Philadelphia University	PHILADELPHIA	Approval date:
Faculty: Pharmacy	UNIVERSITY	Issue: Winter
Department: Pharmacy	THE WAY TO THE FUTURE	Credit hours: 3
Academic year	Course Syllabus	Bachelor

Course information

Course#	Course title			Co /Pre-r	equisite
0510220	Pharmaceutical Biochemistry			0510.	210
	Cou	rse type	Class	s time	Room #
□ University R ⊠ Major Requ Compulsory	Requirement irement	 ☑ Faculty Requirement □ Elective □ 	12:45-2: 9:45-11: W 9:45-11: 9:45-11:	15 S, T 15 M, 15 M, W 15 S, T	5613 6602 9311 5620

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Dr Abeer Shnoudeh	P511		S,T 11.30-12.30	ashnoudeh@philadelphia.edu.jo
			M,W 1-2	
Dr. Mohammad	N504	2210		mshomali@philadelphia.edu.jo
Shomali	11500	2310		
Hanan Asaad	P414		S, M, T,W 12-1	<u>H</u> asaad@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method				
⊠ Physical □ Online □ Blended				
Learning Model				
Precentage Synchronous Asynchronous Physica			Physical	

Course Description

This course provides an overview of the biomolecules structure and characteristics, such as carbohydrates, lipids, amino acids, proteins, enzymes and nucleic acids. The course is contextualized based on these biomolecules and their biological functions, in addition to their relationship with the biochemical reactions that occur in the cells to produce and store energy (bioenergetics). يغطي هذا المساق لمحة عامة عن تركيب وخصائص الجزيئات الحيوية، متل الكربو هيدرات، والدهون، والأحماض الأمينية والبروتينات والإنزيمات والأحماض النووية. يتم وضع السياق على أساس هذه الجزيئات الحيوية وطائفها البيولوجية، بالإضافة إلى علاقتها مع التفاعلات الكيميائية الحيوية الخوية الخوية الخوية الخوية الخوية مع الخليا لإنتاج وتخزين الطاقة (الطاقة الحيوي)

Numb er	Outcomes	Correspon ding Program outcomes	Competenc ies
	Knowledge		
K1	Understand the basis of cellular structure, the behavior of biological macromolecules and explain the relationship between bio-molecule structure and biological function	Kp1	C1
K2	Explain the structures of amino acids, their chemical properties and their organization into polypeptides and proteins to give the protein structure	Кр3	C3
K3	Apply the knowledge from amino acids to explain the building of protein structure and how the protein gains its function (enzymes and kinetics as well as the inhibitory effects of some chemicals) to understand the pathomechanisms of some diseases and their treatments strategies. Understand the organization of human cells and the structure and function of different cellular components, such as carbohydrate and lipids.	Kp1	C1
K4	Understanding of bioenergetics (energy metabolism inside the body) and explain of some metabolic disorders.	Кр1, Кр3	C1, C3
K5	Introductory to DNA and RNA in cells and their role in cell growth, replication and control.	Кр1, Кр3	C1, C3
	Skills		
S1	Thinking and analysis skills will be developed through problem solving.	Sp2	C8
S2	Communication skills, overall discussion of some issues	Sp3	С9
S 3	By the end of the program successful students who have attended regularly and completed required work will recognize the applicability of biochemistry to the careers to which they will be progressing	Sp2	C8
	Competencies		

Course Learning Outcomes

Learning Resources

Course textbook	Lippincott Illustrated Reviews: Biochemistry (Lippincott Illustrated Reviews Series) 7 th edition by Denise Ferrier (Author), Lippincott Williams and Wilkins, Jan 2017,		
	ISBN-13: 978-1496363541		
Supporting References	Lehninger Principles of Biochemistry, Fourth Edition by David L. Nelson, Michael M. Cox Publisher: W. H. Freeman; 4th edition 2005 ISBN: 0716743396		
Supporting websites	https://libguides.colostate.edu/c.php?g=64892&p=418199		
Teaching Environment	⊠Classroom □ laboratory □Learning platform □Other		

Meetings and subjects timetable

Week	Торіс	Learning Methods	Tasks	Learning Material
1 13/3/2022	Course Introduction, water	Lecture/video		Text book
15/3/2022	Amino acids and peptides	Lecture		Text book
2 20/3/2022	Protein Structure and Properties	Lecture/video discuss a protein structure	Relation between structure and function	Text book Selected teaching material
22/3/2022	Protein Folding and Misfolding Diseases	Lecture, discussion of disease and protein fuction	Quiz	Text book Selected teaching material
3 27/3/2022	Globular Proteins	Lecture	Mid exam	Text book
29/3/2022	Fibrous Protein	Lecture	Assignments (report, one page) Mid exam	Text book Selected teaching material
4 3/4/2022	Enzymes	Lecture/video	Mid exam	Text book
5/4/2022	enzyme kinetics	Lecture and video	Group discussion Mid- exam	Text book Selected website
5 10/4/2022	Enzyme Inhibition and Inactivation	Lecture and video	Mid exam Discussion the toxins	Text book
12/4/2022	Reversible & Irreversible Enzyme Inhibitors. Regulation of Enzymes	Lecture, problem solving based learning (poisoning)	Mid exam Treatment of poisoning induvial	Text book Selected website
6 17/4/2022	Introduction to bioenergetics	Lecture	Final exam	Text book

19/4/2022	Glycolysis and gluconeogenesis	Lecture and video discussion	Quiz Final exam	Text book Selected teaching material
7 24/4/2022	Tricarboxylic acid cycle and pyruvate dehydrogenase complex	Lecture	Final exam	Text book
26/4/2022	Electron transport chain and oxidative phosphorylation	Lecture Video	Final exam	Text book Selected t
8 8/5/2022	Monosaccharides and disaccharides metabolism	Lecture	Final exam Video discussion	Text book
10/5/2022	Pentose phosphate pathway and NADPH	Lecture, video discussion	Quiz Final exam	Text book, selected teaching material
9 15/5/2022	Dietary lipid metabolism	Lecture	Final Assignment	Text book Selected teaching material
17/5/2022	Fatty acids and triacylglycerol and ketone body metabolism	Lecture	Final exam	Text book Selected teaching material
10 22/5/2022	Phospholipid and glycosphingolipid	Lecture	Final exam	Text book
25/5/2022	Eicosanoid metabolism	Lecture	Final	Selected websites Text book
11 29/5/2022	Cholesterol metabolism 1	Lecture	Final	All previous topics
31/5/2022	Cholesterol metabolism 2	Lecture	Final	Selected websites Text book
12 5/6/2022	Nitrogen disposal	Lecture	Final	Selected websites Text book
7/6/2022	urea cycle	Video/lecture discussion	Final	Text book, selected websites
13 12/6/2022	General Introduction to DNA	Lecture	Quiz, Final exam	Text book
14/6/2022	General Introduction to DNA	Lecture	Final exam	Selected websites Text book
14 19/6/2022	General Introduction to RNA	Lecture	Final exam	Text book Selected websites
21/6/2022	General Introduction to RNA	Lecture	Final exam	Text book Selected websites
15 26/6/2022	Protein biosynthesis	Video	Final exam	Text book Selected websites
28/6/2022	Protein biosynthasis	Video	Final exam	Text book

ĺ					Selected
					websites
* includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning					

Course Contributing to Learner Skill Development

Using Technology			
Use biochemistry data-bases and platforms effectively.			
Communication skills			
Self-confidence during discussion scientific problems			
Application of concepts learnt			
Intuitive life-long learning skills			

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	% 30	8 th week	K1, K2,K3
Various Assessments *	% 30	Overall course	S1,S2, S3,C1,C3,
		duration	C8, C9
Final Exam	% 40	16 th week	K1,K2,K3, K4,
			K5,
Total	%100		

* includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning Method*	Assessment Method**
	Knowledge		
K1	Understand the basis of cellular structure, the	Lecture, and	Exam and
	behavior of biological macromolecules and	Videos	evaluation
	explain the relationship between bio-molecule		sheet
	structure and biological function		
K2	Explain the structures of amino acids, their	Lecture,	Exam
	chemical properties and their organization into	discussion,	Homework
	polypeptides and proteins to give the protein	video	discussion
	structure		
		presentation	
K3	Apply the knowledge from amino acids to explain	Lecture, ,	Exam,
	the building of protein structure and how the	video	discussion
	protein gains its function (enzymes and kinetics as	presentation	

1						
	well as the inhibitory effects of some chemicals) to					
	understand the pathomechanisms of some					
	diseases and their treatments strategies.					
	Understand the organization of human cells and					
	the structure and function of different cellular					
	components, such as carbohydrate and lipids.					
K4	Understanding of bioenergetics (energy	Lecture,	Exam,			
	metabolism inside the body) and explain of some	video				
	metabolic disorders.					
K5	Introductory to DNA and RNA in cells and their role	Lecture,	Exam,			
	in cell growth, replication and control.	video	discussion			
	Skills					
S1	Thinking and analysis skills will be developed three	Lecture,	Exam and			
	problem solving.	video	assignments			
		presentation	8			
		collaborative				
		learning				
<u>\$2</u>	Communication skills overall discussion of	collaborative	Homework.			
	some issues	learning	auiz			
	some issues	lecture	quiz			
63	By the end of the program successful students	collaborative	Ouiz			
	who have attended regularly and completed	looming	Quiz			
	required work will recognize the applicability of	learning				
	his chamistry to the service to which they will be	discussion				
	biochemistry to the careers to which they will be	lecture				
	progressing					
	Competencies					

* includes: Lecture, flipped Class, project- based learning , problem solving based learning, collaborative learning

** includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Policy	Policy Requirements	
Passing Grade	The minimum passing grade for the course is (50%) and the minimum	
	final mark recorded on transcript is (35%).	
	• Missing an exam without a valid excuse will result in a zero grade to be assigned to the exam or assessment.	
Missing	• A Student who misses an exam or scheduled assessment, for a	
Exams	legitimate reason, must submit an official written excuse within a	
	week from the an exam or assessment due date.	
	• A student who has an excuse for missing a final exam should submit	
	the excuse to the dean within three days of the missed exam date.	
Attendance	The student is not allowed to be absent more than (15%) of the total hours	
	prescribed for the course, which equates to six lectures days (M, W) and	
	seven lectures (S,T,R). If the student misses more than (15%) of the total	
	hours prescribed for the course without a satisfactory excuse accepted by	
	the dean of the faculty, s/he will be prohibited from taking the final exam	
	and the grade in that course is considered (zero), but if the absence is due	
	to illness or a compulsive excuse accepted by the dean of the college, then	
	withdrawal grade will be recorded.	

Course Polices

Academic	Philadelphia University pays special attention to the issue of academic	
Honesty	integrity, and the penalties stipulated in the university's instructions are	
	applied to those who are proven to have committed an act that violates	
	academic integrity, such as: cheating, plagiarism (academic theft),	
	collusion, and violating intellectual property rights.	

Program Learning Outcomes to be assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
Kp1	Develop, integrate, and apply knowledge from the foundational sciences to evaluate the scientific literature, explain drug action, solve therapeutic problems, and advance population health and patient centered care.	Pharmaceutical Biochemistry	Exam, Quizzes,	70% of students have a minimum score 75 of 100

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment	
Kp1	30 question each in the mid and final exam (MCQ and assay)	

Assessment Rubric of the Program Learning Outcome

The MCQ (25 questions) will cover the general biochemical understanding. Each question 1 points.

5 assay analysis questions each one point for the measure of the analytical skills of students