, Stephen T. Albin, John

Wiley Sons, 2003.

721350, Computer Organization and Architecture

3 hours per week, 3 credit hours, prerequisite: 750230
Aims:

The module will emphasize on the following knowledge areas: assembly level machine organization, memory
system organization and architecture, interfacing and communication, functional organization, and alternative
architectures.

Teaching Method: 32 hours Lectures (2 per week) + 12 hours Tutorials (0-1 per week) + 4 hours Seminars/
Presentations

Synopsis: Review of Basic Computer Architecture and Microprocessors; Von Neumann architecture:
principles, instruction sets, instruction format, addressing modes, assembly/machine language
programming, CISC versus RISC architectures, subroutine call and return mechanism; Control unit:
hardwired, micro-programmed; Storage system and their technology: memory hierarchy, main memory
organization and operations, cycle time, bandwidth and interleaving; cache memory: addressing mapping,
block size, replacement and store policy; virtual memory: page table, TLB; I/O fundamentals: handshaking,
buffering, programmed 1/0, interrupts-driven I/O; Buses: types, bus protocols, arbitration, Direct Access
Memory; Pipelining: principles, Instruction pipelines, Pipelines difficulties and solutions; Introduction to
SIMD, MIMD.

Modes of Assessment:

Two midterm exams (15% each); Course work (10%); Seminars (5%); Tutorial Contribution (5%); Final Exam
(50%)

Textbook and Supporting Material:
1- Patterson, D. A. and Hennessy, J. L. Computer Organization and Design: The Hardware/ Software Interface.
2nd Edition, (ISBN 1-558-604-91X), Morgan Kaufmann 1998

2- William Stallings, Computer Architecture & Organization: Design for Performance, Prentice Hall, 2000
3-J. Van de Goor, Computer Architecture and Design, 1989.

34

(A Philadelphia University

Oetpy 1A \m\“‘"

750335, Operating Systems

3 hours per week, 3 credit hours, prerequisite: 750232

Aims:

The aims of this module are to introduce the basic principles of computer systems organization and operation;
to show how hardware is controlled by program at the hardware/software interface; to outline the basic OS
resource management functions: memory, file, device (I/O), process management, and OS security/protection.
Two concrete examples of operating systems are used to illustrate how principles and techniques are deployed
in practice.

Teaching Method: 40 hours Lectures (2-3 per week) + 8 hours Tutorials (1 each fortnight)

Synopsis: Operating System overview; Operating System Structures: System components, Operating system

services, System calls, System structures, Virtual machine; Processes: Process concept, Process scheduling,

Operation on process, Cooperative process, Inter process communication; Threads: Thread overview, Benefits,

User and kernel threads, Multithreading model, Solaris 2 threads; CPU Scheduling: Basic concept, Scheduling

criteria, Scheduling algorithm, Thread scheduling, Algorithm evaluation; Process synchronization and mutual

exclusion: Critical section problem, Two task solution, Synchronization hardware, Semaphore, Classical

synchronization problem; Deadlock and starvation: System model, Deadlock characterization, Method for

handling deadlock, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from deadlock;

Memory management: Background, Swapping, Paging, Virtual memory, Background, Demand paging, Page

replacement, Allocation of frame, Thrashing; File system implementation and management: File concept, Access

method, Directory structure, Protection, File system structure, Allocation method, Free space management,

Directory implementation, Efficiency and performance, /O management and disk scheduling, Application I/O

interface, Kernel I/O subsystem, I/O request handling, Disk structure, Disk scheduling, Disk management, Swap

space management, Disk reliability, Stable storage implementation

Modes of Assessment:

Two 1-hour midterm exams (15% each); Assignments (10%); Lab work (5%); Tutorial contribution (5%); 2-hours

Final Examination (50%)

Textbooks and Supporting Material:

1- A. Silberschatz and Peter Galvin, Applied Operating Systems Concepts, First edition, John Wiley & sons, Inc,
2000

2-]. Bacon, Concurrent Systems: Database and Distributed Systems, 2" Edition, (ISBN 0-201-177-676),
Addison Wesley, 1998.

3-A. S. Tanenbaum, Modern Operating Systems, Prentice Hall, 1992

35

Y TRVEIVZ L a2 Y

ﬂm‘d%?\g
{

W (2 N NA >

721250, Computing Ethics and Technical Writing

Course Hours: 3 hours per week, 3 credit hours (total of 48 hours)
Prerequisite: 731110

Level: 2

Aims: This module aims to give students an informed awareness of the principal issues of professional ethics
and responsibility (ergonomics and ethics) in the analysis, design, implementation and use of computers,
information systems and Information Technology (IT) products. This will help students in recognition of ethical
problems when they occur. Also it will enable students to deal effectively with ethical, social and professional
issues now and in their future careers.

Teaching Methods: 36 hours Lectures (2-3 per week) + 9 hours Projects (class work) (average 1 per week) + 3
hours Seminars (1 per month)

Synopsis: Introduction to Ethics; Professional and Professionalism; Code of Ethics and Social Issues; Computer/
IT professionals; Computer Security; Privacy and Internet Issues; Information Systems and Ethics; Associations
of IT professionals; Ethics and the Internet; Ethical Challenges of e-Business; Ethical Challenges of e-Business;
Continuous Professional Development; Intellectual Property Rights; Jordanian Codes for Intellectual Property
Rights; Seminars and Project Discussion.

Modes of Assessment:
Two 1-hour midterm exams (20% each); Assessment by individual essay (10%); Workshop Assessment (10%); 2
hour written final Exam (40%)

Textbooks and Supporting Material:
1. Deborah G. Johnson, Computer Ethics. 3ed Edition, Englewood Cliffs, N.J., Prentice Hall, 2001.

2. Gorge Reynoids, Ethics in Information Technology, Thomason, 2003.
3. Sara Baase, A Gift of Fire: Social, Legal and Ethical Issues for Computer and the Internet, 2" ed., 2003.

4. TavaniH.T.and Hoboken N. J., Ethics and Technology, John Wiley, 3™ ed, 2004.

5. s I 4,5l sl wloy i de goso

Website(s):
ACM, IEEE and BCS Web Sites.

www.cyberethics.cbi.msstste.edu

wWww.aitp.org

WWWw.acm.org

www.prenhall.com

WWW.]CS.Ig.jO

36

http://www.cyberethics.cbi.msstste.edu/
http://www.aitp.org/
http://www.acm.org/
http://www.prenhall.com/
http://www.jcs.rg.jo/

Philadelphia University

gy PriA U

0721222, Software Modeling

3 hours per week, 3 credit hours, prerequisite: 0721210

Teaching Method: 30 hours Lectures (2 hours per week) + 15 hours Tutorials (1 per week).

Aims: This module introduces the concept of software modeling early in the software engineering curriculum. It
covers motivations and benefits of modeling, various modeling frameworks, and UML constructs. It emphasizes
good modeling practices using real-world case studies.

Textbooks:
1. J. Mala, S. Geeta, Object Oriented System Analysis and Design Using UML, McGraw-Hill, 2013
2. B.Bruegge, A. H. Dubois, Object-Oriented Sofiware Engineering: Using UML, Patterns and Java, 2nd

ed., Pearson, 2012
3. Hassan Gomaa, Software Modeling and Design: UML, Use Cases, Patterns, and Software
Architectures, Cambridge University Press, 2011
4. Paul C. Jorgensen, Modeling Sofiware Behavior: A Crafisman's Approach, CRC Press, 2009
5. Benjamin A. Lieberman, The Art of Software Modeling, Auerbach Publications, 2006

Synopsis:

Importance of software modeling in software engineering; Modeling principles (abstraction, refinement,
decomposition); Modeling perspectives (structure, behavior, interaction); UML diagrams: Class, Object, State,
Sequence, Activity; Concepts such as attributes, associations, inheritance, aggregation, actions, events,
transitions; Domain-specific vs. general-purpose modeling languages; Software modeling tools; Use cases and
refinements; Analysis and validation of models.

Assessment:
Two 1-hour midterm exams (20% each) + Quizzes and Assignments (20%) + 2-hours final exam (40%).

721230, Software Requirements

Credit Hours: 3 hours per week (48 hours in total) 3 credit hours

Level: 2

Prerequisite: 721110

Teaching Methods: Lectures (30 hours) (2 hours per week), Tutorials (15 hours) (1 per week).

Aims: The aim of this module is to be able to systematically establish, define, and manage the requirements
for a computer-based system. The principal problem area in software development and production are the
requirements specification and the management of customer requirements. Improving the processes of
discovering, documenting, and managing system requirements is critical for future business success. This
course is intended to address Requirements Engineering, which is the term used to cover all of the activities
involved in discovering, documenting, and maintaining a set of requirements for a computer-based system
The course will focus on techniques for eliciting requirements, In-depth study of methods, tools, notations,
and validation techniques for the analysis, specification and management of software requirements.

Synopsis: Basic concepts and principles of software requirements engineering, its tools and techniques,
requirements inception and elicitation, and requirements analysis and specification - modeling techniques,
methods for modeling software systems; various approaches to requirements analysis are examined:
requirements verification, and validation, object-oriented, and formal approaches, requirements management.

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours written
exam (40%).

Textbooks: Strongly recommended for this course: Phillip A, Laplante, Requirements Engineering for Software

37

Y TRVEIVZ L a2 Y

ﬂm‘d%?\g
{

W (2 N NA >

and Systems, Auerbach Pub, March / 2009.

e Also recommended:

o Axel van Lamsweerde, Requirements Engineering: From System Goals to UML Models to
Software Specifications, Wiley, 2009.

o lan Alexander and Ljerka Beus-Dukic, Discovering Requirements: How to Specify Products and
Services, Wiley, 2010,

o Klaus Pohl, Requirements Engineering - Fundamentals, Principles, and Techniques, Springer,
2010, ISBN 978-3-642-12577-5 .

750215, Visual Programming
Providing Department: Computer Information Systems, Faculty of IT
Module Coordinator(s):
Year: 2
Credit: 3 credit hours
Prerequisite: 721223
Aims: This module aims to provide students capabilities to design and implement the applications using
visual programming through Microsoft Visual Studio .Net and VC# to develop different types of applications
using .Net platform.

Teaching Methods: 32 hours Lectures (2 per week) + 12 hours Tutorials (on average 1 per week) + 16 hours
Laboratory (1 per week) + 4 hours Seminar

38

Philadelphia University

gy PriA U

Learning Outcomes:
On completing this module you should:

1. Have a clear understanding of what comprises a correct program in C# through .Net frame components (A)

2. Have a clear understanding of the object-oriented terminology used to describe features of C# and VC#
project with their visual components. (A, C)

3. Have an informal understanding of the operational semantics of object-oriented programs in terms of creation
of objects and messages passing between difference interfaces. (A)

4. Be able to design, code, and test C# project, which meet requirements expressed in English. (B, C, D)

5. Be able to understand the documentation for, and make use of, the MSDN library. (A, C)

6. Have a good understanding of the different focus at various stages of the development process. (A, C, D)

7. Have knowledge of design GUI with visual components guidelines. (A, B)

8. Be able to apply the guidelines in learning outcome (7) to a real design problem and justify how they have
been used. (A, B)
Be able to write a project in C# and VC#, which implements the design in learning outcome (8). (C).

10. Be able to work effectively alone or as a member of a small group working on some programming tasks. (C,
D)

Assessment of Learning Outcomes:

Learning outcomes (1), (6), and (8) are assessed by examination and laboratory; learning outcomes (2), (3), and

(7) are assessed by tutorial and examination; learning outcomes (4), (5), (9) and (10) are assessed in the laboratory.

Contribution to Programme Learning Outcomes:

A2, A3, A4, B3, C5, C6, D1, D2, D4, D5

Synopsis: Introducing the Microsoft .NET Platform: .NET Platform, .NET and Windows DNA, .NET Architecture
Hierarchy, .NET Platform features, Multilanguage Development, Platform and Processor Independence, .NET
Components, Common Type System CTS, Common Language Specification CLS, .NET Base Class Library
(BCL); Visual Studio.NET IDE: Visual Studio.NET, Components of VS.NET, Design Window, Code Window, Server
Explorer, Toolbox, Docking Windows, Properties Explorer, Solution Explorer, Object Browser, Dynamic Help, Task
List Explorer, Features of VS.NET, XML Editor, Creating a Project, Add Reference, Build the Project, Debugging
a Project; Introducing C# Programming: Data Types, Value Types, Reference Types, Control Structures (if,
if-else, switch, for, while, do while, break, continue, return, goto), Understanding Properties and Indexers
Accessing Lists (Array) with Indexers, Events, Exception Handling, Using OOP (Object, Class, Constructor/
destructor, Inheritance, Polymorphism, Encapsulation); Windows Forms: Windows Forms, Adding Controls,
Adding an Event Handler, Adding Controls at Runtime, Attaching an Event Handler at Runtime, Writing a
Simple Text Editor, Creating a Menu, Adding a New Form, Creating a Multiple Document Interface, Creating a
Dialog Form, Using Form Inheritance, Adding a TabControl,, Anchoring Controls, Changing the Startup Form,
Connecting the Dialog, Using the ListView and TreeView, Controls, Building an ImagelList, Adding a ListView,
Using the Details View, Attaching a Context Menu, Adding a TreeView, Implementing Drag and Drop, Creating
Controls, Creating a User Control, Adding a Property, Adding Functionality, Writing a Custom Control, Testing
the Control, Enhancing the Control, Sub classing Controls; Graphics and Multimedia: Graphics Contexts and
Graphics Objects, Color Control, Font Control, Drawing Lines, Rectangles and Ovals, Drawing Arcs, Drawing
Polygons and Polylines, Advanced Graphics Capabilities, Introduction to Multimedia, Loading Displaying
and Scaling Images, Animating a Series of Images, Windows Media Player, Microsoft Agent; ADO.NET: ADO.
NET Architecture, Understanding the ConnectionObject, Building the Connection String, Understanding
the CommandObject, Understanding DataReaders, Understanding DataSets and DataAdapters, DataTable,
DataColumn, DataRow, Differences between DataReader Model and DataSet Model, Understanding the
DataViewObject ,Working with System.Data.OleDb, Using DataReaders, Using DataSets, Working with SQL.
NET, Using Stored Procedures, Working with Odbc.NET, Using DSN Connection; Multithreading: Thread States:
Life Cycle of a Thread, Thread Priorities and Thread Scheduling, Thread Synchronization and Class Monitor,
Producer/Consumer Relationship without Thread, Synchronization, Producer/Consumer Relationship with
Thread Synchronization, Producer/Consumer Relationship: Circular Buffer; Networking: Introduction,
Establishing a Simple Server (Using Stream Sockets), Establishing a Simple Client (Using Stream Sockets),

39

Y TRVEIVZ L a2 Y

ﬂm‘d%?\g
{

W (2 N NA >

Client/Server Interaction with Stream-Socket Connections, Connectionless Client/Server Interaction with
Datagrams, one Server multi-Clients system; ASP.NET: Introducing the ASP.NET Architecture, ASP.NET Server
Controls, Working with User, Controls, Custom Controls, Understanding the Web.config File, Using the Global.
asax Page,

Modes of Assessment: Two 1-hour midterm exams (20% each); Assignments (20%); One 2-hours Final
Examination (40%)
Textbooks and reference books:

1- H. M. Deitel & J. Deitel, “ C# How to Program”, Prentice Hall, 2014 fifth edition

2- A.Turtschiet.al. “ Mastering Visual C# .Net”, Sybex 2002

3- Eric Gunnerson, “A Programmer’s Introduction to C#”, Apress 2000

4- Anders Hejlsberg et.al. “ C# Language Reference”, Microsoft Corporation 2000

5- Erric Buttow et al. “C#, your visual blueprint for building .Net application”, Hungry Minds 2002
6- Charles Carroll, “Programming C#”, O’Reily & Associates 2000

Karh Watson “Beginning C#” Wrox Press 2001.

750323, Algorithms

Providing Department: Computer Science, Faculty of IT

Module Coordinator(s):

Year: 3

Credit: 3 credit hours

Prerequisite: 750272 + 721223

Aims:

The aim of this module is to learn how to develop efficient algorithms for simple computational tasks and
reasoning about the correctness of them. Through the complexity measures, different range of behaviours of
algorithms and the notion of tractable and intractable problems will be understood. The module introduces
formal techniques to support the design and analysis of algorithms, focusing on both the underlying mathematical
theory and practical considerations of efficiency. Topics include asymptotic complexity bounds, techniques of
analysis, and algorithmic strategies.

Teaching Methods: 38 hours Lectures (2 per week (including two 1-hour midterm exams)) + 10 hours Tutorials
(average 1 hour per week)

Learning Outcomes:

When completing this module, you should be able to:

1. understand basic ideas about algorithms (A)
2. develop efficient algorithms for simple computational tasks (B)
3. reason about the correctness of algorithms (B)

4. understand the concepts of time and space complexity, worst case, average case and best case
complexities and the big-O notation (A)

40

(A Philadelphia University

Oetpy 1A \m\“‘"

5. compute complexity measures of algorithms, including recursive algorithms using recurrence
relations (B)

6. understand the range of behaviours of algorithms and the notion of tractable and intractable
problems (A, B)

7. know and understand a wide range of searching and sorting algorithms (A, B)
Assessment of Learning Outcomes:

All learning outcomes are assessed by examinations and tutorials. Learning outcomes (4), (5), and (6) are
assessed by examinations and coursework.

Contribution to Programme Learning Outcomes:
Al,A2,B1, B2, B3

Synopsis: Introduction, Algorithm definition, Algorithm Analysis; Mathematical Induction;
Summation Techniques; Recurrence Relations; Design & Analysis of Algorithms: Divide and
conquer, Greedy Algorithm, Dynamic Programming, Backtracking, Branch-Bound; Lower Bound
Theory; Sorting and Searching; NP-Complete Problems: Basic Concepts, NP-Hard & NP-Complete
Problem

Modes of Assessment:
Two 1-hour midterm exams (15% each); Tutorial contributions (5%), Coursework (15%); Final written
Examination (50%)

Textbooks and Supporting Material:

1- Jon Kleinberg, Eva Tardos, Algorithm design, Boston: Pearson Education Limited, 2014.

2- Alwan, Raad F., Design and Analysis of Algorithms, Dar Majdalawi Publication & Distribution, Amman,

2010.

3- Sara Baase, Computer Algorithms: Introduction to Design and Analysis, Third Edition, Addison-Wesley,
2000.

4- Udi Manber, Introduction to Algorithms: a Creative Approach, Addison-Wesley, 1997.

5- T. Cormen, et.al., Introduction to Algorithms, 1999.

6- R. Sedgewick, Algorithms in C++, 2002.

750272, Numerical analysis

Course Hours: 3 hours per week, 3 credit hours (total of 48 hours)
Level: 1
Prerequisite: 250101 + 750114

Aims:

The aim of the module is to give students a clear understanding and deep knowledge of how the typical of
“real life” mathematical, physical, or engineering problems are to be solved in the modern setting. As opposed
to tendency in lower-level mathematical courses to teach recipes for “exact” solving particular problems
fitting into very special form, this module provides the idea of approximate solving a wide variety of applied
standard problems on a computer by numerical methods.

41

Y TRVEIVZ L a2 Y

ﬂm‘d%?\g
{

W (2 N NA >

Teaching Methods: Lectures: 36 hours, Tutorials: 12 hours

Synopsis: Mathematical Preliminaries: Computer arithmetic, round-off error, source of errors,
Solution of equations in one variable: Bisection method, fixed point method, false position
method, Secant method, Newton-Raphson method, Interpolation and polynomial approximation,
Introduction to interpolation, Direct methods for solving linear systems of equations, Iterative
methods for solving linear systems, Iterative methods for solving nonlinear systems,Curve fitting
techniques.

Assessment: Two 1-hour midterm exams (20% each); Assignments (20%); One 2-hours Final Examination
(40%)

Text book:

Richard L. Johnson and Douglas J. Faires, Numerical Analysis, 9th Edition, Brooks/

Cole 2010.

250241, Linear Algebra (1)

Course Hours: 4 hours per week, 3 credit hours

Prerequisite: 250101

Aims: It includes the study of System of Linear Equations, Gaussian Elimination, Methods to Find
A-1, Matrices, Determinants, Euclidean Vector spaces, General Vector spaces, Subspaces, Linear
Independence and Dependent Basis, Dimension, Row Space, Column Space, Null Space, Theory
and Applications.

e To enable the students to carry on Matrix Operations.

e To enable students to solve Systems of Linear Equations using Matrices, and Gaussian Elimination.

e Tounderstand the concepts of Vector Spaces.

e Tounderstand Subspaces, and Basis.

e To carry on Row Space, Column Space, and Null Space.

Synopsis: Introduction to Systems of Linear Equations, Gaussian Elimination, Matrices and Matrix
Operations, Inverses; Algebraic Properties of Matrices, Elementary Matrices and a Method for Finding
A-1, More on Linear Systems and Invertible Matrices, Diagonal, Triangular, and Symmetric Matrices,
Determinants by Cofactor Expansion, Evaluating Determinants by Row Reduction, Properties of the
Determinants; Cramer’s Rule, Vectors in 2-Space, 3-Space, and n-Space, Norm, Dot Product, and
Distance in Rn, Orthogonality, Real Vector Spaces, Subspaces, Linear Independence, Coordinates
and Basis, Row Space, Column Space, and Null Space, Rank, Nullity, and the Fundamental Matrix
Spaces

Assessment: Two midterm exams (20% each); Laboratory (20%); Tutorial contribution (20%); Final exam
(40%).
Textbooks:

e Linear algebra with applications by Leon, Steven J., 9th ed. Boston: Pearson Education Limited,
2015.

e Linear Algebra by L.W. Jhonson & R.D. Riess & J.T. Arnold- Addisson Wesely 2007.
e Linear Algebra by Eric Carlen_ Freeman 2007

e Linear Algebra and its applications by Gilbert Srang_Belmont, CA 2006

e Linear Algebra and its applications by David C. Lay_ pearson/addisson wesly2006.

42

(A Philadelphia University

Oetpy 1A \m\“‘"

3.4 Advanced Modules

In this sub-section, the full descriptions of Level 3 modules are presented. Table (3-3) shows these modules and
their descriptions are given below.

Table (3-3) Advanced Modules in SE Department

Module Number Module Title Prerequisite
721424 Software Development and Documentation 721322
721433 Software Testing 721322
721331 Software Project Management 721330
721330 Software Production 721222
721438 Practical Training 90h +Department

Agreement
791448 Research Projectl 90h +Department

Agreement
721449 Research Project2 721448
721351 Data Base Management 731221

721420, Software Development and Documentation
Credit Hours: 3 hours per week (48 hours in total)

Level: 4

Prerequisites: 721322

Teaching Methods: Lectures (34 hours), Tutorials (10 hours), Laboratory (4 hours)
Aims:

This course presents general principles and techniques for disciplined low-level software coding: mapping
design outcomes into code, Selection of appropriated programming language to specific application, code
development with errors avoidance techniques, code development with errors tolerance techniques, code
development with API, and code development environments programming and GUI builders. An introduction
to code testing will close the course

This course aims to:
- map design models into source code
- develop code with errors avoidance techniques
- Develop parallel and distributed code

Synopsis: Steps of building a routine, Component-based software construction based on a given architecture,
Mapping design outcomes into Code/ derivation of code from design models, Application of Object Model
and Database Model, Error handling, exception handling, defensive programming, Error avoidance—>
Vulnerable techniques: Program Flow Control breaking (goto, continue, exit, break, ...), Recursion, Global
data, parameters by value and by references, Construction tools technology/techniques and tools supporting
code development, API use, code reuse and libraries, distributed Middleware tools.

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours written
exam (40%).

43

Y TRVEIVZ L a2 Y

T‘Mﬁ%?\g
{

W (2 N NA >

Textbooks:

1. B. Buegge & A. Dutoit, “Object-Oriented Software Engineering, using UML, Pattern and Java”,
Third Edition, 2009
2. H. Deitel and P. Deitel, “Java How To Program”, 9t Edition, Prentice Hall, 2011

3. S. McConnell Code Complete, 2" edition, Microsoft Press, 2004

7214330, Software Testing

Credit Hours: 3 hours per week (48 hours in total)

Level: 4

Prerequisites: 0721322

Teaching Methods: Lectures (34 hours), Tutorials (10 hours), Laboratory (4 hours)

Aims: This course will address topics in the software testing focusing on issues related to whether the system
is correct (with respect to some specification) and the needed software testing techniques to ensure that
a system is free of faults and of high quality. Topics include test planning and management, testing tools,
technical reviews, formal methods and the economics of software testing. The relationship of testing to other
quality assurance activities as well as the integration of verification and validation into the overall software
development process are also discussed.

Synopsis: Review of software engineering methods and challenges, the role of verification and validation,
the economics of verification and validation, Software reviews and inspections, Software quality metrics,
Software testing overview, Functional & Structural testing, Validation based testing techniques, Fault based
testing techniques, Boundary value testing, equivalent class testing, syntax testing, path testing, Integration
and system testing, Object-oriented testing, Assessing software quality, Testing component based systems
such as CORBA and Java beans. Testing tools such as JUnit.

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours written
exam (40%).

Textbooks:
1. JUnitin Action by P. Tahchiev, F. Leme, V. Massol and G. Gregory, Second Edition, MANNING, 2011
2. Software Testing, A Craftsman’s Approach, P. Jorgensen, Third edition, Auerbach Publications, 2008

3. Software Testing: The State of the Practice, Mohamad Kassab, Penn State Great Valley, 2017

-

https://www.computer.org/csdl/search/default?type=author&givenName=Mohamad&surname=Kassab

Philadelphia University

Oy 1A U

721331, Software Project Management

Credit Hours: 3 hours per week (48 hours in total)

Level: 3

Prerequisites: 0721330

Teaching Methods: Lectures (34 hours), Tutorials (10 hours), Laboratory (4 hours)

Aims: Software management is concerned with knowledge about the planning, organization, and monitoring
of all software life-cycle phases. Management is critical to ensure that software development projects are
appropriate to an organization, work in different organizational units is coordinated, software versions and
configurations are maintained, resources are available when necessary, project work is divided appropriately,
communication is facilitated, and progress is accurately charted.

Synopsis: Software Process overview, Management related concepts, Project planning methods such as
step wise, Project personnel and organization methods, Project control methods, Software configuration
management, risk management methods, and software quality.

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final
Examination: 2-hours written exam (40%).

Textbooks:

1. B.Hughesand M. Cotterell. Software Project management. Fifth edition, McGraw-Hill, 2009.

2. R.S.Pressman. Software Engineering, a practitioner’s approach, 8e, 2010

721330, Software Production

Credit Hours: 3 hours per week (48 hours in total)

Level: 3

Prerequisites: 721222

Teaching Methods: Lectures (34 hours), Tutorials (10 hours), Laboratory (4 hours)
Aims: This topic aims to provide students with knowledge about:

e Description of commonly used software life cycle process models and the content of institutional
process standards,

e Definition, implementation, measurement, management, change and improvement of software
process, and

e Use of a defined process to perform the technical and managerial activities needed for software
development and maintenance.

Synopsis: Definition of the production related terms such as process, activity, task, etc. Traditional Process
Models such as waterfall, Prototyping, Spiral Model, The concurrent development model, Rational Unified
Process (RUP), An Agile Process, Extreme Programming (XP), Adaptive Software Development (ASD),
Dynamic Systems, Development Method (DSDM), Software Process Analysis Approaches, Object Oriented
Development case study, Service Oriented Development, Software Quality, Product Metrics.

45

VLt 2RV LoV 02 V-
L-L\ﬁf;%r =
Y2/ N NAN>

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours written
exam (40%).

Textbooks:

1. Object-Oriented Software Engineering Using UML, Patterns, and Java” B. Bruegge, A. H. Dutoit,,
Third Edition, Prentice Hall, 2009.

2. Agile Software Construction, John Hunt, Springer-Verlag 2006

3. Software Processes and Life Cycle Models: An Introduction to Modelling, Using and Managing
Agile, Plan-Driven and Hybrid Processes Authors: Kneuper Ralf , 2018.

721438, Practical Training

3 hours per week, 3 credit hours, prerequisite: Department Agreement
(Students can take this module on completing 90 credit hours at least).

Aims: The main aim of this module is that students will have practice in different industrial, commercial,
administrative enterprises or companies. By this module, students may apply, in the real world, what they have
learned during the first three years of their study in the University. The module also aims to teach students how
to be self-confident when they face problems in their practical life.

Duration: At least 9 weeks (18 training hours per week at least). This may be distributed onto two semesters
at most.

Regulations for Training: Students who register on practical training module should not register on modules
with total credit hours more than 15 hours per week including the training module itself. Students must,
therefore, be full-time trainees for at least 2 days per week. Students should arrange their timetable for other
modules in a way that enables them to enrol in the pre-specified enterprise or company at least two days per
week during the semester period.

Assessment: A committee from the Department supervises the students along their training period, where one
supervisor is assigned to one group of students. The student should submit a technical report to this committee
in 2 weeks time after completing the training session. In addition, the trainer body presents a report to the
committee. The grade “pass” is given to students who complete the training requirements successfully and
discuss their reports with the supervision committee.

721448, Research Project (1)

Course Hours: 1 credit hour (16 hours)
Level: 4
Prerequisites: 90 hours + Department agreement

Aims: The aims of the project work done in the fourth year are to manage and execute a substantial project
in a limited time, to identify and learn whatever new skills are needed to complete the project, to apply design
and engineering skills in the accomplishment of a single task. In this context the skills mentioned may be in the
general area of design and engineering in its broadest sense, or may be very specifically related to particular tools.
A student works under the supervision of a member of staff, the Supervisor. Most of the projects involve three
students working together on the same project; apart from these, all students do different projects.

The research project consists of a single project on which the student works over a period of two consecutive
semester courses.

46

(A Philadelphia University

Oetpy 1A \m\“‘"

At the end of the first research project course students are expected to deliver: SRS (Software Requirement
Specification) document, executable prototype, software architecture of their project.

Synopsis: Review of Software life cycle, Requirement elicitation, requirement modelling and analysis, SRS
document, prototype, software architecture (style, sub-systems, components...)

Assessment: SRS document (60%), prototype (20%), Software architecture (20%)

Textbooks:

- C. W. Dawson, The Essence of Computing Projects, A Student’s Guide. ISBN 0-13-021972-X.
Prentice Hall 2000.

- Department Research Project Guide

721449, Research Project (2)

Course Hours: 2 credit hours (32 hours)
Level: 4

Prerequisites: 721448

Aims: The aims for the project work done in the fourth year are :to manage and execute a substantial project
in a limited time, to identify and learn whatever new skills are needed to complete the project, to apply design
and engineering skills in the accomplishment of a single task. In this context the skills mentioned may be in the
general area of design and engineering in its broadest sense, or may be very specifically related to particular tools.
A student works under the supervision of a member of staff, the Supervisor. Most of the projects involve three
students working together on the same project; apart from these, all students do different projects.

The research project consists of a single project on which the student works over a period of two consecutive
semester courses.

At the end of the second research project course students are expected to deliver: project design document,
project source code, project tests, and final project document.

Synopsis: Review of software design methods, Software coding techniques, software testing techniques

Assessment: software design document (30%), coding (60 %), software testing (10%)

Textbooks:

- C. W. Dawson, The Essence of Computing Projects, A Student’s Guide. ISBN 0-13-021972-X.
Prentice Hall 2000.

- Department Research Project Guide

47

VLt 2RV LoV 02 V-
L-L\ﬁf;%r =
Y2/ N NAN>

0721351, Database Systems Management

Credit Hours: 3 hours per week (48 hours in total)

Level: 3

Prerequisites: 721221

Teaching Methods: Lectures (34 hours), Tutorials (10 hours), Laboratory (4 hours)
Aims: This topic aims to provide students with knowledge about:

Introducing the fundamental concepts necessary for designing, using, and implementing database systems
and applications. The goal of this course is for students to become well-grounded in basic concepts
necessary for understanding DB and their users, DBMS concepts, architecture , the concepts of the Entity
Relationship(ER) model, the data abstraction and semantic modeling concepts leading to EER data model,
describe the basic relational model, its integrity constraints and update operations, and the operation

of relational algebra, describe relational schema design, and it covers the normalization and functional

dependency algorithm.

Synopsis: Developing and managing efficient and effective database applications fundamentals of database
management systemstechniques for the design of databasesprinciples of database administration

Database concepts, developments, use and management in three main sections: database concepts, practice,
and emerging trends.

Relational database systems
object- oriented databases
Practical design of databases and developing database applications using modern software tools.

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours written
exam (40%).

Textbooks:
Silberschatz, Korth and Sudarshan, "Database System Concepts", 7th edition, McGraw Hill,2020

48

Philadelphia University

gy PriA U

3.5 Elective Modules

Each student should select 2 modules out of a list of 4 modules according to his/her interest. The
Department has a list of elective modules, which can be updated according to the staff expertise
and the most recent trends in the field of SE. The current list of such modules is shown in Table (3-
4), where some modules are marked with (R) to indicate that these modules are research-oriented
according to the staff expertise.

Table (3-4) Elective Modules in Computer Science Department

Module Number Module Title Prerequisites
721422 Web Software Engineering 731213
721439 Special Topics In Software Engineering 721322
721410 Secure Software Construction 721424
721421 Software Re-Engineering 721424
721423 Graphical User Interface Design 721322
721432 Software Quality Engineering 721433
721324 Advanced Object Oriented Programming 721223

721324, Advanced Object Oriented Programming

Course Hours: 3 hours per week, 3 credit hours
Prerequisite: 721220
Teaching Method: 30 hours lectures (2 hours per week) + 15 hours Tutorials (1 per week)

Aims: The course aims to define or explain principles of modularity, encapsulation, information hiding,
abstraction, and polymorphism, to use frameworks, classes, and methods from standard libraries in problem
solutions, to Use object-oriented design to model problem solutions and express inheritance, association,
aggregation, and composition relationships among classes, to recognize and use basic object-oriented design
patterns to structure solutions to problems, to design, implement, and use classes and methods in an object-
oriented programming language, employing standard naming conventions and making appropriate use of
advanced features such as inheritance, exception handling. (Python for instance)

Synopsis: Cornerstones of Computing, Getting Started in Python, Elementary Control Structures, Additional
Control Structures, Defining Our Own Classes, Good Software Practices, Input, Output, and Files, Inheritance,
Deeper Understanding of the Management of Objects, More Python Containers, Implementing Data
Structures, A case study, and Event-Driven Programming.

Assessment: Two midterm exams (20% each); Laboratory (20%); Tutorial contribution (20%); Final exam
(40%).

Textbooks:

1- Object-Oriented Programming in Python, Michael H Goldwasser, Saint Louis University, David Letscher, Saint
Louis University, ISBN-10: 013615031, P ublisher: Prentice Hall Copyright: 2008.

2- Mark Lutz and David Ascher, “Learning Python”, Beijing: O’Reilly, 2004, 2nd ed..

3. Dusty Phillip, “Python 3 Object Oriented Programming”, Packt, July 2010. (ISBN : 1849511268 ISBN 13 :
978-1-849511-26-1)

4. Allen B. Downey, “Python for Software Design How to Think Like a Computer Scientist”, Olin College of
Engineering, Massachusetts, May 2009. (ISBN-13: 9780521898119

49

AL > wvive LY >

ARk
¢ (4

son L - L — m e L

721423, Graphical User Interface Design

Credit Hours: 3 hours per week (48 hours in total) 3 credit hours
Level: 4

Prerequisites: 721320 + 761220

Teaching Methods: Lectures (33 hours), Laboratory (15 hours)

Aims: HCI (human-computer interaction) is the study of how people interact with computers. It is concerned
with the design, evaluation, and implementation of interactive computing systems for human use and with
the study of the environment surrounding them. The interaction with the computer systems are done
through GUI (Graphical User Interfaces). In order to design, develop and implement good interfaces, the
knowledge of human-computer interaction principles and GUI programming skills are required. The course
aims to provide students with the principles for predicting the usability of human computer interaction, and
developing systematic methodologies for designing and evaluating them, and improve students’ awareness
of the issues that determine the usability of an interactive computer system.

Synopsis: This course provides an introduction to the study of human-computer interaction and user
interface design. HCl is a field that combines material from many different perspectives including computer
science, psychology, human factors and graphic design. This course provides also an overview of established
and emerging theories, conceptual frameworks and methods of the human aspects of HCI; Knowledge
representation and organisation, mental models, the utility of mental models in HCI, verbal metaphors, virtual
interface metaphors, classification of interface metaphors for applications, conceptual models; Technology
Aspects: Introducing a range of input and output devices and interaction styles, and discussing some higher
level system design issues; Design Practice: Discussing the most popular design and evaluation methods and
design support tools that are available to make HCI design user-centered, including principles and methods
for user centered design, requirement gathering, task analysis and structured HCI design. Screen Design: An
advanced topic that covers a theoretical model to support screen design. Hypertext, Multimedia and the
World Wide Web: Covering major research issues in multimedia and the Web. GUI programming: Introduction
to GUI, Java review exercises, GUI Components - Swing, Event processing, Mouse Events, Keyboard Events,
Window Events.

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours written
exam (40%).

Textbooks:

1. Ben Shneiderman, Catherine Plaisant, Maxine Cohen and Steven Jacobs , “ Designing the User Interface:
Strategies for Effective Human-Computer Interaction”, (5th Edition) (Mar 8, 2009)

2. Alan Dix, Janet E. Finlay, Gregory D. Abowd and Russell Beale ,” Human-Computer Interaction (3rd Edition)”, (Dec 20,
2003).

50

Philadelphia University

gy PriA U

721421, Software Re-Engineering

Course Hours: 3 hours per week, 3 credit hours (total of 48 hours)
Level: 4
Prerequisite: 721420

Aims: This module will focus on enabling software evolution and maintenance through reengineering.
Teaching Method: Lectures: 36 hours, Tutorials: 12 hours

Synopsis: software evolution, software maintenance; software reengineering, reverse engineering, code
refactoring, code slicing, code migration, program comprehension, program transformation, data reverse
engineering, Object Oriented Reengineering.

Assessment: Two 1-hour midterm exams (20% each); Tutorial contribution (5%); Project work (15%); 2-hours
Final Exam (40%).

Textbook:
1. A. Afshar Alam, Tendai Padenga, Application Software Reengineering, Pearson Education India, 2010

2. Priyadarshi Tripathy and Kshirasagar Naik. Software Evolution and Maintenance: A Practitioner's
Approach, Wiley, 2015.

721422, Web Software Engineering

Credit Hours: 3 hours per week (48 hours in total)

Level: 4

Prerequisites: 721420 + 0731213

Teaching Methods: Lectures (34 hours), Tutorials (10 hours), Laboratory (4 hours)

Aims: This course aims at applying the software engineering development processes with the
Web applications; it introduces a structured methodology utilized in software engineering to Web
development projects.

Synopsis: Definition of Web Engineering related terms, Quick Review of software engineering methodologies
and techniques. Applying the SE development processes to Web Application Development, Applying SE
Requirement specification techniques with Web Applications, Applying SE Modeling techniques with Web
Applications” Web Application Architectures, Usability testing of Web Applications, Reliability testing of Web
Applications, Security testing for Web Applications

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours written
exam (40%).

Textbooks:
1. Web Engineering: A Practitioner’s Approach by Roger Pressman and David Lowe, McGrawHill, 2009.

2. Web Engineering, 1st ed. Kappel, G., Proll, B. Reich, S. & Retschitzegger, W. Wiley & Sons. 2006

1

Y TRVEIVZ L a2 Y

ﬂm‘d%?\g
{

W (2 N NA >

721439, Special Topics in Software Engineering

Credit Hours: 3 hours per week (48 hours in total)
Level: 4

Prerequisites: 721322

Teaching Methods: Lectures, Tutorials

Aims: This course is intended to address a special topic selected among emergent topics of software
engineering. The selected topic may concern new software engineering paradigms, or development
methodology, or software process, or techniques, or languages or software tools.

Synopsis: key words specific to the selected topic.

Assessment: Two 1-hour term exams (20% each), Assighnments (20%), Final Examination: 2-hours written
exam (40%).

Textbook: Recent books that cover the selected topic.

52

Philadelphia University

o
Oetpy 1A \m\“‘"

Appendix B

The Guidance Plan
of
Software Engineering Programme
Study plan
(2022 — 2023)

year Module Title Prerequisite Types of Semester Module
Requirements Number
First Communication Skills (Arabic Language) e UR 0116103
Communication Skills (English 1) — UR First 0116107
UE (1) S— UR (18 Credit —
Programming Fundamentals (1) — FR Hours) 0750113
— FR
Introduction to Systems and Information Technology - SR 0750110
Differentiation and Integration (1)
021611
Communication Skills (English 2) 0116107 UR 0116108
National Education -—— UR Second 0116101
Leadership and Innovation UR 0116103
_— FR (18 Credit
0750113 FR Hours)
Programming Fundamentals (2) DR 0750114
0731110 SR
Software Engineering Fundamentals 0721111
0750099
Discrete Mathematics 0750120
Second | Object Oriented Programming 0750114 FR 0721223
DR First
Software Requirements 0721111 SR (18 Credit 0721230
SR Hours)
Introduction to Statistics and Probabilities ——— FR 0250231
Digital Logic Design 0750110 UR
0750230
Introduction to World Wide Web Programming 0750114
0731213
Linear Algebra(1) 0250101
0250241
Software Modelling 0721111 DR 0721222
DR Second
Data Structures 0721223 SR (18 Credit 0721224
FR Hours)
Numerical Analysis 0750114 SR 0750272
FR
Visual Programming 0721223 0750215
Database Fundamentals 0721223 0750260
Computing Ethics and Technical Writing 0750113 0721240

33

Y arz Ap>
o

4
‘ -

Third Software Architecture 0721222 DR 0721320
DR
Software production 0721222 DR First 0721330
SR (18 Credit
Computer Organization and Architecture 0750230 SR Hours) 0721350
UR
Fundamentals of Computer Networks 0721224 0750340
Algorithms 0721224 0750323
UE(2) -— ———-
Software Analysis And Design 0721230 DR 0721322
DR Second
Software Project Management 0721330 DR (15 Credit 0721331
DR Hours)
Data Base Management 0731221 UR 0721351
Operating Systems 0721350 0750335
UE(3) —
Fourth | Software Development and Documentation 0721322 DR 0721424
. DR First
Software Testing 0721322 DR (13 Credit 721433
DE(1) N DR Hours) -
Practical Training 90 hours DR 0721438
Research Project(1) 90 hours UR 0721448
DE(2) DR Second —
Research Project(2) 0721448 DR (14 Credit 0721449
-— DR Hours)
DE(3) — UR ——
Military Sciences(Or UE Non- Jordanians Students) UR 0111100
UE(4)
(UR) University Req. (UE) University Elective (FR) Faculty Req.
(DR) Dept. Req. (DE) Department Elective (SR) Supplementary Req.

4

(A Philadelphia University

Oetpy 1A uﬂ\‘“"

Appendix C
Study Plan for Bachelor Degree in

Software Engineering
(2022 — 2023)

First: University Requirements (27 Credit Hours)
1. University Compulsory Modules (18 Credit Hours)
Course No. Course Name Cr. Pre-req. Mark
0116103 | Communication Skills (Arabic Language) 3 0114099
0111100 | Military Sciences 3 -
0116101 | National Education 3 .
0116107 | Communication Skills (English 1) 3
0116108 | Communication Skills (English 2) 3 0130101
0116110 Leadership and Innovation
0116102 Leadership and Social Responsibility
0116104 Life Skills

2. University Electives (9 credit hours)

The student studies (9) hours of the following areas with a minimum of one module of each
area and a maximum of two modules of each area

b. Social and Economic Science area (3-6) Credit Hours

Course No. Course Name Cr. Pre-req. Mark
0111112 | Introduction to Psychology 3 -
0111133 | Culture and Civilization (1) 3 -
0111142 | Communication and Society 3 -
0115255 | Culture of Development 3 -
0420140 | Human Rights 3 -
0420143 | Legal Culture 3 -
c. Science, Technology, Agriculture, and Health Field (3-6) Crd. Hrs.
Module No. Module Name f‘redit Pre-req. Mark
ours
0371111 | Project Management Skills 3 -
0731101 | Social Networking Skills 3 -
0731111 | Computer Skills 3 -
0910101 | Health promotion of Individuals and the community 3 -
0910105 | Principles of nursing and first aid 3 -

35

AL -5 v - L' . AW

G EI&E
[{

W (2 N NA >

Second: Faculty Requirements (24 Credit Hours)

Course No. Course Name Cr. Pre-req. Mark
0721223 | Object Oriented Programming * 3 0750114
0721250 | Computing Ethics and Technical Writing 3 0731110
0731110 | Introduction to Systems and Information Technology 3 -
0731213 | Introduction to World Wide Web Programming 3 0750114
0750113 | Programming Fundamentals (1) * 3 -
0750114 | Programming Fundamentals (2) * 3 0750113
0750215 | Visual Programming * 3 0721223
0770110 | Introduction to internet and web technology 3 -

Third: Major Requirements (81 Credit Hours)

a. Compulsory Modules (45 Credit Hours)

Course No. Course Name Cr. Pre-req. Mark
0721111 | Software Engineering Fundamentals 3 0731110
0721224 | Data Structures* 3 0721223
0721222 | Software Modelling 3 0721111
0721230 | Software Requirements 3 0721111
0721320 | Software Architecture 3 0721222
0721322 | System Analysis and Design 3 0721320
0721351 | Database Management 3 0731221
0721330 | Software Production 3 0721222
0721331 | Software Project Management 3 0721330
0721424 | Software Development and Documentation 3 0721322
0721433 | Software Testing 3 0721322
0721350 | Computer Organization and Architecture 3 0750230
0721438 | Practical Training 3 90 hours
0721448 | Research Project (1)* 1 90 hours
0721449 | Research Project (2)* 2 0721448

56

Philadelphia University

Oy 1A U

b. Compulsory Supplementary Requirements (27 Credit Hours)

Course No. Course Name Cr. Pre-req. Mark
0250101 | Differentiation and Integration (1) 3 -
0750120 | Discrete Mathematics 3 0750099
0250231 | Introduction to Statistics and Probabilities 3 ---
0750230 | Digital Logic Design 3 0731110
0750272 | Numerical Analysis 3 0750114
0750323 | Algorithms 3 721224
0750335 | Operating Systems 3 0721350
0750260 | Database Fundamentals* 3 0721223
0731340 | Fundamentals of Computer Networks* 3 0721224
0250241 | Linear Algebra(1) 3 0250101

c. Elective Modules (9 Credit Hours)

Course No. Course Name Cr. Pre-req. Mark
0721439 | Special Topics in Software Engineering 3 0721322
0721410 | Secure Software Construction 3 0721432
0721421 | Software Re-Engineering 3 0721420
0721422 | Web Software Engineering 3 0731213
0721423 | Graphical User Interface Design* 3 0721322
0721432 | Software Quality Engineering 3 0721433
0721324 | Advanced Object Oriented Programming* 3 0721223

37

